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Abstract
In this paper we propose a new approach to sieve estimation for a general regression func-

tion when the dimension of the finite dimensional subspaces is a random quantity depending
on the values of the observations.

The technique is introduced with the help of a simulation study on a functional linear
model under extremely mild assumptions.

A sketch of the proof concerning the main statements is then given in the more general
case when the regression function is not necessarily linear.

1 Preliminaries

In this work we study the problem of estimating a general regression function in the two

different contexts which will be referred to as the functional linear model and the general

regression model.

The functional linear model (FLM) combines a scalar random variable Y ∈ IR and a

random function X with finite second moment taking values in L2[0, T ], i.e. E‖X‖2 =∫ T
0 E|X(t)|2dt <∞, by the equality

Y =

∫ T

0
θ0(t)X(t)dt+ ε

where the assigned function θ0 ∈ L2[0, T ] is called the regression function and the error

term ε is zero mean and uncorrelated with X, i.e. E(X(t)ε)2 = 0, ∀t ∈ [0, T ].

The FLM is a well known topic in Statistics and many applications have been developed

in different areas, such as chemistry by Frank and Friedman (1993), finance by Preda and

Saporta (2005) and climatology by Besse et al. (2000). From a statistical point of view,

several techniques have been developed to estimate the unknown regression function θ0.

Partial least squares and principal components regression were adopted for estima-

tion by Frank and Friedman (1993); an estimator was obtained by Cardot et al. (1999)

using spectral analysis of the empirical second moment operator of X, and splines es-

timators were obtained by Cardot et al. (2003) and Cardot et al. (2007). Cardot and
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Johannes (2010) considered a threshold rule for the estimation and Reiss and Ogden

(2007) interestingly compare several methods, including functional component regression.

Furthermore estimation for generalized functional linear models was proposed by Müller

and Stadtmüller (2005).

The general regression model (GRM) deals with a couple (X,Y ) where X denotes a

random element taking values into an arbitrary complete and separable metric space X ,

having the Borel σ-field BX , and Y denotes a real random variable such that

E(Y |X = x) = T0(x), where T0 ∈ L2(X ,BXPX)

is an assigned square integrable function belonging to the separable Hilbert space L2 and

PX denotes the probability measure induced by X.

As stated above, in the FLM, several techniques were produced to estimate the regres-

sion function θ0 belonging to an infinite dimensional vector space, through a sequence of

finite dimensional vector subspaces Sm(n) whose dimension m(n) depends on the sample

size n. In all cases an estimate θ̂n ∈ Sm(n) is derived adopting some strategy and the

consistency is reached if the dimension m(n) tends to infinity slowly enough when n is

divergent to infinity.

Our analysis falls within the above mentioned framework, although we consider a

more simplified assumptions system. For example, it may be easily checked that the

choice of the subspace dimension, m(n), is typically chosen on the basis of the sample

size n (for instance Cardot et al., 1999, put m(n) = o(log(n))) with no regard to other

relevant components. Our point of view may be described by the following question: Is it

reasonable to use the same dimension m(n) of the subspace if θ0 is either a very smooth

periodic function or a discontinuous one with unbounded derivatives?
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A second problem arises considering the assumptions under which the strong con-

sistency of estimators is proved; the introduced conditions generally define restrictive

hypotheses and the proposed simulations concern estimates for regular and smooth func-

tions. Thus it is reasonble to ask: What happens if we check an estimation method using

a function θ0 which is not regular?

The above questions led us to adopt a least squares strategy we introduce here in the

case of a FLM, but we may easily generalize in the case of a GRM; in fact we provide the

proof of some statements in the more general case of a GRM.

