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Abstract This paper estimates factor-specific technical
change and input substitution using a structural approach. It
contributes to the existing literature by introducing various
technology drivers for factor productivities and by assessing
the impact of endogenous technical change on the elasticity of
substitution. The empirical results suggest that factor produc-
tivities are indeed endogenous. In addition, technology drivers
are factor-specific. Whereas the R&D stock and machinery
imports are important determinants of energy and capital pro-
ductivity, the education stock is statistically related to labour
productivity. The rate of energy-augmenting technical change
is larger than that of either labour or capital. By contrast, the
productivity of these two factors grows at similar rates. Esti-
mates of the elasticity of substitution are within the range
identified by previous literature. In addition, we show that
endogenous technical change reduces substitution. Because
the elasticity of substitution is lower than one, knowledge and
human capital can ultimately have an energy-using effect. The
estimated structure of endogenous technical change suggests
that Integrated Assessment models focusing on energy-saving
technical change might underestimate climate policy costs.

Keywords Endogenous technical change - Integrated
assessment models - Panel regression

JEL Classifications C3 - 047 - Q55 - Q56

C. Carraro

University of Venice, Fondazione Enrico Mattei, CEPR,
and CESifo,

Venice, Italy

E. De Cian (<)

Fondazione Eni Enrico Mattei, Isola di San Giorgio Maggiore,
30124 Venice, Italy

e-mail: enrica.decian@feem.it

1 Introduction

Over the past decades, our understanding of the relationship
between technological change, economic growth, and the
environment has greatly improved. The literature has ad-
vanced from early models with exogenous technical change
to representations of endogenous processes driven by various
factors such as innovation [1, 44, 45], human capital [34] and
experience [2]. Technical change has also become an impor-
tant element in the design of climate policies. It is widely
accepted that GHGs emission reduction is possible only if
carbon-free technologies become attractive from the econom-
ic viewpoint and if energy efficiency improves. As a conse-
quence, a growing number of models used for climate policy
analysis have looked at the dynamics of technical change.
Models describing technical change as an endogenous process
make it possible to study the relationship between climate
policy and technical change and to evaluate the implications
of policy-induced technical change (ITC) on the macroeco-
nomic costs of climate policy. Results in this literature show
that ITC substantially influences the long-run costs of climate
policy, the dynamics of technical change itself, the timing of
action, and the design of optimal policy [9, 12, 27].

Nevertheless, the appropriate way to model technical
change is still debated. Most Integrated Assessment Models
(IAMs) suffer from three limitations. First, most models
endogenise technical change in the energy sector. Other
forms of technical change such as improvements in total
factor productivity or labour productivity either follow au-
tonomous trends or are simply omitted. However, recent
empirical studies indicate that technical change can also be
energy-using [47, 53]. Whether technical change is good or
bad for the environment depends on the direction it takes. In
order to have sustainable growth, pollution-saving technical
change must dominate other types of technical change, such
as neutral technical change or labour-augmenting technical
change, which tend to increase pollution [6, 7, 35].
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Models that omit endogenous technical change in the
energy sector tend to overestimate the cost of climate poli-
cies [20, 22, 36]. When technical progress is exogenous, the
only way to reduce emissions is to substitute fossil fuel
inputs with cleaner inputs, such as renewables. Endogenous
technical change introduces the additional option of improv-
ing the efficiency with which energy inputs are used, for
example by investing in energy R&D. However, omitting
endogenous technical change in the non-energy sector
might actually underestimate policy costs because the op-
portunity cost of energy-saving R&D is not fully captured.
By neglecting the dynamics of technical change in the non-
energy sector, where the majority of R&D investments
occur, the impact of climate policy on economy-wide tech-
nical change is omitted. Climate policy stimulates energy-
saving technical change, which comes at the costs of R&D
in other sectors. As a consequence, the pace of overall
technological change might be reduced, with negative influ-
ences on welfare and economic growth [13, 28, 41, 51].

The degree of complementarity between the energy input
and non-energy inputs, such as labour and capital, is a major
explanation of the direction of policy-induced technical
change and of its implications on the use of energy. When
technical change increases the productivity of inputs that are
gross complements to energy, the demand of energy
increases, with negative implications on the environment,
ceteris paribus [13, 41, 49]. As a consequence, climate
policy would re-direct resources away from these sources
of technical change.

This finding underlines the key role played by the elas-
ticity of substitution and the deep interconnections between
factor substitution and technical change [51]. Estimates of
substitution elasticities are provided by a number of empir-
ical studies (see Markandya and Pedroso-Galinato [39] for a
review). Despite the significant heterogeneity, most esti-
mates point at a relationship of complementarity between
capital, labour and energy, and most studies find a substitu-
tion elasticity lower than one. However, all estimates are
based on the assumption that factor productivities are exog-
enous, therefore neglecting the interactions with endoge-
nous technical change.

A second main limitation of state-of-the-art IA models is
the weak empirical foundation of key technology parame-
ters such as the elasticity of substitution, the dynamics of
factor productivities, and their elasticities with respect to
endogenous-technology drivers. Despite significant
improvements during the last decades, the empirical re-
search that can provide useful information for the parameter-
isation of IA models is still surprisingly limited. Most of the
empirical literature focuses on the magnitude of neutral
technical change. Early approaches measured indicators of
neutral technical change as Solow residuals [50] or as a
coefficient of an exogenous trend using translog production

@ Springer

functions [32]. Econometric methods were used to infer
technical change from the dynamics of other economic
variables. Slade [48] and Bonne and Kemball-Cook [5]
developed a model of factor demands in which the nature
of technical change as a latent variable is emphasised. Tech-
nical change is broken down into an unobservable time
trend and other factors that endogenously influence it. A
similar methodology is used in Carraro and Galeotti [10]. In
this latter work, the dynamics of technical change were
inferred from the time evolution of capital stock rather than
from factor demands.

