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Abstract: The O-methylation reaction of a variety of phenols
(ArOH: Ar = Ph, p-CH,C¢H,, p-CIC;H,, o- and p-CH,COC¢H,, and
2-naphthyl) can be conducted in a highly selective manner by using
asymmetric alkyl methyl carbonates CH; OCOOR (R = n-Pr, 3b; n-
Bu, 3d; CH,0(CH,),0(CH,),, 3e) as alkylating agents. For exam-
ple, at 150 °C, phenol can be quantitatively converted into anisole
in 4.5 h, using 2-(2-methoxyethoxy)ethyl methyl carbonate 3e in the
presence of K,COj as a catalyst. Compared to the methylation reac-
tions using dimethyl carbonate which require sealed pressurized re-
action vessels, asymmetric alkyl methyl carbonates allow much
simpler and safer alkylations at ambient pressure.

The selectivity towards O-methylation is scarcely affected by the
temperature (in the range of 120-150 °C), while it depends on the
nature and on the amount of the solvent. DMF and triglyme (trieth-
ylene glycol dimethyl ether) have proven to be the better reaction
media.

Key words: alkyl carbonates, O-alkylation, methyl selectivity, ani-
soles, methylation

The methylating reactivity of dimethyl carbonate (DMC)
has been studied by our group since the middle eighties.
As a methylating reagent, DMC can replace undesirable
and non-selective methyl halides (CH,X; X =Cl, Br, I; 1)
and dimethylsulfate (CH;0SO;CH;; DMS, 2)."> With re-
spect to these compounds, DMC has the great advantage
of being environmentally benign, since it is: (i) non toxic,
(1) efficient and selective as methylating reagent, (iii) it
originates only methanol as co-product which can be re-
cycled for the production of DMC, and (iv) it is now syn-
thesized from methanol rather then from hazardous
phosgene.®” We have extensively reported that operating
at high temperatures (= 160 °C), under both continuous-
flow (c.-f.) and batch conditions, DMC allows the highly
chemoselective methylation of phenols to yield the corre-
sponding anisoles (Scheme 1; (a)).*? Even more impor-
tantly, DMC permits the highly selective mono-C-
methylation of CH,-acid compounds (i.e. aryl and aryl-
oxy-acetic acid derivatives or benzylic sulfones), and the
mono-N-methylation of primary aromatic amines
(Scheme 1; (b) and (c), respectively).!%13

The alkylations of Scheme 1 can be performed without
solvent and with a catalytic amount of base (M,CO;:
M =Li, Na, K, and Cs; Y zeolites). It was also shown, by
us and by others,% '% 16 that the use of Cs,CO; improves
the rate of the reaction thanks to its higher solubility in
DMC,'? though we still think that its cost is a limitation.
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Methylation patterns with DMC

Scheme 1

However, a major operative drawback of DMC-mediated
methylations, is determined by the reaction temperature
(= 120 °C) which is well over the 90 °C boiling point of
DMC. Consequently, pressurized vessels (autoclaves) fit-
ted with CO, purging valves, are necessary under batch
conditions;'%1> while, under c.-f. conditions, substrates
must have a relatively high vapor tension in order to be fed
into suitable plug-flow reactors." * ® To overcome such
difficulties, we conceived the use of asymmetric alkyl me-
thyl carbonates (ROCOQOCH;, 3) as possible methylating
agents: a suitable R group would have increased the boil-
ing point of the carbonate to allow reactions at ambient
pressure, and simultaneously, the steric bulk of the R moi-
ety would have favored anisoles towards the competitive
formation of alkyl aryl ethers (ArOR).

We report here that a very good chemoselectivity (>99%)
in the O-methylation of phenols can be obtained at atmo-
spheric pressure with compounds 3, provided that the R
substituents are linear alkyl groups possessing at least 3
carbon atoms (Scheme 2).

K,COs
Ar-OH + ROCOOCH; ——— Ar-OCH; + ROH + CO;
3a-g

Scheme 2

The required alkyl methyl carbonates 3 were synthesized
according to established procedures, by reacting the ap-
propriate alcohols with methyl chloroformate (com-
pounds 3a-c),!” or DMC (compounds 3d-g).'® 1

Phenol was chosen as the model nucleophilic substrate
based on our earlier reports of carbonate-mediated alkyla-
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tions.*? The reactions were carried out at 120 °C, using
phenol, carbonate 3, and potassium carbonateina 1: 5: 1.1
molar ratio, and DMF as the solvent (100 mL/g phenol).
The results are reported in Table 1.2

In the case of compounds 3a-e, the reported methylating
reactivity and selectivity seem to be well explainable by
steric factors:*"** in fact, although the reaction of phenol
with carbonates 3b-d affords anisole with a very high
yield (95-97%, entries 2-4), the methyl chemoselectivity
is even more improved (>99%), using compound 3e with
the more hindered oxyethylenic chain (entry 5). While in
the case of compounds 3f-g, the observed drop in the O-
methylation selectivity (PhOR: 16 and 17% for 3f and 3g,
respectively; entries 6-7), is likely ascribable to resonance
effects which favor Sy2 displacements for both allylic and
benzylic systems.*

