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ABSTRACT - A convenient two-step Monte Carlo simulation procedure enables to
deepen the study of the exercise of American options. In particular, it is possible to
analyze the optimal exercise time and the probability that the option is exercised at
or before maturity. Nevertheless, the results obtained with a simulation method are
affected by a bias due to discrete monitoring. In this contribution we first study how
the discrete monitoring affects the estimation of the exercise features of American
options. In particular, the optimal exercise times turn out to be heavily affected by
the width of the monitoring interval. Furthermore, we propose some extrapolation
method that applies the Richardson extrapolation technique in order to accelerate
the convergence and reduce the effects of this monitoring bias. A wide simulation
analysis is carried out to test the accuracy of the extrapolation procedures proposed.

KEYWORDS - American options, optimal exercise boundary, Monte Carlo simula-
tion, discrete monitoring bias, Richardson extrapolation.

1 INTRODUCTION

The optimal exercise boundary is a time dependent barrier which allows, once
computed, to define a stopping rule that can be used to check the convenience of
early exercise of American options. This stopping rule can be embodied in a two-step
simulation method in order to define a procedure which enables us to determine not
only the option price but also the exercise features of American options. Examples
of such features are the optimal exercise time and the probability that the option is
exercised at or before maturity.
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Nevertheless, the estimation of the first passage times obtained with a simulation
method is affected by a bias due to discrete monitoring. The reasons are known, and
lie in the fact that we monitor the prices at discrete points in time, thus neglecting
what happens between two adjacent points; hence, in a Monte Carlo simulation we
do not test continuously if the optimal stopping boundary is touched. Obviously,
this bias vanishes when the monitoring interval tends to zero.

In this contribution we first study how the discrete monitoring affects the estima-
tion of the exercise features of American options. In particular, the optimal exercise
times turn out to be heavily affected by the width of the monitoring interval.

Furthermore, we propose some extrapolation method that apply the Richardson
extrapolation technique in order to accelerate the convergence and reduce the effects
of this monitoring bias.

In numerical analysis, applied mathematics, and financial engineering one has
often to deal with sequences and series which are obtained by iterative methods or
approximation procedures depending on some parameter such as the time step. Since
often the convergence of numerical schemes is slow, acceleration methods have been
proposed. The Richardson extrapolation technique is an acceleration method that
can be used when we are valuing financial derivatives using a numerical procedure.

A wide simulation analysis is carried out in order to test the accuracy of the
extrapolation procedures proposed. This analysis points out that the improvements
in the accuracy of the estimation results seem to concern mainly the exercise features.

2 THE OPTIMAL EXERCISE BOUNDARY

We assume that the price S = (S;):>0 of the underlying asset is governed by the
following risk neutral diffusion process

% = (r —9)dt + odW,, Sp > 0, (1)
t
where W = (W}):>0 is a standard Wiener process, ¢ is the continuous dividend yield
and o is the volatility of the asset returns. By assumption, money can be invested
at the risk-free interest rate » > 0. All these parameters are supposed constant.

Let us consider an American style put option with maturity 7" and strike price
X. Some known symmetry properties between American calls and puts allow to
extend the results obtained for the American puts also to American calls; for a com-
prehensive treatment of the symmetry properties for American options see Detemple
(2001).

It is known that, according to the arbitrage pricing theory, the fair value at time
t = 0 of an American put option can be obtained by solving the following optimal
stopping problem

Py= sup E[e™(X—S5)7], (2)
t€[0,T]

where the expectation is computed under the risk neutral probability measure (see
e.g. Karatzas and Shreve, 1998, Shiryaev et al., 1994)). Since the holder has the
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right to exercise the option at any time, the supremum is taken over the class of all
possible exercise times.

The solution of this optimal stopping problem would entail the joint calculation
of the supremum and the optimal exercise time ¢* at which it is reached

t st Bp=E[e" (X - S)"]. (3)

Unfortunately, it is not known a computational formula for the time ¢* which max-
imizes the present value of the future cash-flows received by the holder.

