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Abstract: Graph-based representations have been used with
considerable success in computer vision in the abstraction and
recognition of object shape and scene structure. Despite this,
the methodology available for learning structural representa-
tions from sets of training examples is relatively limited. This
paper addresses the problem of learning statistical models of
graph structure. The key problem faced is that of lack of node
correspondences which must be inferred together with the
structural model. Here classic latent variable approaches can-
not be applied due to the breaking up of the independence as-
sumption between the node assignments, while structural pat-
tern recognition typically opts for a maximum likelihood cor-
respondence estimation which induces bias in the estimation.
We present a very simple node-observation model, which can
be seen as a generalization of the naive Bayes model to the
graph domain, and an EM-like approach to learn a mixture of
such models, where the exponential explosion of the E step is
handled through a sampling approach and a Minimum Mes-
sage Length criterion is used for model selection.

1. Introduction

Graph-based representations have been used with con-
siderable success in computer vision in the abstraction and
recognition of object shape and scene structure, as they can
concisely capture the relational arrangement of object primi-
tives, in a manner which can be invariant to changes in object
viewpoint. Despite their many advantages and attractive fea-
tures, the methodology available for learning structural repre-
sentations from sets of training examples is relatively limited,
and the process of capturing the modes of structural variation
for sets of graphs has proved to be elusive.

Recently, there has been considerable interest in learning
structural representations from samples of training data, in
particular in the context of Bayesian networks, or general re-
lational models [5]. The idea is to associate random variables
with the nodes of the structure and to use a structural learn-
ing process to infer the stochastic dependency between these
variables. However, these approaches rely on the availability
of correspondence information for the nodes of the different
structures used in learning. In many cases the identity of the
nodes and their correspondences across samples of training
data are not known, rather, the correspondences must be re-
covered from structure.

In the last few years, there has been some effort aimed at
learning structural archetypes and clustering data abstracted
in terms of graphs. Bonev et al. [3], and Bunke et al. [4]
summarize the data by creating super-graph representation
from the available samples, while White and Wilson [11]
use a probabilistic model over the spectral decomposition
of the graphs to produce a generative model of their struc-
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Figure 1. A structural model and the generated graphs. When
the correspondence information is lost, the second and
third graph become indistinguishable.
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ture. While these techniques provide a structural model of
the samples, the way in which the supergraph is learned or
estimated is largely heuristic in nature and is not rooted in
a statistical learning framework. Torsello and Hancock [8]
define a superstructure called tree-union that captures the re-
lations and observation probabilities of all nodes of all the
trees in the training set. The structure is obtained by merging
the corresponding nodes and is critically dependent on the
order in which trees are merged. Further, the model struc-
ture and model parameter are tightly coupled, which forces
the learning process to be approximated through a series of
merges, and all the observed nodes must be explicitly rep-
resented in the model, which then must specify in the same
way proper structural variations and random noise. The lat-
ter characteristic limits the generalization capabilities of the
model. Torsello [9] recently proposed a generalization for
graphs which allowed to decouple structure and model pa-
rameters and used a stochastic process to marginalize the set
of correspondences, however the approach does not deal with
attributes and all the observed nodes still need be explicitly
represented in the model. Further, the issue of model order se-
lection was not addressed. Torsello and Dowe [10] addressed
the generalization capabilities of the approach by adding to
the generative model the ability to add nodes, thus not re-
quiring to model explicitly isotropic random noise, however
correspondence estimation in this approach was cumbersome
and while it used a minimum message length principle for se-
lecting model-complexity, that could be only used to choose
from different learned structures since it had no way to change
the complexity while learning the model.

2. Generative Graph model

Consider the set of undirected graphs S = (¢1,...,9),
our goal is to learn a generative graph model G that can be
used to describe the distribution of structural data and char-
acterize the structural variations present the set. To develop
this probabilistic model, we make an important simplifying
assumption: We assume that the model is a mixture of naive
models where observation of each node and each edge is in-
dependent of the others, thus imposing a conditional indepen-



dence assumption similar to naive Bayes classifier, but allow-
ing correlation to pop up by mixing the models.