In addition, fewer studies have addressed factor-biased or
factor-augmenting technical change.' Kendrick [33] ana-
lysed and compared trends in labour and capital productiv-
ity, measured as a ratio of output over labour and capital
respectively for 33 American industries from 1899 to 1953.
Despite the heterogeneities across industry, in the long-run
technical change is labour- and capital-saving. Labour tech-
nical change tends to increase faster than capital technical
change. Sue Wing and Eckaus [52] revised the work by
Jorgenson and Fraumeni [31] on energy-saving technical
change in the US economy. Technical change has been an
important explanatory factor of the decline in aggregate
energy intensity since 1980. Another important driver is
sectoral change, whereas energy prices play only a minor
role. Sanstad et al. [47], using a translog production func-
tion, estimated sectoral productivity trends and energy-
augmenting technical change for several energy- intensive
industries in India, South Korea, and the United States. They
concluded that there is significant heterogeneity in energy
productivity not only across countries, but also across sec-
tors. Van der Werf [53] estimated factor-augmenting techni-
cal change using a two-level Constant Elasticity of
Substitution (CES) production function for the inputs capi-
tal, labour, and energy. He found larger rates of improve-
ment for labour, followed by energy, whereas the rates of
capital-augmenting technical change are negative.

Finally, the almost total absence of empirical studies on
the drivers of factor productivities has led IA models to
follow the mainstream growth theory (Arrow [2]; Romer
[44, 45]; Grossman and Helpman [26]) and assume that the
engine of technical change is the accumulation of knowl-
edge or experience, neglecting other important drivers such
as trade and human capital.

Because of the growing relevance of IAMs in climate
policy analysis, empirical results are needed to guide mod-
ellers in the implementation of accurate descriptions of
technical change [12]. This paper addresses this issue by

! Hicks neutral technical change can be represented as a parallel shift in
isoquants. Factor-biased technical change shifts the slopes of the iso-
quants, thereby affecting the relative marginal product of inputs. Tech-
nical change is factor-augmenting if it increases the productivity of
factors.
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estimating factor-specific technical change and input substi-
tution using a structural approach. It infers the dynamics of
technical change from a system of factor demands. It
improves upon the existing literature by introducing
endogenous-technology drivers for factor productivities (en-
ergy, labour and capital) and by assessing the impact of
endogenous technical change on the estimate of elasticity
of substitution. By using a model of production that is
commonly used in [AMs, the empirical results described
in this paper can be directly applied to IAMs.

Results indicate that factor productivities are endoge-
nous, thus rejecting models with exogenous technical
change. Second, it shows that technology drivers are
factor-specific. Knowledge is an important driver of capital
and energy productivity, whereas human capital is a better
explanatory variable of labour productivity. Imports of ma-
chinery and equipment from OECD are also energy-
augmenting, but their effect is much smaller than that of
the R&D stock. Third, the rate of energy-augmenting tech-
nical change tends to be larger than that of either labour or
capital, which instead have similar growth rates.

Because the elasticity of substitution is less than one, we
can conclude that R&D stock, imports of machinery and
equipment, and education stock have an input-saving effect.
Therefore, knowledge is not only energy-saving, but also
capital-saving. Human capital is labour-saving. Because the
estimated elasticity of substitution is less than one, knowl-
edge and human capital can ultimately have an energy-using
effect. This result suggests that climate—economy models
focusing on energy-saving technical change tend to under-
estimate climate policy costs.

The remainder of the paper is organised as follows: in
Section 2, we introduce the Constant Elasticity Production
Function (CES) and briefly discuss the strategy that can be
employed to identify different components of technical
change. Section 3 describes the specification of the empir-
ical model and the data. Section 4 presents the results.
Section 5 discusses the implications on the nexus between
technical change and environmental policy in the specific
context of climate change. Section 6 summarises our main
results and outlines further research directions.

2 Model Specification

Climate—economy models represent the production side of
the economy by using production functions that can be
parameterised in different ways to reflect alternative
assumptions on technology and factors substitution. Most
IAMs use CES production functions to describe how differ-
ent inputs are combined to produce final output.

Large differences exist with respect to the assumed nest-
ing structure, the size of the elasticity of substitution, and the

way technical change is represented. Van der Werf [53]
reviews the production structure of ten state-of-the-art
IAMs. All models except one, nest labour together with
capital, whereas three models consider a non-nested produc-
tion function, assuming an equal elasticity of substitution
between energy, capital, and labour.? The specification that
best fits the data combines capital and labour first, and then
the capital-labour bundle with energy. However, a non-
nested production function cannot be rejected for eight out
of twelve countries, and for five out of seven industries. In
addition, most [AMs share the assumption of exogenous
technical change and only one model [18] is characterised
by factor-specific technical change.

In this paper, we consider a non-nested production func-
tion with endogenous factor-augmenting technical change.’
We assume that a representative firm produces total output
(X) using the CES technology with constant-return-to-scale,
a standard assumption in IA modelling literature:

X (1) = HO{ (A (0K ()" + (AL (OL(1) + (As(0E®) Y
(1)

The elasticity of substitution o is related to p according to
the standard relationship, p=(c—1)/o.

This formulation (David et al. [17]) can account for factor-
specific technical change, differentiating the dynamics of tech-
nical change across inputs. The coefficients that pre-multiply
the three inputs, capital, labour, and energy (4, with /=K,L,E),
describe the productivity of production factors, that is the effi-
ciency with which inputs are used in production. The higher the
productivity coefficient, the lower the quantity of input is re-
quired to produce the same level of output. Technical change is
factor-augmenting if an increase in productivity leads to higher

0X(t
BA/'(([)) > 0.

Neutral technical change is also included as an additional pa-
rameter (H), which pre-multiplies the whole production
function.

This production structure makes it possible to differenti-
ate factor-specific technical change, while accounting for
changes in overall productivity. Indeed, factor-specific tech-
nical change and overall productivity can take different and
opposite paths. The industrial revolution in the eighteenth
century and the introduction of information technologies in
the seventies are both examples of rapid technical change in
specific sectors associated with aggregate productivity slow-
down (Greenwood and Yorukoglu [24]). Learning about
new technologies and initial lack of experience explain

output, keeping everything else constant, i.e.

2 These are the models described by Edenhofer et al. [19], Goulder and
Schneider [28] and Popp [43].

3 Given the focus of the paper, which is the identification of the
endogenous determinants of factor-augmenting technical change, we
decided to start with one of the simplest CES structure that has an
empirical foundation.
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why the introduction of new technologies may be associated
with lower productivity growth.