Our estimation procedure is as follows: denoting by {(xi, yi) : i = 1, 2, . . . , n} the

set of n observations and introducing the orthonormal base {bj : j ≥ 1} for the Hilbert

space L2[0, T ], for each fixed m = 1, 2, . . . , n let us consider the finite dimensional space

Sm(bj : j = 1, . . . ,m) generated by the first m elements of the orthonormal base, thus we

denote by θ̂mn the global minimizer for the random function

Ln(aj , j = 1, . . . ,m) =
1

n

n∑
i=1

yi − m∑
j=1

aj

∫ T

0
bj(t)xi(t)dt

2

over the subspace Sm. The estimation procedure consists of a rule that selects an element,

denoted by θ̂m̄n
n , within the class of functions Θn = {θ̂mn : m = 1, 2, . . . , n} on the basis

of the distances {||θ̂mn − θ̂m−1
n || ∀m = 2, . . . , n}. The estimation is now obtained taking

θ̂n = θ̂m̄n
n where m̄n is the dimension of the subspace selected by the procedure.

Several properties of such a method may be investigated through simulations. Two

different kinds of regression functions are considered:

i. the regular smooth and periodic function θ0(t) = sin(4πt), ∀t ∈ [0, π] (as in Cardot

et al., 1999);
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ii. the discontinuous unbounded function with unbounded derivatives θ0(t) = log |t−1|,

∀t ∈ [0, π].

The strong difference between i. and ii., in terms of regularity properties, will produce

a meaningful effect on the dimension m̄n of the selected subspace. The simulations were

performed on the basis of n = 200 observations where the regressor X is a Brownian

motion; if θ̂m
∗

200 denotes the set of the global minimizers for the class of distances {||θ̂m200−

θ0|| : ∀m = 1, 2, . . . , 200}, in both the cases i. and ii. we observe that the proposed

estimates are very close to the global minimizers θ̂m
∗

200.

In fact, in case i. we get θ̂m
∗

200 = {θ̂m200 : m = 23, 24, 25, 26, 27, 28, 29, 30, 31} (see Table

3) where {||θ̂m200− θ0|| = 0.04 ∀m = 23, . . . , 31} and θ̂m̄200

200 is any element belonging to the

set {θ̂m200 : m = 20, 21, 23, 24, 25, 26, 28, 29, 30} where the maximum of the distances from

θ0 is reached if m = 20, 21 giving ||θ̂20
200 − θ0|| = ||θ̂21

200 − θ0|| = 0.05.

As far as case ii. is concerned, we have θ̂m
∗

200 = θ̂8
200 with ||θ̂8

200 − θ0|| = 0.39 and the

estimation procedure gives θ̂200 = θ̂m̄200

200 = θ̂5
200 with ||θ̂5

200 − θ0|| = 0.56.

Thus the two choices for θ0 produce a big difference on the dimension m̄200 of the

subspace for the estimates. In fact in the regular case m̄200 is any value included in the

set {20, 21, 23, 24, 25, 26, 28, 29, 30}, while in the irregular case m̄200 = 5. In both cases

the estimates are very close to the optimal choice θ̂m
∗

200 meaning that the dimension of

the subspace is strongly dependent on regularity properties of the regression function

to be estimated. Furthermore, case ii. shows that the good estimates have a subspace

dimension satisfying the condition 5 ≤ mn ≤ 10 whereas outside this context the distance

from θ0 increases very quickly (see the third column of Table 1).

This implies that the subspace dimension needs a good level of accuracy when regu-
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larity properties of θ0 are relaxed; thus, if θ0 is really unknown, the choice for mn based

only on the sample size n is a too raw criterion and the only information concerning θ0 is

available in the observation (xi, yi). This is the reason why we assume that the subspace

dimension depends on the observations.

The assumptions introduced in our approach are a relevant argument too; Section

5 deals with some technical results and proofs dealing with the GRM, where only the

assumptions A1 and A2 are adopted in order to ensure the strong consistency of estimates.

In the case of a FLM these not restrictive conditions may be rewritten in a simplified

version where the main hypothesis is introduced using the error random variable: indeed

we require that ε is a real random variable with finite variance and bounded density

function. No assumptions are needed for the regressor X.