The naive graph model G is composed by a structural part,
i.e., a graph G = (V, E), and a stochastic part. The structural
part encodes the structure, here V' are all the nodes that can
be generated directly by the graph, and £ C V x V is the
set of possible edges. The stochastic part, on the other hand,
encodes the variability in the observed graph. To this end we
have a series of Bernoulli variables 8; associated with each
node and 7;; associated with each edge, which give us respec-
tively the probability that the corresponding node is generated
by the model, and the probability that the corresponding edge
is generated, conditioned on the generation of both endpoints.
Further, to handle node- and edge-attributes, we assume the
existence of generative models W;* and W, that model the
observable node and edge attribute respectively, and that are
parametrized by the (possibly vectorial) quantities w;* and
wy ;- In this way the generation of a graph from a naive model
is as follows: First we sample from the node Bernoulli trials
#; which nodes are observed, then we sample the Bernoulli
trials 7; ; for all the edges between the observed nodes, and
finally we sample the attributes W;* and W, for all observed
nodes and edges, thus obtaining the full attributed graph.

Clearly this approach can generate only graphs with fewer
or equal nodes than V. This limitation limits the generaliza-
tion capability of the model and forces one model even ran-
dom isotropic noise explicitly. To correct this we add to the
model the ability to generate nodes and edges not explicitly
modeled by the core model. This is obtaining by enhanc-
ing the stochastic model with an external node observation
model that samples a number of random external, i.e., nodes
not explicitly modeled in the generative model. The number
of external nodes generated is assumed to follow a geometric
distribution of parameter 1 — @, while the probability of ob-
serving edges that have external nodes as one of the endpoints
is assumed to be the result of a Bernoulli trial with a com-
mon observation probability 7. Further, we assume common
attribute models W™ and We for external nodes and edges,
parametrized by the quantities w™ and we. This way external
nodes allow us to model random isotropic noise in a compact
way.

After the graph has been sampled from the generative
model, we lose track of the correspondences between the sam-
ple’s nodes and the nodes of the model that generated them.
We can model this by saying that an unknown random permu-
tation is applied to the nodes of the sample. For this reason,
the observation probability of a sample graph depends on the
unknown correspondences between sample and model nodes.

Figure 1 shows a graph model and the graphs that can be
generated from it with the corresponding probabilities. Here
model is unattributed with null probability of generating ex-
ternal nodes. The numbers next to the nodes and edges of the
model represent the values of ¢; and 7; ; respectively. Note
that, when the correspondence information (letters in the Fig-
ure) is dropped, we cannot distinguish between the second
and third graph anymore, yielding the final distribution.

If we knew the correspondences o, mapping the nodes of
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Figure 2. Model estimation bias. If a single node correspon-
dence is taken into account the estimated model will ex-
hibit a bias towards one of multiple possible correspon-
dences.

graph g to the nodes of the model G, we could very easily
compute the probability of observing graph g from model G:
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where the indexes ¢ € V and (4, j) € E indicate product over
the internal nodes and edges, while, with an abuse of the for-
malism, we write ¢ ¢ V and (4,j) ¢ E to refer to external
nodes and edges. With the ability to compute the probability
of generating any graph from the model, we can compute the
complete data likelihood and do maximum likelihood estima-
tion of the model G, however, here we are interested in the
situation where the correspondences are not known and must
be inferred from the data as well.

Almost invariably, the approaches in the literature have
used some graph matching technique to estimate the corre-
spondences and use them in learning the model parameters.
This is equivalent to defining the sampling probability for
node g as P(g|G) = maxqeyx, P(9]G, o). However, assum-
ing the maximum likelihood estimation, or simply a single
estimation, for the correspondences yields a bias in the es-
timation as shown in Figure 2. Here, the graph distribution
obtained from the model in Figure 1 is used to infer a model,
however, since each node of the second sample graphs is al-
ways mapped to the same model node, the resulting inferred
model is different from the original one and it does not gen-
erate the same sample distribution.