Factor-augmenting technical change is input-saving or
input-using depending on the elasticity of substitution. The
interplay between neutral and factor-specific technical
change and the interaction between substitution and techni-
cal change can be better understood by looking at condi-
tional factor demands derived from the cost-minimisation
problem of the representative firm.*

Using logarithms and differentiating with respect to time,
conditional factor demands can be expressed as a linear
relationship,® as in system (2). The percentage change in
factor demands on the left-hand side depends on the per-
centage change of final output (x), technology parameters
(as+ h) and relative input prices (p,/—p):

k=x+(o—1)(ax +h)+ (1 —o)(px —p)
I=x+ (o~ V(a4 5) + (1 — 0)pr ~p) ©)
e=x+(oc—1)(ag+h)+ (1 —0)(pe —p)

Technical change is broken down into two components,
neutral technical change (%), which affects all inputs equally,
and factor-augmenting technical change (a, with f/=K,L,E).
Factor-augmenting technical change (a/>0) is input-saving
if the elasticity of substitution is lower than one and if total
technical change remains positive, (a,+/1)>0.

Totally differentiating and dividing by the value of final
output (PX), the zero profit condition (PX = PxK + P L+
PrE), neutral technical change (4) can be decomposed into
total factor productivity growth (tfp) and share-weighted
input efficiency improvements:

h = tfp — (akOx + ar0, + apbr) 3)

where tfp is defined as a unit cost reduction not due to factor
price reductions:

tfp = (axpx + arpr + agpe) — p (4)

and 6; being the input cost shares §; = % with V; = K, L, E.

Total factor productivity is a correct measure of neutral
technical change only if technical change does not differ
across inputs, i.e. ag=ag=ay.

A well-known problem that clearly stands out from sys-
tem (2) is the impossibility to fully identify both neutral and
factor-specific technical change. The most straightforward
way to deal with this issue is to focus on factor-specific
technical change, assuming no time variation in neutral
technical change (i.e. #=0). This is also the assumption
shared by the literature on CES production functions with

4 Cost minimisation is also a standard assumption made in IA model-
ling literature. As in the IA modelling literature we also assume price-
taking behaviour and therefore the unit cost function gives the price of
final output, C(/; Py, P, Pg)=P.

> Small letters denote percentage changes, e.g. x = dX / X = dInX.

@ Springer

factor-augmenting technical change and on directed techni-
cal change (e.g., van der Werf [53] and Acemoglu [1]).

Factor-specific technical change consists of two compo-
nents. A constant term, which captures the growth rate of
autonomous technical change, 510, and an endogenous com-
ponent, which relates factor productivities to one or more
technology driver, y;:

a =8+ SyVf=KLE (5)
=1

where &/ describes the elasticity of factor productivity a, with
respect to the technology driver y;, 5} = g—jf V=K, L, E.
J

With this formulation we can test the hypothesis of en-
dogenous technical change by looking at the statistical sig-
nificance of the elasticity with respect to y;. In addition, the
role of various technology drivers can be assessed. Three
different possible sources of factor-specific technical change
are considered: knowledge, measured by the stock of R&D
expenditure, trade, in particular imports of machinery and
equipment, and human capital, approximated by the stock of
education expenditure. These variables were selected among
the main determinants of neutral technical change identified
by the empirical growth literature .The role of knowledge as
an engine of productivity growth has been acknowledged
since the early models of endogenous growth [43, 44].
Important contributions include studies by Griliches [25],
Nadiri [40] and Mansfield [37, 38]. Coe and Helpman [15]
found empirical evidence of international technology spill-
overs. R&D has an effect not only on the productivity of the
innovating country, but also on the productivity of trading
partners. The more open to trade a country is, the greater this
effect [8, 16].

Engelbrecht [21] extended the analysis of Coe and
Helpman [15] by including the role of human capital.
He found that both R&D stock and human capital, mea-
sured in terms of school attainment, are important deter-
minants of productivity growth. Other empirical studies
found a positive relationship between aggregate produc-
tivity and other indicators of human capital, such as
education attainment [3] and education expenditure [14].

Another indicator of knowledge is the stock of capital
[2]. Rosenberg [46] stressed how technical improvements
are often tied to capital goods such as machinery and equip-
ment. Therefore, the purchase of these goods is fundamental
for the translation of technical change into productivity
growth. Machinery is considered to be an important source
of economic growth and technical progress [18]. Historical-
ly, capital goods were manufactured in a small number of
countries because they required a mature stage of industri-
alisation, technical competency and high skill levels. More-
over, the capital goods industry is highly specialised and
requires a large market. For this reason, capital production
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has been concentrated in OECD countries, especially in the
United States, the United Kingdom and Germany. These
countries are also among the most R&D-intensive. It fol-
lows that the machinery produced in these countries are
particularly knowledge-intensive and therefore they have
high potentials to transfer technology and knowledge.

3 Empirical Model and Data

System (2) can be expressed in percentage change of cost
shares that depend on prices and technology. Technology is
a function of time and of three technology drivers, namely
the stock of R&D expenditure (y;), imports of machinery
and equipment from OECD countries () and the stock of
education expenditure (y3):

Ok = (o —1)5% + ZéKy, a)(pk — p)
O, =(c—1)8+(—1) Zsby, (1—0)(pL —p)
O = (o — 1)6% + (0 — 1) Zagy, (1 —0)(pe —p)

(6)

Country and time effects are captured using country
dummies and a logarithmic time trend.® As a consequence,
the rate of autonomous technical change (3”)) consists of a
country-specific term and of a time trend common to all
countries. In discrete time, the empirical model reads as
follows:

12
> axDi+ axi Int + y RE&ED + y (o M&E

AaKit =
+ 73 EDU + y s A(Prir — Pi) + €3t
12
Ay =Y apDi+ap Int+ 7y, R&D + 7, M&E
=1

+ 7L3EDU + 7L4A(PLit - Pit) + Eir
12
AbBgi = Z opDi+aptInt 4+ yp R&D + y o M&E
i=1
+ Y EDU + yps A(Pgir — Pyt) + €1t
(7)

® The time effect can also be made country-specific by interacting
country dummies with the time trend. Although all of these specifica-
tions were estimated, the model with a common time trend was pre-
ferred because it is more parsimonious.