Finally some specifications concerning this paper may be useful. All the estimation

procedure is built through an example where the regressor is a Brownian motion, following

the framework provided by the relevant scholarship supplied above. In any case, using

this example does not affect the generality of the method: indeed considering Brownian

motion as a regressor X is not strictly required by our assumptions set.

2 Introduction

In order to introduce the problems studied in this paper and the adopted approach, we

first provide a simulation result from an estimation procedure following regression model

Y =

∫ π

0
θ0(t)X(t)dt+ ε, (1)

where {X(t), t ∈ [0, π]} is a Brownian motion, ε is a standard Gaussian random variable

and θ0 ∈ L2([0, π], dt) is an assigned function to be estimated. The simulation results are
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obtained using a sieve-type least squares estimation technique: for example, if we let θ0

be the global unique minimizer of the strictly convex function

L(θ) = E

[(
Y −

∫ π

0
θ(t)X(t)dt

)2
]

∀θ ∈ L2([0, π], dt),

an estimation can be derived for θ0 on the basis of the n observations {(xi(·), yi) : i =

1, 2, . . . , n}, where xi(·) denotes the i-th observed trajectory for the regressor X. Let θ̂n

denote the global minimizer of the empirical function

Ln(aj , j = 1, . . . ,mn) =
1

n

n∑
i=1

yi − mn∑
j=1

aj

∫ π

0

sin(jt)√
π
2

xi(t)dt

2

, (2)

which is defined over the mn-dimensional subspace Smn
= Sp

{
sin(jt)√
π/2

: j = i, . . . ,mn

}
generated by the first mn elements of the orthonormal base

{
sin(jt)√

π

2

: j ≥ 1

}
. Then the

strong consistency of the θ̂n obtained via the sieves method holds if the dimension mn of

the subspace Smn
increases slowly enough to infinity when the number n of observations

diverges. Usually mn is a deterministic quantity which depends on n and tends to infinity

at a given rate.

The approach we adopt is based on a different policy about the subspaces dimension

mn which is a random quantity depending on the observations {(xi(·), yi) : i = 1, 2, . . . , n}.

In Section 3 we give a description of our estimation procedure by means of the results

of a simulation study.

3 Definitions and background

This section introduces the definitions and the concepts needed to construct the estimates

θ̂n. In order to explain the intuitive meaning and the reasoning underlying our procedure,
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from an operative point of view, we anticipate some theoretical results, here denoted as

Statements, formally proved in Section 5.

The positive quantity

L(θ) = E

[(
Y −

∫ π

0
θ(t)X(t)dt

)2
]

∀θ ∈ L2([0, π], dt) (3)

defines a strictly convex function having the unknown θ0 as its unique global minimizer.

Denoting by n the number of available observations {(xi, yi) : i = 1, 2, . . . , n}, as we

prefer the simplified notation xi rather than xi(·) to denote the observed trajectories of

the regressor, we take the orthonormal base{
sin(jt)√

π
2

: j ≥ 1

}
(4)

for the Hilbert space L2([0, π], dt) and then we compute the global minimizers θ̂mn (for

each m = 1, 2, . . . , n) of the empirical function

Ln(aj , j = 1, . . . ,m) =
1

n

n∑
i=1

yi − m∑
j=1

aj

∫ π

0

sin(jt)√
π
2

xi(t)dt

2

, (5)

which is defined over the m-dimensional subspace

Sm = Sp

{
sin(jt)√
π/2

: j = i, . . . ,m

}
=


m∑
j=1

aj
sin(jt)√

π
2

: (aj : j = 1, . . . ,m) ∈ Rm
 (6)

generated by the first m elements of the orthonormal base. Thus we obtain the set of

Least Square (LS in short) finite dimensional estimates{
θ̂mn : m = 1, . . . , n

}
(7)

where m denotes the dimension of the subspace Sm and n the number of observations.