Let B; denote the critical exercise price which separates the exercise region from
the continuation region at time ¢ € [0, 7. For an American put B, is the price of the
underlying asset below which it is convenient to exercise the option. The function
of time ¢

B:[0,T] - R" (4)

which for each 0 <t < T gives the critical exercise price is known as early exercise
boundary or optimal exercise boundary.

B is the set of asset prices in correspondence of which the optimal strategy
involves immediate exercise and is the optimal solution of the following problem of
first passage

Py=sup E [e (X - 5,,)"], (5)
B

where Sy is assumed to be greater than By and the stopping time tg is the first
passage time of S through the boundary B

tp=inf {{t€[0,T]:S, <B} U {T}}. (6)

tp is set equal to T when the price path is always above the boundary B, so that
the stopping time tp is well defined. Of course, tp is different along the various
trajectories of the price process S. and it is the first time ¢ in correspondence to
which the option value P, is equal to its intrinsic value

tp=inf {t€[0,T]: P, =(X—-S)"}. (7)

The early exercise boundary divides the time-asset price space {(¢,.S)} into two
regions: the continuation region C and the stopping region S. For a put option, the
continuation and the stopping regions are defined as follows

C = [0,T] x (B, +0) 8)
S=100,T] x [0, Bi. 9)

In the stopping region S the value of the put option is given by its intrinsic value,
ie.

t,8)eS & P=(X-8)". (10)

The main properties of the optimal exercise boundary B for the case r > 0 can
be summarized as follows (for a detailed discussion see Basso, Nardon and Pianca,
2002b).

1. B is continuously differentiable on the interval [0,T);
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Early exercise boundary for different volatilities
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Figure 1: Optimal exercise boundary of an American put option for different volatil-
ities; the parameter values are X = 100, T =1, r = 0.05, § = 0.

2. B is nondecreasing in ¢; in time to maturity 7 =T — t);

3. Br = X; near expiration we have

lim Bt =

t—T

X i i<r
{gX it 0> (11)

4. B does not depend on the current price of the underlying asset, Sp;
5. B is linearly homogeneous in X;

6. let B> denote the constant optimal exercise boundary of a perpetual put
option; for a finitely-lived American put option the following bounds hold

B* < B <X te0,7]. (12)

Figures 1 to 3 show the behavior of the optimal exercise boundary as the model
parameters o, r and ¢ vary. As we can see, the exercise boundary decreases when o
rises, increases with r» and diminishes with 9.

3 A TWO-STEP SIMULATION PROCEDURE TO COMPUTE
THE EXERCISE FEATURES

The knowledge of the early exercise boundary would allow to determine the
optimal exercise strategy: indeed, the holder could decide whether the option value
exceeds the intrinsic value, and hence if immediate exercise is convenient. Obviously,
it is optimal to exercise an American put option as soon as S; < B; while if S; > B;
one should continue with the option.



DISCRETE MONITORING CORRECTION ... A. BASSO, M. NARDON, P. PIANCA

Early exercise boundary for different interest rates
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Figure 2: Optimal exercise boundary of an American put option for different interest
rate values; the parameter values are X =100, T'=1, 0 =0.2, 6 = 0.

Early exercise boundary for different dividend yields
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Figure 3: Optimal exercise boundary of an American put option for different values
of the dividend yield; the parameter values are X = 100, T'=1, ¢ = 0.2, r = 0.05.
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This optimal stopping rule can be embodied in a Monte Carlo simulation frame-
work in order to analyze not only the American option value but also its exercise fea-
tures. In particular, the forward-looking procedure implicit in a simulation method
allows to determine an estimate of the first passage times in the various simulated
paths.

Starting from these observations a two-step simulation procedure can be pro-
posed which enables to calculate the relevant exercise features:

1. in the first step an estimation of the optimal exercise boundary is computed
by means of a convenient numerical algorithm;

2. in the second step this boundary approximation is included in a Monte Carlo
simulation procedure and used in order to compute the optimal exercise rule.

The two-step procedure proposed allows to study not only the option price but
also other interesting features such as the optimal exercise time t*, the probability
p¢ that the option is exercised and the probability p® of early exercise.