00
where  Afy =5~

(Pie—Pp—1) _ (Pu—Pi1)
Ppiy Py

of interest can be retrieved using the following constraints:

LYf =K, L, E; A(Py — Py) =

and g;; are error terms. The parameters

Autonomous technology component
ki +ox1 = (O’— 1)59(1
o +aL1 = (0’— 1)5?1

agi +ag = (o — 1)8%

Endogenous technology component

Yi1 = (0= )8R & D; vy = (0 — 1)k M & E; y3 =
rn=(0— 1)5 R&D;yp, = (0— 1)52M&E Vi3 =
Yer = (0= 1SR & D; vy = (0 — 1)63M & E; yy3 =
Elasticity of substitution

=(l-o0)

(o0 — 1)83EDU
(o — 1)8;EDU
(o0 — 1)83EDU

Yka =714 = VE4

A set of tests can be performed to better assess the dynam-
ics of endogenous technical change (Test 1), autonomous
technical change (Test 4), and substitution (Test 2 and 3):

Test 1 :

Ho @ v =
Test 2 :

Ho :¥ka =714 =724 =0
Test 3 :

Ho @ 7k4 =714 = V4
Test 4 :

Hy : oxi+ox1 = o+ o =ag+apVi=1,-- N

Yy =vglorvj=1,2,3

Test 1 assesses whether the role of different technology
drivers differs across inputs. Test 2 evaluates the hypothesis
of a Cobb—Douglas production function. Test 3 checks the
assumption of common elasticity between capital, labour
and energy. Test 4 evaluates the hypothesis of neutral tech-
nical change when technical change is exogenous (i.c.,
Yn=Yp=Yp=0 for all /=K,L,E) by testing the equality of
the time trend and dummy coefficients across equations.

Estimation of system (7) requires data on prices and
quantities of output, labour, capital and energy. The estima-
tion is carried out using aggregate data, although an exten-
sion to sectoral data is left for future research.

Aggregate data was collected from the OECD STAN
Industry Database 2006,” the International Energy Agency
(IEA) Databases 2006 on Prices and Taxes and Extended
Energy Balance. The methodology of Pindyck [42] is used
to compute values for the variables of interest. The share of
labour was computed using labour compensation. The

7 Data available from http://www.sourceoecd.org/
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compensation to capital was computed as the difference
between value added and labour compensation. Using data
on the labour force from either the OECD STAN Industry
Database 2005 or the Penn World Table [29], the price of
labour was obtained implicitly, dividing labour compensa-
tion by the labour force. The price of capital was computed
in a similar way. Energy prices were taken from dataset on
real index of industry price, [EA Prices and Taxes, and they
are expressed in constant US$ (base year 2000) per tonnes
of oil equivalent. Energy quantities that come from IEA
OECD Energy Balance are expressed in thousand tonnes
of oil equivalent. Total output was defined as value added
plus the value of energy quantities. All values, in national
currency, were converted into current US$ using the Pur-
chasing Power Parity Conversion Factor from the World
Development Indicators® (WDI). Using the US implicit
deflator of GDP, current prices were converted into constant
prices at 2000 USS. All units are therefore expressed in
millions of US $ relative to the base year 2000. Prices were
finally expressed as indices, with the base year 2000.

Data on R&D expenditure’ is limited to 13 OECD
countries, from 1987 to 2002. The stock of R&D was
computed using the perpetual inventory method with a
depreciation rate of 5 %, although the choice of different
depreciation values does not affect the results significantly.
The initial value of the stock was set equal to the level of
investments in the first available year, divided by the aver-
age annual growth rate over the observation period, plus the
rate of depreciation, as suggested in [14].

Data on machinery and equipment imports are from the
OECD STAN Industry Database 2006."'" Data are available
for 12 countries over 13 years (1989-2001). The OECD
STAN Industry Database provides data on bilateral trade
flows and makes it possible to distinguish imports from
different trading partners. In the case of machinery, only
imports from the OECD countries were selected. Machinery
and equipment imports are classified as a two-digit industry
according to the International Standard Industrial Classifi-
cation (ISIC classification number 29).

Education is measured as current and capital expenditure
on all types of education, from both private and public
sources. Data are from the OECD.'" The stock was comput-
ed using the perpetual inventory method, with a depreciation
rate of 2 % [30]."* Table 4 in the Appendix summarises
descriptive statistics for the main variables.

8 World Bank, 2006.

¢ ANBERD—R&D Expenditure in Industry 2006 available from
http://www.sourceoecd.org/

1% Data available from http://www.sourceoecd.org/

"' Education Expenditures by Country, Nature, Resource Category,
and Level of Education Vol. 2006 issue 01.

12 A higher depreciation rate was also experimented, yielding very
similar results.
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Given the theoretical set-up from which the empirical
model was derived, the three equations are correlated. The
representative firm chooses the optimal demand of all three
inputs simultaneously. Therefore, the system error terms
have a variance covariance matrix that does not satisfy the
assumptions of zero covariance and constant variance. As a
consequence, the model is estimated with a feasible gener-
alised least square estimator (FGLS).

Although there are economic reasons that justify the
inclusion of country dummies, their relevance is also
assessed statistically. The null hypothesis of an equal con-
stant term is always rejected at 10 % significance level when
technology is endogenous. The specification with exoge-
nous technical change rejects two cases out of three.

4 Estimation Results

Before imposing the restrictions that make it possible to
identify a unique value for the parameters of interest, we
estimate the system without cross-equation constraints. We
also test the hypothesis of common elasticity (Test 3) and of
Cobb—Douglas production function (Test 2), both in the case
of exogenous and endogenous technical change.

When technical change is assumed to be exogenous (i.e.,
Yn=Yp=Yp=0 for all /=K,L,E), we reject the hypothesis of
common elasticity between capital and energy and labour
and energy. The same hypothesis cannot be rejected be-
tween capital and labour (at 1 % significance level). Similar
results are obtained with endogenous technical change, but
at a lower level of significance (10 %). The equations for
capital, labour and energy yield the following values of the
elasticity of substitution, 0.7, 0.8 and 0.1, respectively.
Endogenous technical change slightly reduces the elasticity
to 0.6, 0.7 and 0.1, respectively. All estimates point at a
value less than one. Indeed, the test of Cobb—Douglas pro-
duction structure is rejected in all equations, both with
exogenous and endogenous technical change.