Table 1 Reactions of Phenol with Differentalkyl Methyl Carbonates®

. d
Entry R= ROCOOCH, "E‘lg“" P:gg;‘[‘;“ FEE"O)R
1 Et 3a 15 90 10
2 n-Pr 3b 17 95 5
3 i-Pr 3 40 73 2
4 n-Bu 3d 15 97 3
5  CHyO(CH,);0(CH,); 3e 20 >99 -
6 Bn 3f 5 84 16
7 Allyl 3g 21 83 17

“T =120 °C, phenol (0.3 g; 3.3 mmol)}/K,CO,,/3=1:1.1:5.
DMF (30 mL) was used as solvent.

" Conversion of phenol stopped at 75%.

¢ Time for complete conversion of the substrate.

4 Determined by GC, referred to the internal standard.

In the case of 3c, the obtained O-methyl selectivity is
high, but the reaction stops at a 75% conversion of phenol
even after prolonged reaction times (entry 3). We suggest
that such a behavior is due to the co-product i-propyl al-
cohol (Scheme 2) which, rather than undergoing transes-
terification with the organic carbonate (slower for
secondary alcohols?), presumably inhibits anisole forma-
tion by limiting the availability of phenoxide through sol-
vation.

As we already observed for DMC-mediated mono-C-me-
thylations,'? also the outcome of the investigated reaction
is affected by the solvent polarity: under the conditions of
entry 5 of Table 1, by increasing the amount of DMF from
2 10 10 mL, the formation of anisole increases as well
from 90 to >99%, respectively. Instead, the O-methyl se-
lectivity shows no dependence from the reaction temper-
ature: by progressively raising it from 120 to 150 °C, the
reaction rate increases as well (complete phenol conver-
sion is achieved after 20 and 4.5 h, respectively), but ani-
sole is the sole product in any case. The effect of solvent
polarity is also evident by using different solvents, such as
diglyme (Sa), triglyme (5b), diethylene glycol diethyl
ether (5¢), and polyethylene glycol 250 dimethyl ether
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(5d) which are suitable anion activating media to perform
the present alkylation reactions,”?>2 and allow to operate
at higher temperatures in the 140-170 °C range (except for
Sa, bp = 162 °C).*” With respect to DMF, a decrease in
the O-methyl selectivity is observed for glycols 5a, 5¢,d
(anisole/PhOR in 9:1 molar ratio at complete conversion);
only 5b (triglyme) affords good selectivity, yielding 98%
anisole after 10 h at 140 °C.

To extend the synthetic applicability of the investigated
methylation procedure, 3e was treated with different phe-
nols 6, on a larger scale (2-5 g) than that considered pre-
viously (PhOH: 0.3 g). All reactions were carried out at
140 °C in the presence of triglyme, using the substrate,
K,CO;, and 3e in a 1: 1.1: 5 molar ratio, respectively.
Only for the case of phenol, the reaction was also per-
formed using DMF as the solvent. Table 2 shows the re-
sults.?

Table 2 O-Methylation of Different Phenols 6 by Methyl 2-(2-
Methoxyethoxy)ethyl Carbonate (3e) *

Conv  Solvent  Yield  Purity
Bty At AOH®  q) (som) (%) (%)
1 Ph 6a (3.8) 97 DMF 86 914
2 Ph 6a (3.8) 100 Triglyme 81 >99
3 p-MePh  6b(4.0) 100 “ 79 >99
4 p-CIPh 6c(4.0) 98 “ 60 >99
5  2-naphthyl 6d(4.0) 100 “ 83 >99
6 MeCOPh  6e(2.0)" 100 “ 81 >99

T =140 °C, substrate/K;CO4/3e=1:1.1:35.
® Ortholpara=4.5:5.5.

© Isolated yields of O-methylated derivatives.
4 Residual DMF in the distilled product.

In all cases, the reaction proceeds with a very high methyl
chemoselectivity (95-99%), and good yields in isolated
products (80-86%), except for p-chloroanisole (60%, en-
try 4). Entry 6 refers to a mixture of a o- and p-acetylphe-
nol 6e (in a4.5: 5.5 ratio, respectively) and the yield is that
of the isolated mixture of o- and p-acetyl anisoles.

In conclusion, alkyl methyl carbonates ROCOOCH, 3, ef-
ficiently perform the O-methylation of phenols under very
simple conditions and at ambient pressure. In particular:

At T =120 °C, the reaction of 3 with phenols affords the
corresponding anisoles with a methyl chemoselectivity >
95%, provided that a bulky linear R group with at least 3
carbon atoms is present.

The solvent polarity has a significant effect on the reac-
tion selectivity: better reaction media have proven to be
polar aprotic compounds such as DMF and triglyme.

The described methylation procedure is intrinsically envi-
ronmentally benign since it employs new cleaner and saf-
er reagents, derived from DMC, in place of hazardous
existing ones.
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