The estimation technique described below consists of a rule allowing to choose an el-

ement denoted by θ̂n within the set (7). The simulation study is based on n = 200
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observations, when θ0(t) = ln |t − 1|,∀t ∈ [0, π], used to compute the LS estimates{
θ̂m200 : m = 1, . . . , 200

}
. As an example we give below in Table 1 the results of one repli-

cation of the experiment. The table is divided into three blocks each of three columns.

The first one contains the subspace dimension m = 1, . . . , 200; the second one provides

the distances {
||θ̂m200 − θ̂m−1

200 || : m = 1, 2, . . . , 200
}

(8)

in term of L2 norm ||θ|| =
(∫ π

0 θ2(t)dt
)1/2

. When m = 1 the value ||θ̂1
200 − θ̂0

200|| has no

meaning so we will use the convention ||θ̂1
200 − θ̂0

200|| = 1. The third column contains the

distances of each LS estimate θ̂m200 from θ0,
{
||θ̂m200 − θ0|| : m = 1, 2, . . . , 200

}
.

The estimation procedure is based on the set of distances (8) and thus, considering

the values in the second column, it is easy to notice that the differences are small in

the first 17 values while they increase in magnitude starting with the 18th value. Such

a behaviour suggests that the first 17 LS estimates
{
θ̂m200 : m = 1, . . . , 17

}
may be close

to θ0 and then the consistent estimate has to be chosen in that interval. Our purpose is

to give theoretical support to the above intuitive arguments by introducing the following

tools.

Statement 1 The strictly convex function (3) has θ0 as its unique global minimizer;

moreover the restriction of L to each finite dimensional subspace Sm admits a unique

global minimizer θ(m),∀m ≥ 1, and limm→∞ ||θ(m)− θ0|| = 0.

Statement 2 For any sequence of observations {(xi, yi) : i = 1, 2, . . . , n} belonging to a

set of probability 1, the convergences limn→∞ ||θ̂mn − θ(m)|| = 0 hold true for each fixed

m ≥ 1, where θ̂mn is the global minimizer for the random function Ln defined in (5).
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m ||θ̂m200 − θ̂
m−1
200 || ||θ̂m200 − θ0||

1 1.00 3.31
2 0.00 1.00
3 0.01 0.98
4 0.54 0.93
5 0.00 0.56
6 0.03 0.56
7 0.12 0.54
8 0.13 0.39
9 0.06 0.49
10 0.36 0.61
11 0.11 1.27
12 0.29 1.38
13 0.27 1.60
14 0.21 1.75
15 0.70 1.79
16 0.05 2.65
17 0.02 2.79
18 1.21 2.86
19 0.59 3.88
20 1.01 4.22
21 0.43 5.02
22 0.08 5.01
23 0.71 5.15
24 0.96 5.73
25 1.41 6.65
26 5.34 8.40
27 0.01 14.56
28 0.02 14.53
29 0.01 14.60
30 4.86 14.59
31 4.55 18.76
32 0.09 24.50
33 0.00 24.81
34 0.11 24.81
35 0.31 25.16
36 3.19 25.70
37 0.59 29.00
38 3.23 30.30
39 0.00 31.81
40 4.96 31.82
41 8.77 35.58
42 2.85 44.01
43 0.34 49.24
44 4.53 50.29
45 2.04 54.78
46 0.25 58.07
47 1.65 59.23
48 0.34 60.84
49 0.75 60.67
50 0.34 60.97
51 22.11 60.96
52 1.20 84.05
53 1.32 85.47
54 10.71 86.94
55 3.98 90.87
56 0.57 101.88
57 1.81 101.87
58 2.50 102.47
59 0.00 110.30
60 4.44 110.32
61 0.32 116.08
62 38.93 115.76
63 4.96 165.17
64 44.23 164.34
65 1.17 209.33
66 0.97 209.89
67 24.46 211.73