The main contribution of this paper is twofold: (a) the
empirical assessment of the impact of endogenous technical
change on the elasticities of substitution, and (b) the deter-
mination of how different technology drivers affect factor-
augmenting technical change. We present the results with
exogenous factor productivities (Table 1) essentially for
comparison with the existing literature. The case with ex-
ogenous technical change provides a benchmark to assess
the implications of endogenous technical change.

Exogenous technical change is captured by the constant
term, which is country-specific, and a time trend. Results are
in line with previous findings, although there are some
differences with van der Werf [53], especially regarding
capital-augmenting technical change. Our results are similar
to Kendrick [33]. He found that technical change is labour-
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Table 1 Exogenous technical

change (constrained system esti- Capital Labour Energy
mation, FGLS estimator)
Coeff  p value Coeff  p value Coeff  p value
v (Pi—p) 0.62 0.00%** 0.62 0.00%** 0.62 0.00%**
QBE 0.00 0.63 —-0.01 0.08%* —-0.01 0.32
Qaea 0.00 0.84 —-0.01 0.18 —0.04 0.00%**
QpE 0.00 0.51 0.00 0.89 —0.06 0.00%**
QpK 0.00 0.45 —-0.01 0.01%%* —0.02 0.12
Qs —-0.02 0.01%** -0.02 0.00%** —0.02 0.15
Qyp 0.00 0.81 —-0.02 0.00%** —0.03 0.04%*
R 0.00 0.66 —-0.01 0.11 —-0.04 0.00%**
agr —0.03 0.00%** —0.01 0.08* —0.02 0.16
agp 0.00 0.48 0.00 0.60 —-0.03 0.01%***
oL —0.01 0.07* 0.00 0.39 —0.04 0.00%**
QUK 0.00 0.66 —0.01 0.03** —-0.05 0.00%***
aus —0.02 0.01%** —0.01 0.18 —-0.05 0.00%***
ay (In7) 0.00 0.44 0.00 0.93 0.01 0.00%**
2

BE Belgium, CA Canada, DE R 0.52 0.16 0.67

Germany, DK Denmark, ES T 14 14 14

Spain, FI Finland, FR France, IT 12 12 12

Italy, JP Japan, NL Netherlands, . .

UK United Kingdom, US United Factor-augmenting technical change 0.010 0.011 0.024

States (country average)
Elasticity of substitution 0.376 0.376 0.376

wkp=0.01; **p=0.05; *p=0.1

saving and capital-saving in the long-term and that labour
technical change tends to grow faster than capital. In addi-
tion, the rate of energy-augmenting technical change is
larger than that of labour, with values of 2.4 and 1.1 % per
year respectively.

The hypothesis of neutral technical change (Test 4) is
rejected in most countries. We can reject that energy-
augmenting technical change is equal to either labour or
capital in respectively 7 and 8 countries out of 12. The
equality between labour- and capital-augmenting technical
change is rejected in only 2 out of 12 countries.

Table 2 reports the estimation results with endogenous
technical change. We start by including all drivers men-
tioned above, namely the stock of R&D expenditure
(R&D), imports of machinery (M&E), and the stock of
education expenditure (EDU)."

The selected drivers of endogenous technical change partly
explain the variation in input cost shares. We can reject the
null hypothesis of exogenous technical change for the capital
and energy equation, whereas at this stage the three drivers do
not explain changes in the labour cost share.

The inclusion of endogenous-technology proxies reduces
the role of the exogenous component. It decreases the signif-
icance and the coefficient of the time trend in the energy

13 The correlation between these three variables is low and therefore
they could be included simultaneously.

equation and it diminishes the number of significant country
dummies in the labour equation. In the case of labour, the time
trend is not significant. This means that the rate of labour-
augmenting technical change is significantly different from
zero only when country dummies are significant, namely in
Denmark, Spain and Finland. On average, the rate of labour-
specific technical change is 1.4 % per year, very close to what
was found in the specification with exogenous technical
change. Indeed, the endogenous drivers included here do not
explain improvements in labour productivity.

In contrast, energy-augmenting technical change is well
explained by imports of machinery and the R&D stock,
although at this stage the latter driver is significant only at
11 % significance level. The time trend and country
dummies are no longer significant, suggesting that the two
technology drivers are able to capture most of the dynamics
of energy-augmenting technical change. The negative sign
of their coefficients implies that, at constant prices, an
increase in R&D and machinery imports reduces energy
cost share. This is exactly what Binswanger and Ruttan [4]
defined as input-saving technical change.

Capital-augmenting technical change is explained by the
R&D stock and machinery imports, which have a capital-
saving effect. On average, the rate of both energy and capital
productivity growth is larger when accounting for the en-
dogenous drivers. Growth rates are respectively 3 % and
5.3 % per year.

@ Springer



20

C. Carraro, E. Cian

Table 2 Endogenous technical
change (constrained system
estimation, FGLS estimator)

V4 (»i—p)

7a R&D

Yp M&E

73 EDU

QYBE

Qe

QYDE

QK

QrES

QUF

QR

agr

Qgp

oL

UK

aus
Factor-augmenting technical an (In7)
change was calculated by adding R?

the exogenous and endogenous T
component. The endogenous N

component was computed for
average values of the technology Technology parameters

drivers (See Table 4 in
Appendix I)

BE Belgium, C4 Canada, DE

Endogenous Drivers

R&D stock
Germany, DK Denmark, ES sloe
Spain, F7 Finland, FR France, IT ~ M&E
Italy, JP Japan, NL Netherlands, EDU stock

UK United Kingdom, US United

States .. o
Elasticity of substitution

Exogenous component (country average)

Factor-augmenting technical change

Capital Labour Energy

Coeff  p value Coeff  p value Coeff  p value
0.63  0.00%** 0.63  0.00%** 0.63  0.00%**

—0.64  0.00%** 0.18  0.13 —0.46  0.11

—0.01  0.09* 0.00 0.78 —0.05  0.01%**
0.15 0.25 0.02  0.90 0.07 0.81
0.04  0.01***  -0.02 0.16 0.03  0.46
0.06  0.00%¥**  -0.02  0.12 0.01  0.75
0.03  0.00¥**  -0.01  0.47 -0.03  0.20
0.06  0.00%**  —0.04  0.05** 0.03  0.44
0.03  0.12 -0.04  0.09* 0.02 0.62
0.07  0.00%**  —0.04  0.03** 0.03  0.49
0.04  0.01***  -0.02  0.19 0.00  1.00