An estimate of the optimal exercise time can be obtained by averaging the first
passage times over the simulated trajectories in which the option has been exercised.
Analogously, the relative frequency of exercise (of early exercise) gives an estimate
of the probability to exercise the option (to exercise before maturity).

As regards the numerical algorithm to be used in the first step of the procedure
proposed in order to compute an approximation of the optimal exercise boundary,
several alternative approaches can be used. A number of procedures have been
proposed in the literature to approximate the boundary with fast computations.
These procedures approximate the boundary using different numerical techniques;
the main approaches are the following:

1. The randomization approach proposed by Carr (1998) uses a staircase ap-
proximation of the boundary and provides a good approximation of the initial
critical stock price; in Basso, Nardon and Pianca (2002a) this approach is
exploited to build the whole boundary.

2. Ju (1998) approximates the early exercise boundary as a multipiece exponen-
tial function and then uses Richardson extrapolation to obtain better estimates
of the option price.

3. AitShalia and Lai (1999, 2001) approximate the boundary by linear splines.

4. Allegretto et al. (1995) and Bunch and Johnson (2000) propose a few numer-
ical algorithms that compute an approximation of the boundary by solving
algebraic equations.

5. Broadie and Detemple (1996) derive lower bounds for the critical stock price
and use them to obtain bounds for the American call option price.

6. Huang, Subrahmanyam and Yu (1996), Little, Pant and Hou (2000) and Sul-
livan (2000) study numerical schemes which solve the integral equation which
implicitly defines the early exercise boundary.
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7. Basso, Nardon and Pianca (2002a) present an improved binomial method
which compute an approximation of the boundary using a lattice approach
with a large number of steps. A convenient interpolation procedure of the
asset prices around the critical nodes improves the precision of the optimal
exercise boundary and reduces its fluctuations.

We have to point out that the approximation of the boundary used in the first
step of the two-step procedure must be precise and computationally robust. For
instance, Carr’s randomization approach is very fast and precise; see Basso, Nardon
and Pianca (2002a) for a comparison with other numerical approaches and Basso,
Nardon and Pianca (2002b) for the extension to the dividend paying case. On the
other hand, the optimal exercise boundary computed with the improved binomial
method is much slower, compared to the other numerical approximations mentioned
above, but if a sufficiently high number of steps is used it gives a very accurate
boundary approximation. Actually, the boundary obtained with a lattice technique
is considered in the literature as the most accurate, so that it is usually adopted as
a benchmark in the comparison tests.

In the procedure proposed the optimal exercise time t* is estimated as the average
passage time through the boundary B of the simulated trajectories, computed over
the paths which lead to the option exercise

- 1

ke&

where £ denotes the set of simulated paths in which the option has been exercised
and t% is the first passage time through B for the k-th trajectory. If we restrict
the computation of the first passage time average to the paths in the set A of the
trajectories in which the option has been exercised before maturity (A = {k: t§ <
T'}), we find the mean early exercise time ¢ = ", _, t% /| Al.

Figure 4 shows the behavior of both the average exercise time t* and the average
early exercise time ¢* for an American put option with 7 =1, o = 0.2, r = 0.05,
0 = 0, for different moneyness ratios; the exercise times are estimated using Monte
Carlo simulation with 100000 paths and n = 250 time steps. As can be observed,
both #* and ¢* diminish as the moneyness increases.

Figure 5 presents the relative frequency of exercise p¢ = |E|/N, where N denotes
the number of simulated paths, and the relative frequency of early exercise p* =
|A|/N. As can be expected, both relative frequencies increase with the moneyness.
Moreover, the frequency of early exercise tends to coincide with the frequency of
exercise for either the deep-out-of-the money or deep-in-the money options.