To solve this bias Torsello [9] proposed to marginalize
the sampling probability over all possible correspondences,
hence obtaining the probability
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where ¢ is is the quotient of g modulo permutation of its
nodes, i.e., the representation of g where the actual order of
the nodes is ignored, X" is the set of all possible partial corre-
spondences between the m nodes of graph g and the n nodes
of model G, and X, is the set of symmetries of g, i.e., the set
of graph isomorphisms from g onto itself.

Clearly, averaging over all possible correspondences is not
possible due to the super-exponential growth of the size of



>7; hence, we have to resort to an estimation approach. In [9]
was proposed an importance sampling approach to compute
a fast-converging estimate of P(g|G). Note that similar im-
portance sampling approaches marginalizing over the space
of correspondences have been used in [2] and [6]. In partic-
ular, in latter work the authors show that the estimation has
expected polynomial behavior.

2.1 Correspondence Sampler

In order to estimate P(g|G), and to learn the graph model,
we need to sample correspondences with probability close to
the posterior P(c|g,G). Here we generalize the approach
in [9] for models with external nodes Assume that we know
the node-correspondence matrix M = (m;;,), which gives
us the marginal probability that model node ¢ corresponds
to graph node h. Note that, since model nodes can be not
observed and graph nodes can be external, we have that
Vh,Y ., ms, < 1 and Vi,>, m; < 1. We turn the in-
equalities into equalities by extending the matrix M into a
(n 4+ 1) x (m + 1) matrix M adding n + m slack variables,
where the first n elements of the last column are linked with
the probabilities that a model node is not observed, the first m
elements of the last row are linked with the probability that an
observed node is external and element at index n+ 1, m—+11is
unused. M is a partial doubly-stochastic matrix, i.e., its first
n rows and its first n columns add up to one.

With this marginal node-correspondence matrix to hand,
we can sample a correspondence as follows: First we can
sample the correspondence for model node 1 picking a node
hy with probability m; 5,. Then, we to condition the node-
correspondence matrix to the current match by taking into ac-
count the structural information between the sampled node
and all the others. We do this by multiplying m;; by
P(gn, k|G1,), i.e., the probability that the edges/non-edges
between & and h; map to the model edge (1, ). The mul-
tiplied matrix is then projected to a double-stochastic ma-
trix M {” using a Sinkhorn projection [7] adapted to partial
doubly-stochastic matrix, where the alternate row and col-
umn normalization is performed only on the first n rows and
m columns. We can then sample a correspondence for model
node 2 according to the distribution of the second row of M|
and compute the conditional matching probability Mlh 12’h2

in much the same way we computed M{“. and iterate un-
til we have sampled a complete set of correspondences, ob-
taining a fully deterministic conditional matching probabil-
ity M lh f’jy’;{h", corresponding to a correspondence o, that has

been sampled with probability P(c) = (M)y ,, - (Mg p, -
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2.2 Estimating the Model

With the correspondence samples to hand, we can easily
perform a maximum likelihood estimation of each model pa-
rameter by observing that, by construction of the model, con-
ditioned on the correspondences the node and edge observa-
tion are independent to one another. Thus, we need only to
maximize the node and edge models independently, ignoring
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Figure 3. Left column: Top, shape database; bottom, edit dis-
tance matrix. Right column: Multidimensional Scaling
of the edit distances.

what is going on in the rest of the graph. Thus, we define the
sampled node and edge likelihood functions as

Li(S,G) = HZ ga@ \ez,w )
geS o
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from which we can easily obtain maximum likelihood esti-
mates of the parameters ¢;, w;', tau, ;, and wf, e

Further, we can use th samples to update the initial node-
correspondence matrix in the following way

0\97
a’\ ,9) Z
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where M, is the deterministic correspondence matrix associ-
ated with o. Thus in our learning approach we start with a ini-
tial guess for the node-correspondence matrix and improve on
it as we go along. In all our experiments we initialize the ma-
trix based only on local node information, i.e. m; ;, is equal
the probability that model node ¢ generates the attributes of
graph model h.