-0.02  0.18 -0.01 044 -0.01 0.88
0.05  0.00¥**  -0.01  0.29 0.01  0.77
0.02 0.11 -0.01 026 —0.01  0.75
0.02 038 -0.02 027 -0.03 049
0.02 030 -0.02 035 -0.01  0.79
0.00 034 0.00  0.90 0.01  0.30
0.67 0.20 0.68

13 13 13

12 12 12

—0.039 0.014 0.000
1.016
0.023 0.085
0.03 0.014 0.053
0.368 0.368 0.368

#4p=0.01; **p=0.05; *p=0.1

We tested whether the R&D stock and machinery imports
have the same effect on capital and energy input shares.
Although we reject that machinery has the same impact on
energy and capital at 10 % significance level (p value 0.07),
we cannot reject the same hypothesis for R&D at 1 %
significance level (p value 0.55).

The model with endogenous technology also rejects the
hypothesis of neutral technical change in most cases. We
reject the hypothesis that labour has the same rate of factor-
augmentation of any other input, but we could not reject that
energy and capital productivities have similar growth rates
for 11 countries out of 12.

The introduction of endogenous-technology drivers tends
to reduce the elasticity of substitution by about 2 %, from
0.376 to 0.368. This result suggests that the effect of prices
on cost shares is upward biased when endogenous technical
change is omitted. This result has already been emphasised
by Carraro and Siniscalco [9]. It suggests that part of the
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change that is attributed to substitution is due to technical
change. It is difficult to know whether a new combination of
inputs is adopted because a new technology has become
available (technical change) or because variations in input
prices have made an existing technology more attractive
(substitution). When the elasticity of substitution is low,
most of the variation is likely to be due to technical change
(Sue Wing [50]).

To improve the efficiency of our estimates, we re-
estimate the model with endogenous technical change ex-
cluding the technology drivers that were not statistically
significant and the time trend. Only statistically significant
country dummies are preserved.'® Results are reported in
Table 3.

14 We used an iterative selection technique that drops regressors one by
one, selecting those with the lowest significance level, until all varia-
bles are significant.
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Table 3 Endogenous technical

change including only significant Capital Labour Energy

variables (constrained system es-

timation, FGLS estimator) Coeff  p value Coeff  p value Coeff  p value
v (Pi—p) 0.63 0.00***  0.63 0.00%**  0.63 0.00%**
7n R&D —0.59  0.00%** —0.34  0.00%**
7 M&E —0.06  0.00%**
v EDU —0.09  0.00%**
QBE 0.04 0.00%** 0.04 0.01%**
Qe 0.05 0.00%** 0.02 0.18
QpE 0.02 0.00%**
QK 0.06 0.00***  —0.01  0.04** 0.04 0.01%%*
s 0.04 0.00*¥**  —0.01  0.10%* 0.04 0.01%**
foe 0.07 0.00*¥**  —0.01  0.00***  0.03 0.02%*
R 0.04 0.00%**
agr —0.02  0.00%**
agp 0.05 0.00%** 0.02 0.13
oL 0.01 0.03%*
UK 0.02 0.00%**
s 0.03 0.00%**
R 0.64 0.15 0.66
T 13 13 13

Factor-augmenting technical N 12 12 12

change was calculated by adding Technology parameters

the exogenous and endogenous Exogenous component (country average) — —0.047 0.004 —-0.019

componel‘lt Endogenous drivers

g’irizlf;‘,‘“;;% ﬁiﬁi‘iﬁ B R&D stock 0.941 0.538

Spain, FI Finland, FR France, IT M&E 0.093

Italy, JP Japan, NL Netherlands, EDU stock 0.140

UK United Kingdom, US United Factor-augmenting technical change 0.015 0.014 0.021

States Elasticity 0.370 0.370 0.370

***p=0.01; **p=0.05; *p=0.1

The effect of R&D stock and machinery imports is
quite stable, although the latter variable is no longer
significant in the capital equation. The effect of the edu-
cation stock on labour is less robust and it becomes
significant and labour-saving. The autonomous term
remains significant in the capital equation, suggesting that
a considerable part of capital dynamics is still captured by
an exogenous component.

As for the rate of factor-augmenting technical change, we
confirm the results obtained with the previous less efficient
specification. Energy-augmenting technical change grows at
a faster rate, on average at 2 % per year, whereas labour and
capital have slightly lower and similar rates of improvement,
1.5 and 1.4 % respectively.

Together the two drivers of energy-augmenting technical
change, R&D stock and machinery imports, have an effect
on energy productivity that is statistically equivalent to the
effect R&D stock has on capital productivity (p value 0.20).

In contrast, the contribution of human capital to labour-
augmenting technical change is statistically different at
1 % significance level."

Estimation residuals reveal the presence of first-order
autocorrelation. However, the correlation between residuals
is weak, between 0.26 in the endogenous specification with
selected variables and 0.4 in the endogenous specification
with all variables. We did not correct for correlation in the
estimation results reported in Tables 1, 2 and 3, but
Appendix II reports bootstrap estimates of the standard
errors. They confirm the validity of inference analysis pre-
sented in the main text of the paper.'®

15 As in Table 2, we reject that labour and either capital or energy have
the same rate of factor-augmentation, but we could not reject that
energy and capital have the same growth rate.

16 Bootstrap methods provide an alternative to inference based on
parametric assumptions ,when those assumptions are in doubt.
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Two are the main conclusions that have emerged so far.
First, we confirm that technology trends are factor-specific.
Second, and perhaps most importantly, the underlining tech-
nology drivers differ across inputs. Knowledge (R&D) is the
most important variable explaining capital- and energy-
augmenting technical change. Human capital is the variable
driving labour productivity. Imports of machinery also play
arole, especially for the energy input, but its contribution is
much smaller compared to that of the R&D stock.

5 Factor-Augmenting Technical Change: Implications
on Energy Use, Climate Policy Modelling and Assessment

The dynamics of macroeconomic data analysed in the previous
section suggest that the productivities of inputs typically used in
IA models, namely labour, capital, and energy, are endogenous
and they grow with different drivers. It also shows that substi-
tution possibilities between capital, labour and energy are low,
especially when technical change is endogenous.