In order to test the goodness of the employment of the early exercise boundary in
a simulation context, first of all we have carried out a large number of experiments
which make a comparison between the price obtained for an American put option
in the binomial model and the estimate of this price obtained with the two-step
Monte Carlo procedure proposed. The simulation analysis takes into consideration
5760 randomly generated option valuation problems. The parameter ranges are:
r € [0.005,0.12], § € [0,0.12], o € [0.1,0.5], X/Sy € [0.7,1.3], with Sy = 100 and
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Mean exercise time as moneyness varies
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Figure 4: Average exercise time for an American put option with "= 1, ¢ = 0.2,
r = 0.05, § = 0, for different moneyness ratios; the exercise times are estimated
using the two-step simulation procedure with 100 000 paths and n = 250 time steps.
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Figure 5: Relative frequencies of exercise and early exercise for an American put
option with 7" = 1, ¢ = 0.2, » = 0.05, § = 0, for different moneyness ratios;
the relative frequencies are computed using the two-step simulation procedure with
100000 paths and n = 250 time steps.
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RMSE of Monte Carlo pricing
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Figure 6: Root mean square errors of Monte Carlo estimation of American put
option prices obtained with the two-step procedure as moneyness varies; the option
maturity is 7' = 1; the price estimates are based on 100000 simulated paths with
n = 250 time steps.

T = 1. The parameter space has been partitioned with a 3 x 4 x 4 x 6 grid into 288
rectangular subsets and we have randomly generated 20 instances from each subset.

For each generated problem we have applied the two-step procedure by comput-
ing the boundary approximation in the first step with the highly accurate improved
binomial method. More precisely, the time interval [0, 7] between current time and
the option maturity has been divided into m = 20000 sub-intervals of length T'/m;
in addition, we have made the binomial algorithm start 5000 steps before time ¢ = 0
(so that the total number of steps in the lattice is n = 25000) in order to have a
wide range of prices defined for all time steps related to the option life. In this way
in the time interval [0, 7| the early exercise boundary is usually well defined.

The simulation analysis at the second step of the procedure have been carried
out by randomly generating 100000 paths of the underlying asset price for each
option valuation problem. In order to reduce the variance of the simulation, an
antithetic variate technique has been applied. Of course, we can only monitor the
prices at discrete points in time; the monitoring interval chosen is daily, so that we
have n = 250 price observations for each path.

The results of the simulation experiments carried out with respect to the op-
tion price are summarized in figure 6 which shows the relative root mean square
error (RMSE) of the simulation results with respect to the binomial price as mon-
eyness varies. To avoid emphasizing the round off errors in the computation of the
RMSE, the option prices lower than 0.5 are omitted from the calculations. The
RMSE ranges from 0.1 percent to 0.7 percent. Moreover, we can notice that the
estimation accuracy highly depends on the option moneyness X/Sy. Actually, the
higher the moneyness of the put option is, the more accurate the simulation estimate
is; moreover, the accuracy seems quite different according to the nature, in or out



DISCRETE MONITORING CORRECTION ... A. BASSO, M. NARDON, P. PIANCA

of-the-money, of the option.

4 THE EFFECTS OF DISCRETE MONITORING

The forward procedure of a simulation method allows to determine an estimate
of the first passage times tp in the various simulated paths. However, the estimate
of the first passage times thus obtained could be affected by a bias due to discrete
monitoring.

Actually, let us observe how the path of the underlying asset price is generated in
simulation approaches: the asset prices are simulated at discretely sampled points.
However, by proceeding in discrete time we neglect what happens between two
adjacent points; in particular, we do not test continuously the optimal stopping
rule. In particular, by discretely monitoring the underlying asset price we could
ignore the fulfillment of the optimal stopping rule, if it occurs between two sampled
points.

Hence, discrete monitoring introduces a bias in the option valuation. This bias
vanishes when the time interval At between two adjacent sampled point tends to
zero but it can cause substantial errors even for close sampled points.

In order to investigate how much the discrete monitoring bias affects the estima-
tion of the price and the exercise features of the option we have performed a wide
empirical analysis for different monitoring intervals. We have randomly generated
1500 option valuation problems with Sy = 100, T'= 1, r € [0.005,0.12], § € [0,0.12],
o € [0.1,0.5], X/Sy € [0.7,1.3]. In order to see if this bias changes with the mon-
eyness, the moneyness parameter space has been split into 6 subintervals of equal
amplitude, with 250 instances generated in each subinterval. As in the previous
section, the simulation analysis is based on the generation of 100 000 paths of the
underlying asset price using an antithetic variate technique. The optimal stopping
rule is monitored at n equally spaced time steps, with n € { 10, 50, 250, 1250, 5000 }.
The monitoring intervals analyzed correspond roughly to monthly, weekly, daily, 5
time-a-day and hourly time steps.