The only thing left to estimate is the value of |3,], but that
can be easily obtained using our sampling approach observ-
ing that it is proportional to the probability of sampling an
isomorphism between g and a deterministic model obtained
from g by setting the values of tau; ; to 1 or 0 according the
existence of edge (4, j) in g, and setting # = 0. It interesting
to note that in this corner case, our sampling approach turns
out to be exactly the same sampling approach used in [1] to
show that the graph isomorphism problem can be solved in
polynomial time. Hence, our sampling approach is expected
polynomial for deterministic model. and we can arguably be
confident that it will perform similarly well for low entropy
models.

M =

2.3 Model Selection

Given this sampling machinery to perform maximum likeli-
hood estimation of the model parameters for the naive mod-
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Figure 4. Classification rate of the nearest neighbor rule ap-
plied to the edit-distance between shock graphs and of
the Bayes decision rule based on the generative models.

els, we adopt a standard EM approach to learn mixtures of
naive models.

This, however, leaves us with a model selection problem,
since model likelihood decreases with the number of mixture
components as well as with the size of the naive models. To
solve this problem we follow [10] in adopting a minimum
message length approach to model selection, but we deviate
from it in that we use the message length to prune an initially
oversized model.

Thus we seek to minimize the combined cost of a two part
message resulting in the penalty function

D |51
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where |S| is the number of samples and D the number of
parameters for the structural model.

The pruning strategy adopted is a greedy one, where after
each iteration we check if the objective can be reduced by
removing a node or a mixture component, and perform the
model modification that promises the largest reduction in ;.

3. Experimental Evaluation

We experimented on learning models for shock graphs, a
skeletal based representation of shape. We extracted graphs
from a database composed of 150 shapes divided into 10
classes of 15 shapes each. Each graph had a node attribute
that reflected the size of the boundary feature generating the
corresponding skeletal segment. Our aim is to compare the
classification results obtained learning a generative model to
what can be obtain using standard graph matching techniques
and a nearest neighbor classifier. Figure 3 shows the shape
database, the matrix of extracted edit distances between the
shock graphs, and a multidimensional scaling representation
of the distances; here numbers correspond to classes. As we
can see, recognition based on this representation is a hard
problem, as the class structure is not very clear in these dis-
tances and there is considerable class overlap.

In Figure 4 we compare the classification performance ob-
tained with the nearest neighbor rule with the one obtained
by learning the generative models and using Bayes decision
rule for classification, i.e., assigning each graph to the class of
the model with largest probability of generating it. Note that
the graphs are never classified with a model the had the same
graph in the training set, thus in the case of the 15 training
samples, the correct class had only 14 samples, resulting in a
leave-one-out scheme. Figure 4 shows a clear improvement
classification accuracy, consistently of about 15% regardless
the number of samples in the training set, thus proving that
learning the modes of structural variation present in a class
rather than assuming an isotropic behavior with distance, as
has been done for 40 years in structural pattern recognition,
gives a clear advantage.

4. Conclusions

In this paper we have addressed to problem of learning a gen-
erative model for graphs from samples. The model is based
on a naive node independence assumptions, but mixes such
simple models in order to capture node correlation. The cor-
respondences are estimated using a fast sampling approach,
the node and edge parameters are then learned using max-
imum likelihood estimates, while model selection adopts a
minimum descriptor length principle.

Experiments show that learning the graph structure gives
a clear advantage over the isotropic behavior assumed by the
vast majority of the approaches in the structural pattern recog-
nition literature.
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