These results have important implications for IAMs be-
cause they suggest that technical change is not necessarily
energy-saving and other forms of technical change (labour-
and capital-saving) are equally relevant. As argued in the
introduction, models that overlook the macroeconomic dy-
namics of technical change cannot track how climate policy
redistributes resources across different R&D sectors [12].
As a consequence, these models tend to underestimate the
policy costs in terms of Gross World Product losses. In
addition, our results indicate that substitution possibilities
are low, which implies that input-saving technical change
can actually have an energy-using effect.

Although a full-fledged general equilibrium analysis is
beyond the scope of the present analysis, the joint estimation
of endogenous technical change and substitution allows us
to highlight some implications in terms of energy use and
induced technical change dynamics. Consider the cost-
minimising factor demands, estimated in Section 4:

K L (PY\°  _

_:Ho'l 4 A o—1 8
k (PK> . ®)
L Py\°

_:H(r—l -r A o—1 9
d (P) . 9)
E S (PY\7

_:Ho'l — A o—1 10
Y (PE> £ (10)

Consider now the ratio of energy demand with respect to
labour and capital using the specification of technical
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change estimated in Table 3. The relative demand of energy
reads as follows:

1—0o
E_(P\° IEDU
L \Pg PR & DM & EOF
1—0o
E _ (Px\7(  €%R&D% ()
K \Pr) \e%R & DM & E%

Pe\7 (4R & D\ "
- (P_E> M & E%
This implies that, with positive elasticity 5% = 0.140,

human capital has an energy-using effect if, ceteris paribus,
the elasticity of substitution is less than one:

) _ (st (Pr) (. _tEDU% 7
= —0 —_—

OEDU E\Pev) \ %R & DM & E%:

< SEDU%

R & DO &E‘%) > 0 since 0 < 1 and §; > 0

What can be said regarding the relative impact of the R&D
stock? The conditional demand for energy (Eq. 10) indicates
that the direct impact of knowledge on energy demand is
negative (energy-saving) if the elasticity of substitution is less
than one. However, the indirect impact via capital productivity
(Eq. 8) is energy-using, as for human capital. The net effect
ultimately depends on the relative size of the two elasticities,
dx'and 85", Since the estimated value of 6'is larger than 6",
8y = 0.941 and 5,15 = 0.538, the net effect of knowledge is
energy-using, if, ceteris paribus, the elasticity of substitution is
less than one:

o 0 1_s1\ — O
UL (1—o)sh—oby (LX) (LR &DX
OR & D KB\ Py ) \ oim & E%

R & DP9k 0
X|———| >
M & EO

since o < 1 and (63 —3;) > 0

In contrast, since 6123 = 0.093 the net effect of machinery
and equipment imports is energy-saving, if, ceteris paribus,
the elasticity of substitution is less than one:

we=0-oo(n) (e
=U—0)(— - 0 1 2
oM & E E'\Pen) \ &R & DM & E%:

SLEDUSE
X . 5 <0
&% R & DrM & E%++!

since 0 < 1 and 63 > 0




Factor-Augmenting Technical Change: An Empirical Assessment

23

What can be said regarding the potential impact of cli-
mate policy on induced technical change? Consider cost-
effective analyses of climate goals, such as stabilising GHG
concentrations at a given level. Since the objective is to
reduce emissions, investments will be reallocated to the
activities that allow achieving the goal at the minimum
possible cost. As a consequence, climate policy will stimu-
late energy-saving technical change at the of cost energy-
using technical change, in the present analysis education and
R&D. Carraro, De Cian and Tavoni [11] assess the general
equilibrium implications of human capital-driven technical
change and find that climate policy discourages investments
in education because human capital is labour-augmenting
and gross complement with energy. Carraro et al. [13] find a
similar result in a model with directed technical change
where R&D is both capital-labour- and energy-
augmenting. They show that climate policy reduces capi-
tal-labour-augmenting R&D, but stimulates energy-saving
innovation.

Some caveats should be mentioned. Most studies, as
well as the present analysis, only consider the direct
effects of human capital and knowledge, neglecting
possible indirect interactions that could actually have
energy-saving effects. For example, a higher level of
human capital can make mitigation policies more effec-
tive. Human capital is an essential input in the creation
of new knowledge and new products and therefore it
could stimulate energy-saving innovation, leading to the
development of technologies that can replace or reduce
the use of fossil fuels. A second potential energy-saving
effect is that human capital increases the ability to adopt
new technologies. Finally, there might be international
as well intrasectoral spillovers. A better understanding
of the relationship between the supply of specific skills,
innovation, and clean technologies diffusion is certainly
an important area for future research.

6 Summary and Conclusions

The debate on technical change and the environment has
emphasised the existence of a gap between the climate—
economy modelling literature and empirical work. Cli-
mate—economy models simulate the consequences of differ-
ent specification of technical change over time. Empirical
works attempt to identify production and technology struc-
tures that best explain observed patterns. However, these
two strands of literature have addressed similar, but not
comparable questions.

This paper tackles the existing divide from the empir-
ical point of view. Starting from a production structure

widely used by climate—economy modellers, it provides
an empirical background to technology parameters that
are essential to describe the dynamics of technical
change. This paper estimates factor-specific technical
change and input substitution using a structural ap-
proach. It improves upon exiting works by introducing
endogenous-technology drivers for factor productivities
(energy, labour and capital).

The main contribution of this paper is twofold. It
provides an empirical assessment of the impact of en-
dogenous technical change on the elasticity of substitu-
tion, and it identifies the drivers of factor-augmenting
technical change.

First, factor productivities are endogenous, thus
rejecting models with exogenous technical change. Sec-
ond, technology drivers are factor-specific. Whereas
knowledge is an important driver of capital and energy
productivity, human capital is a better explanatory var-
iable of labour productivity. Imports of machinery and
equipment from OECD drive the productivity of energy
and have an energy-saving effect, although the elasticity
is much smaller than that of the R&D stock. Thirdly,
the rate of energy-augmenting technical change tends to
be larger than that of either labour or capital, which
instead have similar growth rates. Because the elasticity
of substitution is less than one, we can conclude that
knowledge, machinery imports, and human capital have
an input-saving effect. Finally, our results suggest that
endogenous technical change tend to lower the elasticity
of substitution. This result is not new in literature, yet it
has never been fully assessed empirically.