The main results of the experiments are summarized in table 1 and figures 7-
10, which report the RMSE of the estimation of the price and exercise features of
American put options obtained with the two-step procedure for different monitoring
intervals. The exercise features analyzed are the exercise time t*, the early exercise
time t%, the exercise probability p® and the probability p® of early exercise. The
RMSEs are computed using as estimate of the “true” value the option price obtained
with the CRR binomial method with 25000 steps and the value of the exercise
features obtained using the two-step procedure with 5000 monitoring intervals.

From table 1 it is clear that discrete monitoring introduces a bias in the estima-
tion of both the option value and the exercise features. In particular, the exercise
time of the option turns out to be heavily affected by the discrete monitoring bias.
Figures 7-10 show how this bias varies with the option moneyness.

Actually, discrete monitoring biases have been observed for other options, too.
In particular, this problem is known to occur for at least three other classes of
options and precisely for lookback options, which depend on the extreme values
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RMSE of Monte Carlo prices

Figure 7: Root mean square errors of the estimation of American put option prices
obtained with the two-step procedure as the moneyness and the number of time
steps vary; the option maturity is 7' = 1; the price estimates are based on 100 000
simulated paths.

RMSE of exercise times

Figure 8: Root mean square errors of the estimation of the exercise time of American
put options obtained with the two-step procedure as the moneyness and the number
of time steps vary; the option maturity is 7' = 1; the price estimates are based on
100000 simulated paths.
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RMSE of exercise frequencies

Figure 9: Root mean square errors of the estimation of the exercise probability of
American put options obtained with the two-step procedure as the moneyness and
the number of time steps vary; the option maturity is 7" = 1; the price estimates are
based on 100 000 simulated paths.

RMSE of early exercise frequencies

Figure 10: Root mean square errors of the estimation of the probability of early
exercise of American put options obtained with the two-step procedure as the mon-
eyness and the number of time steps vary; the option maturity is 7" = 1; the price
estimates are based on 100000 simulated paths.
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Table 1: RMSE of the estimation of the price, the exercise time, the early exercise
time, the exercise probability and the probability of early exercise of American put
options obtained with the two-step procedure for different monitoring intervals; the
option maturity is 7' = 1; the estimates are based on the simulation of 1500 options
and 100000 paths for each option. The RMSEs are computed with respect to the
option price obtained with the CRR binomial method with 25 000 steps and the value
of the exercise features obtained using the two-step procedure with 5000 monitoring
intervals.

n | RMSE(P) RMSE({*) RMSE(i") RMSE(5°) RMSE(p*)

10 0.0112 0.5675 0.4944 0.0318 0.5169
50 0.0043 0.2154 0.2008 0.0168 0.2525
250 0.0032 0.0786 0.0761 0.0083 0.1087
1250 0.0031 0.0218 0.0217 0.0043 0.0468
5000 0.0031 - - - -

of the underlying asset price, for barrier options, which depend on whether the
underlying asset price touches a predetermined level or not, and for Russian options,
a special kind of exotic American style perpetual options. On this subject see
Broadie, Glasserman and Kuo (1997, 1999), Levy and Mantion (1997), Beaglehole,
Dybvig and Zhou (1997), El Babsiri and Noel (1998), Baldi, Caramellino and Iovino
(1999), Basso and Pianca (2000). Using a simulation technique with a non zero
sampling time interval At in order to price one of these path-dependent options, we
cannot obtain an unbiased estimate of a continuously monitored option.

Some methods have been suggested in the literature to give a more precise esti-
mation of a continuously monitored option using a discrete sampling technique such
as simulation.

A first approach is proposed by Levy and Mantion (1997) who use Richardson’s
extrapolation to connect the values of a lookback or barrier option obtained in
discrete and continuous time settings.

