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Social interactions and
heterogeneous agent models.
Applications to economics and finance.

MARrco ToLoTTi 9

Abstract. Relying on my work in the field of contagion models, based on interacting particle sys-
tems, I will discuss some open issues concerning the applcability of complex systems in economics
and finance. I will present some applications of a class of Markov models that are in line with
recent research in economic theory. In particular T will highlight the importance of modeling social
interactions, bounded rationality, heterogeneous agents and random utilities.

Sunto. Prendendo spunto dalla ricerca svolta nell'ambito dei modelli di contagio, basati su sistemi
di particelle interagenti, discuterd una serie di questioni aperte sull’applicabiliti di sistemi complessi
alla teoria economica e alla finanza. In particolare presenterd qualche applicazione di una classe di
modelli Markoviani che ben si inseriscono in un nascente filone di ricerca in ambito economico che
vuole catturare aspetti non convenzionali quali interazioni sociali, razionalita limitata, eterogeneita
degli agenti, casualitd nei processi decisionali.

KEYWORDS: intensity-based models, mean-feld interections, non-reversible Markov processes,
random utility models, social interactions.

1 Introduction

Do social interactions and agenis’ heterogeneity really matter in economic theory? For a
long period, the neoclassical (general equilibrium) approach with complete markets has
provided a negative answer.

Social interactions and heterogeneity are only two of the aspects analyzed into the
range of the so called compler systems. The debate concerning the applicability of complex
systems in economics gocs back to the eighties and the nineties and addresses some open
issues left unsolved by the neoclassical approach based on the representative (perfectly
rational) agent. Just to give the intuition, we could say that the neoclassical approach is
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based on a strong rationality paradigm that can be translated into the following modeling
assumptions: perfect information shared by all the agents (no learning is needed), no space
for errors in the decision process, no influence of the society on the personal beliefs.

On the opposite, the complex approach has been motivaied by the desire to explain
some empirical phenomena that can not be explained under the strict hypothesis of prefect
rationality and efficiency of the markets. We are referring for instance to 1) the statistical
properties of financial time series (power laws with heavy tails in the stock returns, high
temporal correlations, scaling laws); 41) path dependence and non-ergodicity in the pattern
of the adoption of a new technology; 4ii) social behaviors as herding, peer pressure and
conformity effects. A more detailed analysis of these issues can be found in {4, 5].

Here we focus on some of these aspects. In particular we shall describe a framework
where bounded rationality, social interactions and heterogeneity can be introduced but
maintaining tractability.

2 Random utility models

This is the case of the class of problems we intend to analyze: binary choices with inter-
acting agents and random utility functions. The setting is the one posed in [1, 2].

The economy is made up of [ agents facing a discrete binary choice problem: w; €
{-Li+1} fori=1,.., 1

Agents’ utility function is made up of three components: private utility, social utilify
and an error term. For agent ¢ we have that

(1) wi(wy) = vlwy) + Jiwang + e(wi).

v(w;) is any kind of private utility associated with the binary choice. Being w a binary
variable, we can assume wlog. v(w) = hw + k, for h &k € B. Notice that A > 0
makes the choice w = 1 preferable. S(w;, mf) = Juwym§ is the social component of the
utility where m$ is the expectation from the point of view of agent ¢ of the behavior of
the others. Finally e(w;) is a random term whose distribution is extreme valued, i.e.,
Ple(=1) —e(l) < z) = 1/(1 + ¢™#%), where § > 0 is a measure of the impact of the
random component in the decision process: high values of [ means that the deterministic
part plays a relevant role in the maximization of the utility. Instead when 2 tends to zero
the error term dominates and the choice between w = 1 or w = -1 is basically a coin
tossing. The error component can be interpreted as a bounded rationelity effect on the
behavior of the agents.

We assume that the propensity to conformity of the agents (labeled by J; for i =
1,...,N) is not the same for all agents and is not constant. Note that J; > 0 means that
the agent is conformational (she tends to follow the social behavior). In what follows, we
assume that J € {--1;+1}; in this way we capture the presence of conformist and non
conformist agents.

In this setting it can be shown that

. eﬁw,»(h+J,~ mif )
(@) Plwi|mi) =

eﬁr.u,-(h-i—.],-m:?) + e—ﬁu,-(h-}mJ,-ﬁzf) ’
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In [2] it is proved that when agents are homogeneous (J; = J for all i} and share
the same expectations on the choice of the others, i.e. when m§ = m for all {, then the
equilibria of the system are described by the following fixed point argument:

(3) m = tanh(3h + AJm).