These results have important implications for Integrated
Assessment Models and climate policy analysis. The joint
estimation of endogenous productivities and substitution
allows us to highlight some implications in terms of energy
use and induced technical change dynamics. The estimated
structure of technical change suggests that climate policy
might reduce economy-wide knowledge as well as human
capital accumulation, if their energy-using effect prevails.
As a consequence, omitting endogenous technical change at
the macroeconomic level might underestimate climate policy
costs.

Two lines of research follow from this paper. On the one
hand, empirical work should aim at a better understanding
of the interplay between different components of technical
change, technology drivers, and factor substitution. On the
other hand, IA models should broaden the representation of
endogenous technical change outside of the energy sector.
Few attempts in this direction already exist [11, 13, 23],
but modelling choices should be better grounded on the
empirical evidence.

@ Springer



24 C. Carraro, E. Cian

Appendix I

Table 4 provides descriptive statistics of the main variables.

Table 4 Descriptive statistics of

main variables Variable N T Obs Mean Std. dev. Min Max
Labour price (growth rate) 12 14 168 0.015 0.017 —0.076 0.067
Capital price (growth rate) 12 14 168 0.010 0.042 —0.154 0.138
Energy price (growth rate) 12 14 168 0.011 0.063 —-0.101 0.289
Labour cost share (growth rate) 12 14 168 0.000 0.016 —0.080 0.051
Capital cost share (growth rate) 12 14 168 0.001 0.023 —0.076 0.121
Energy cost share (growth rate) 12 14 168 —0.005 0.071 —-0.190 0.273
M&E (growth rate) 12 13 156 0.057 0.163 -0.379 0.860
R&D (growth rate) 12 14 168 0.066 0.030 0.014 0.140
Edu (growth rate) 12 14 168 0.068 0.037 0.011 0.163
Tfp (growth rate) 12 14 168 0.013 0.018 —-0.034 0.061

Appendix 11

This Appendix reports the same results as in the main text
from Tables 1 to 4, but with bootstrap standard errors.
Results confirm the validity of the inference analysis carried
out in the main text is valid.

Table 6 Endogenous technical change (constrained system estimation,
FGLS estimator)

Capital Labour Energy
Table 5 Exogenous technical change (constrained system estimation,
FGLS estimator) Coeff pvalue Coeff p value Coeff p value
Capital Labour Energy v Pip) 063 000 063 000 063 0.00
Coeff pvalue Coeff pvalue Coeff p value 7n R&D stock  ~0.64 0.00 0.18 025 -046  0.15
Yp M&E —-0.01 0.26 0.00 0.79 —0.05 0.05
Ya (Pi—D) 0.62 0.00 0.62 0.00 0.62 0.00 73 EDU stock 0.15 0.27 0.02 0.89 0.07 0.85
Q/BE 0.00 0.52 —-0.01 0.03 —0.01 0.31 Q/BE 0.04 0.00 —-0.02 0.14 0.03 0.49
agea 0.00 0.78 —0.01 0.14 —-0.04 0.00 agea 0.06 0.00 —-0.02 0.12 0.01 0.77
QDE 0.00 0.53 0.00 0.95 —0.06 0.00 QDE 0.03 0.00 —0.01 0.61 —0.03 0.32
apK 0.00 0.38 —0.01 0.00 —0.02 0.13 apK 0.06 0.00 —0.04 0.05 0.03 0.49
Qs —0.02 0.00 —0.02 0.00 —0.02 0.27 Qs 0.03 0.06 —0.04 0.06 0.02 0.69
Qyp 0.00 0.83 —0.02 0.01 —0.03 0.03 Qypy 0.07 0.00 —-0.04 0.07 0.03 0.51
R 0.00 0.52 —-0.01 0.03 —-0.04 0.00 R 0.04 0.00 -0.02 0.16 0.00 1.00
ot —-0.03 0.00 —-0.01 0.06 —-0.02 0.10 ot -0.02 0.19 -0.01 042 -0.01 0.90
app 0.00 0.35 0.00 0.56 —0.03 0.04 agp 0.05 0.00 -0.01 0.31 0.01 0.79
QNL —-0.01 0.08 0.00 0.32 —0.04 0.01 aNL 0.02 0.06 —0.01 0.24  -0.01 0.76
QUK 0.00 0.56 —-0.01 0.03 —-0.05 0.00 QK 0.02 0.33 —-0.02 024  -0.03 0.56
Qs —-0.02 0.14 —0.01 0.03 —-0.05 0.01 Qs 0.02 0.27 —-0.02 0.29 -0.01 0.83
ap (In7) 0.00 0.46 0.00 0.92 0.01 0.01 ap (In7) 0.00 0.31 0.00 0.90 0.01 0.38

BE Belgium, CA Canada, DE Germany, DK Denmark, ES Spain, FI BE Belgium, CA Canada, DE Germany, DK Denmark, ES Spain, FI
Finland, FR France, IT Italy, JP Japan, NL Netherlands, UK United Finland, FR France, IT Italy, JP Japan, NL Netherlands, UK United
Kingdom, US United States Kingdom, US United States
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Table 7 Endogenous technical change including only significant var-
iables (constrained system estimation, FGLS estimator)

Capital Labour Energy

Coeff p value Coeff p value Coeff p value
Ya (Pi—D) 0.63  0.00 0.63  0.00 0.63 0.00
¥n R&D stock —0.59  0.00 —0.34 0.00
¥ M&E —0.06 0.06
73 EDU stock —-0.09  0.00
QBE 0.04  0.00 0.035 0.01
QA 0.05  0.00 0.017  0.18
QpE 0.02  0.00
QpK 0.06 0.00 —0.01 0.01 0.04 0.01
QyEs 0.04 0.00 -0.01 0.02 0.04 0.02
fe¥sh 0.07 0.00 —0.01 0.06 0.03 0.01
QR 0.04  0.00
gt -0.02  0.00
agp 0.05  0.00 0.02 0.27
anL 0.01  0.03
UK 0.02  0.00
s 0.03  0.01

BE Belgium, CA Canada, DE Germany, DK Denmark, ES Spain, FI
Finland, FR France, /T Italy, JP Japan, NL Netherlands, UK United
Kingdom, US United States
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