A second approach is used by Beaglehole, Dybvig and Zhou (1997) and El Babsiri
and Noel (1998) to price continuous time lookback, barrier and some other exotic
options. Both contributions use a special Monte Carlo simulation technique which,
at each sampled time interval, first generates the “observed” final price of the un-
derlying security and then generates the extremal value for this price which has
occurred within the interval. In such a way, the appearance of new extremal values
between two successive sample dates is explicitly taken into consideration.

Another numerical method is proposed by Baldi, Caramellino and Iovino (1999)
to evaluate single and double barrier options with general features; this method uses
Sharp Large Deviations estimates to improve the usual Monte Carlo procedure.
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5 AN EXTRAPOLATION TECHNIQUE TO CORRECT THE
SIMULATION BIAS

In this section we apply a Richardson extrapolation technique in order to improve
the estimation of the exercise features of American put options.

Richardson extrapolation is a particular acceleration method which is frequently
employed to generate results of high accuracy by using low order formulae. Richard-
son called this technique a limit method; afterwards, this approach was indicated as
Richardson extrapolation (see Gautschi, 1997). This technique uses the powerful
idea of extrapolating a computed result to the value that would have been obtained
if the step size At in the approximation scheme had been very much smaller than
it actually was. In particular, the desired goal is extrapolation to a zero step size.

In the financial literature the Richardson extrapolation method has been applied
to accelerate some valuation schemes for American options. Richardson extrapola-
tion has been first used in finance in a well-known paper by Geske and Johnson
(1984) to evaluate an American put option. The value of the put option is deter-
mined by first calculating the value of analogous options which can be exercised only
at maturity T, at 7//2 and T, at T'/3, 27'/3 and T, and then extrapolating the value
of the continuous exercise option through the Richardson technique. Along this line,
Levy and Mantion (1997) use the continuous exercise time formula for lookback and
barrier options, together with the value of the corresponding discrete time options
with only one or two monitoring dates, to give an approximation for the value of the
analogous option with any number n of monitoring dates. Moreover, Carr (1998)
uses Richardson extrapolation to improve his randomization approach while other
contributions apply this extrapolation procedure to accelerate the convergence of a
binomial method.

As proposed by Geske and Johnson, let us denote by F(At) a real function of
the time step At and let us assume that F' can be written as follows

F(At) = F(0) + ay (At + as(At) + o((A)?), (14)

where p < r < s and a1, ay € R By neglecting the term o((At)*®), formula (14) can
be used either to approximate the continuous time formula F(0), as in Geske and
Johnson’s approach, or to evaluate the discrete time value F'(At) if the continuous
time value is known, as in the approach of Levy and Mantion. Note that the function
F(At) can represent an option value but also other interesting quantities related to
discrete monitoring option pricing, such as the optimal exercise time or the exercise
probability.

In order to determine the value of the coefficients a1, as, we can follow Geske
and Johnson’s approach which suggests to compute formula (14) in correspondence
with two different time steps kAt and ¢At with ¢ > k£ > 1. By omitting the term
o((At)*), substituting for a1, as and solving for F'(0) we obtain

F(0) ~ F(At) + g[F(At) — F(kAY)] —

Qlw

[F(kAt) — F(qAt)], (15)



DISCRETE MONITORING CORRECTION ... A. BASSO, M. NARDON, P. PIANCA

Table 2: RMSE of the estimation of the price, the exercise time, the early exercise
time, the exercise probability and the probability of early exercise of American put
options obtained with the two-point Richardson extrapolation procedure for different
monitoring intervals; the option maturity is 7" = 1; the estimates are based on the
simulation of 1500 options and 100000 paths for each option. The RMSEs are
computed with respect to the option price obtained with the CRR binomial method
with 25000 steps and the value of the exercise features obtained using the two-step
procedure with 5000 monitoring intervals.

ny — ny RMSE(P) RMSE(i*) RMSE(5¢) RMSE(p%)
p=1
10 - 50 0.0033 0.1275 0.0132 0.1941
50 — 250 0.0031 0.0445 0.0065 0.0833
250 - 1250 | 0.0031 0.0077 0.0039 0.0389
1250 — 5000 |  0.0031 = = =
p=1/2
10 - 50 0.0049 0.0702 0.0066 0.1237
50 — 250 0.0033 0.0322 0.0049 0.0880
250 — 1250 | 0.0031 0.0242 0.0047 0.0499
1250 — 5000 | 0.0031 - - -
where:
A= ¢ —@+k -k (16)
B = kK —k (17)
C = ¢ —1)— @k —1)+ k" — k. (18)