The main consequence of this fact is that the equilibria of the system can be one or three
depending on the value of @ and J. In particular, for high values of # and .J there arc
multiple equilibria.

Some questions arise. Is it possible to characterize the equilibria of this system as-
suming heterogeneity and a dynamic updating of the beliefs of the agents? What is the
relationship between the static equilibria provided by (3} and the steady states found via
a dynamic approach? We try to give some insights in these directions.

2.1 Dynamic set up

We denote by w;(t) € {—1;1}, where ¢ : 1,...,1 and ¢ € [0,7], the choice of the ¢ — th
agent at time ¢ and by w(t) = (w1(t), ...,ws{t)) the vector of the state variables {agents’
decisions at time ).

‘We assume that agents update their decisions at random Poissonian times characterized
by certain intensities or raies (the inverse of the average waiting times) that depend on
the state of the economy at that time and on the information of the agent.

Inspired by [1], we proposed a dynamic version of equation (2):

Souws(t)
1 ~Buen () { hi(y =i
(4) Ai(t) = limy = Plu(t+7) # wi(t)|w(t)) = e w()( 0= )

where now all the state variables are indexed with time and where A;(#) denotes the local
rate of probability that agents i changes his choice between time ¢ and ¢, given the state

of the system at time £.
Having in mind applications where the propensity of the agents to conformity is en-
dogenously varying, we define a similar dynamics for the J; variables:

j2e] _1()
(5) pelt) = i SP(T(1 +7) # (1) w(t)) = e RO

where 7 is a parameter that quantify the dependence of J; by the state of the world.
We notice that the i—th agent’s decision depends on the system only through the

aggregate statistic
14
=7 2 e

This variable is indeed an empiricel mean of the system and incorporates only a partial
{averaged) information on the state vector w. This simplifying assumption is called mean
field assumption: the interaction among different agents only depends on the value of s;.
Notice that higher values of s; imply an higher probability for agent ¢ to choose w; = 1
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(when J; = -+1}). On the other hand, high values of sy make also larger the probability
that J; = +1.

Intensities as (4) make the state variables evolve as a continuous-time Markov chain
on {-1,1}*" with the following infinitesimal generator:

I 1

(6) Lrflw,d) =" e Puhtlst) (£(uf, J) — flu, J)) + 3 ™™ (flw, JY) - flw, )

i=1 iz=]

where w' {resp. J') denotes the vector w (resp. J) where the i—th component has been

switched:

i { wy;  for j#£i

7 —wy for j =i,
As argued in [1], heterogeneity leads to what is called non reversibility of the dynamical
system. Reversibility is related to the shape of the generator (6) that describes the time
evolution of the state variables of the system. It can be shown that when the system is
reversible (homogeneous) there are standard techniques useful to describe the stationary
distributions and hence the steady states (equilibria) of the system. In our case it is not
possible to rely on such methodologies; in particular it has not vet been addressed in the
literature whether more complex (non reversible) models might exhibit a behavior in kne
with the findings as in {1, 2]. One of our aims is fo explore exactly this conjecture: is
it possible to describe general Markov models that exhibit this kind of equilibria linked
to the paper by Brock and Durlauf? We shall provide some insights in this directions
showing in particular how to take advantage of the Markovian approach.

In order to characterize the equilibria we shall look at the lmiting behavior of the
system, i.e., the dynamics and the steady states of the J - oo case. Our findings are in
line with (3): for low values of 3 and v (low interaction} there exists a unique (stationary)
equilibrium; for high values there are instead three equilibria.

3 Results: Dynamics and equilibria

Inspired by [3], we now state a law of large number on a family of probability measures
that will help us in determining the dynamics of the population behavior of the system.
In what follows we shall denote with {w;[0,T], ;[0,7]) the trajectory on [0,7] of the
state indicators of the i-th agent. We also denote with D({0,7"]) the Skorohod space of
(discontinuous) trajectories on {0, 7] endowed with the weak topology. With the notation
M7 (X) we denote the space of probability measures on X.