As concerns the values of the parameters p and r, Geske and Johnson choose
p = 1 and r = 2; this choice gives the expansion in a Taylor series around F'(0) where
the terms above the second order are omitted. Levy and Mantion (1997), instead,
choose p = 1/2 and r = 1 on the basis of graphical inspections and the results by
Broadie, Glasserman and Kuo (1997, 1999). Hence, the choice of the values of the
parameters p and r is not obvious: the values p = 1 and r» = 2 are appealing for the
correspondence with the Taylor series expansion, but on the other hand the values
p=1/2 and r = 1 seem to be suggested by probabilistic considerations (Siegmund
and Yuh, 1982).

In order to use this approach for the evaluation of the exercise features of a
continuously monitored American option, we need a formula for the discrete stopping
time for three different time steps. As such discrete time formula is not known,
we approximate the value of F(At), F(kAt), F/(¢At) using the two-step simulation
procedure. Of course, by using simulation to evaluate F'(At), F(kAt), F(qAt) we
obtain for F'(0) an extrapolated value which is affected by another source of errors,
besides the exclusion of the higher order terms of the expansion.
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Table 3: RMSE of the estimation of the price, the exercise time, the early exercise
time, the exercise probability and the probability of early exercise of American
put options obtained with the three-point Richardson extrapolation procedure for
different monitoring intervals; the option maturity is 7" = 1; the estimates are based
on the simulation of 1500 options and 100000 paths for each option. The RMSEs
are computed with respect to the option price obtained with the CRR binomial
method with 25000 steps and the value of the exercise features obtained using the
two-step procedure with 5000 monitoring intervals.

ny — ng — ng RMSE(P)  RMSE(i*)  RMSE(5¢) RMSE(*)
p=1,r=2
10 - 50 — 250 0.0032 0.0410 0.0063 0.0812
50 — 250 — 1250 0.0031 0.0061 0.0039 0.0387
250 — 1250 — 5000 |  0.0031 - - -
p=1/2,r=1
10 - 50 — 250 0.0033 0.0229 0.0054 0.1187

50 — 250 — 1250 0.0032 0.0222 0.0054 0.0652
250 — 1250 — 5000 0.0032 - - _

Similar extrapolation approaches can be applied with a greater or smaller number
of terms than equation (14). For example, if we consider an expansion truncated to
the first power term

F(At) = F(0) + a(AY + o((A1)), (19)

where p < s and a € IR, we obtain the following two-point Richardson extrapolation
approximation

F(0) ~ F(At) + &[F(At) — F(kA?)]. (20)

It has to be noted that Richardson extrapolation is computationally very sen-
sitive to the behavior of F', so that it can safely be used mainly with monotone
functions.

In order to test the goodness of the correction technique proposed, we have
carried out a number of simulation experiments, using the same framework as the
experiments carried out to study the effect of the monitoring interval on the exercise
features. So, we have randomly generated 1500 option valuation problems and
carried out a simulation analysis based on the generation of 100000 paths of the
underlying asset price in which we have monitored the optimal exercise rule at
various equally spaced time steps. In order to reduce the variance an antithetic
variate technique has been used.

The results are presented in tables 2 and 3. As can be seen by comparing the
results reported in these tables, none of the Richardson extrapolation procedures
applied always performs better than the others. For few monitoring dates, the
Richardson extrapolation methods with p = 1/2 seem to be more precise than the
methods with p = 1, but the opposite happens when the number of monitoring dates
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is high. On the other hand, the three-point extrapolations are usually more precise
than the two-point ones, but the improvements are not so remarkable, if we take into
consideration the fact that the three-point extrapolations are more time-consuming.

In any case, the improvements in the accuracy of the estimation results seem to
concern the exercise features but not the option price. This is probably due to the
monotone convergence exhibited by the exercise features while the convergence of
the option price is not often monotone.
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