Let (w;[0, 7], 1[0, TN, € D([0, T]) denote a path of the system process in the time-
interval [0,T] for a generic T > 0. We define the so called empirical measure of the
I —dimensional system as

!
_ 1
) P1 =7 SloTL o)

f=]

We may think of p; as a (random) element of AM;(D([0,T]) x D([0,T})), the space of
praobability measures on D([0, T7) x ([0, T]) endowed with the weak convergence topology.
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Let now g be any probability measure on {—1;1}*. Define
my 1= Z wglw, J),
w,J=:x1
that can be interpreted as the average choice under g.

Theorem 3.1 Suppose that the distribution at time t = 0 of the Markov process (w(t), J{t))¢>0
with generator (6) is such that the random variables {w;(0), L(0), for i = 1,...,1,
are independent and identically distributed with law A. Then there ezists a probability
Q* € M:{(D([0,7]) x D([0,T])) such that

pr — @ almost surely

in the weak topology. Moreover, if g € My{{~1;1}*) denotes the marginal distribution of
Q" af time t, then g is the unigue solution of the nonlinear (McKean-Viasov) equation

%% — Loyt € [0,

8 dt H H

() { =Lt

where

(9 Loglw,J) =V [e"'@“’(h*‘}m g(w, J)] + v/ [e pmy qlw J)]

with (w, J) € {~1,;1}? and where V= f(z,y) = f{—z,y) — f(z, y). u

Equation (8) describes the dynamics of the system with generator (6) in the limit as
I — +co0. In what follows we characterize the equilibrium points, or stationary {in t)
solutions of equation (8), i.e. solutions of Lg: = 0 and, more generally, the large time
behavior of its solutions.

Lemma 3.2 Let q be as defined in {8) and define the expeciations:

(10)  my = Z ww, J), mf = Z Jg(w, J), m = Z wdge(w, J).

w, Je=o 1 w,J=21 w,Jmd]

Then equation (8) can be rewritten in the following form:

my = 25(BR)S(AmyImyT — 28(BR)C(BmY)+
+2C(Bh)S(Bmyymy| — 2C(Bh)C(Bm§ ymy
(11) mi = 25(ymy) - 2C(ym¢)m)
myd = 2[S(Bh)S(BmY) + S(ymE)my — 28(BR)C{Ams )m]
+2C(BR)S(BmY) — 2[C(BL)C(BmY) + Clyms)my!
where C(z) = cosh(z} and S(z) = sinh(x). =
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A numerical inspection of these equations shows that, depending on the values of the
parameters, we can have either one unique solution (for low values of 8 and v) or three
different solutions (for high values of the parameters).

To better understand {he gualitative representation of the steady states, we analyze
the simplified system where h = 0. In this case (11) reduces to the following:

my = 28(Bm§)mi — 20(Bmi )ymy
(12) i = 25(ymy) = 3C(ym)m}
me = 28(ymE)my + 28(AmY) — 2[C{AmY) + Clym)|ms.

Here the dynamics of (7%, 7)) doces not depend on 11/, This means that the differential
system (12) is essentially two-dimensional: first one solves the two-dimensional system (on
[“13 1]2)

13 Y, my) = V{m¥, m}),
£ 177 PR LL

with V{z,y) = (2sinh{fz)y — 2 cosh(fr)z, 2 sinh{-~yx) - 2cosh{~z)y), and then one solves
the third equation in (12}, which is linear in myY.
In particular the solutions of the system V(z,y) =0 are

z = tanh(Ar) tanh{yz) ; y = tanh(yz).

Notice that z plays exactly the role of m as in equation {3). Indeed, z = tanh(g8z) tanh(vz)
is a fixed point argument for which z = 0 is always solution. Moreover, for values of v and
[ large enough there are three solutions: (0,11, 22) such that 0 < 21 < 29. These findings
are qualitatively in line with the equilibria found in [2] for the static and homogeneous
model (see equation (3)).

4  Conclusions

We have presented a dynamic version of a random utility model. The main novelty of
our analysis with respect to the literature is that we have introduced ogents’ heterogeneity
in the social interaction attitude. Agents are heterogeneous in their degree of confor-
mity /complementarity and this feature changes over time endogenously as a funciion of
the behavior of the agents. We have shown how to introduce this source of complexity
maintaining tractability.

A first application of these results to finance can be found in (3], it concerns the analysis
of credit portfolio losses. We believe that this dynamic formulation can be fruitfully applied
also to the study of complex credit derivatives and to the micro-foundation of prices in
financial markets. In the context of social studies we are now applying it to the study of
crimes rates and in the context of technology adoption patterns.
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