m ||θ̂m200 − θ̂
m−1
200 || ||θ̂m200 − θ0||

68 1.67 236.73
69 4.96 239.87
70 3.27 249.06
71 6.60 244.24
72 8.26 258.22
73 0.69 264.61
74 18.81 265.55
75 2.17 277.16
76 0.48 276.34
77 0.11 279.15
78 3.46 278.57
79 0.85 283.09
80 0.11 286.16
81 2.40 285.77
82 67.50 284.32
83 40.29 355.73
84 5.19 374.28
85 5.79 382.65
86 2.03 390.16
87 1.37 392.82
88 1.19 394.07
89 28.13 395.15
90 126.81 428.33
91 0.24 477.52
92 6.73 478.64
93 48.97 486.55
94 7.53 516.19
95 0.03 518.73
96 0.04 518.85
97 13.54 519.22
98 72.92 544.27
99 130.89 567.98
100 47.09 678.14
101 42.20 757.71
102 4.86 817.02
103 216.12 825.44
104 37.00 1088.18
105 41.77 1119.62
106 0.31 1145.05
107 149.97 1148.42
108 22.59 1155.19
109 22.79 1120.24
110 1.60 1144.63
111 1.56 1155.22
112 15.98 1159.20
113 13.17 1169.30
114 211.14 1175.31
115 303.41 1407.30
116 2.84 1560.34
117 177.83 1559.14
118 49.97 1721.00
119 8.50 1798.81
120 114.10 1777.50
121 173.32 1897.45
122 0.42 2073.15
123 0.95 2070.15
124 0.69 2078.23
125 291.89 2070.12
126 1.81 2371.34
127 4.60 2379.85
128 257.94 2373.78
129 18.92 2676.07
130 0.23 2773.64
131 285.99 2767.82
132 13.57 2953.44
133 1.62 2975.72
134 23.29 2980.22

m ||θ̂m200 − θ̂
m−1
200 || ||θ̂m200 − θ0||

135 27.07 3006.71
136 1.01 2970.53
137 65.59 2970.92
138 20.71 2984.91
139 54.03 2985.50
140 15.98 2939.51
141 4.06 2969.95
142 1844.98 2982.32
143 832.32 5119.39
144 9.18 5684.14
145 71.94 5762.81
146 508.26 5744.51
147 1.38 5417.70
148 99.36 5442.65
149 15.90 5233.33
150 15.04 5086.12
151 214.84 5170.25
152 107.44 5603.50
153 768.00 6191.55
154 511.08 7057.95
155 0.75 6787.63
156 1017.99 6755.90
157 71.41 6865.75
158 6.60 6961.57
159 87.57 6905.49
160 1298.41 6819.52
161 238.83 8596.93
162 4.24 8688.54
163 51.52 8609.61
164 0.28 9066.55
165 165.16 9082.13
166 18.38 9444.54
167 6.15 9369.37
168 666.30 9396.75
169 3095.56 9956.80
170 577.45 12240.31
171 111.44 14103.65
172 1293.01 14334.74
173 230.32 17013.29
174 52.57 16830.61
175 53.06 16843.62
176 1.78 16291.38
177 1665.49 16291.96
178 301.70 16345.65
179 74.96 16394.48
180 148.37 16163.95
181 184.84 16635.95
182 18.03 17251.91
183 163.47 17517.19
184 367.72 17536.16
185 2485.26 18569.09
186 3406.92 23138.50
187 2029.08 24897.65
188 2160.90 27255.93
189 2.72 33692.87
190 0.64 33777.13
191 3526.11 33828.00
192 1439.68 32032.98
193 316.24 39053.37
194 14358.82 41476.54
195 26441.01 73069.02
196 2904.56 68727.89
197 364089.76 72849.47
198 27892.26 567521.70
199 64238.01 507066.10
- - -
- - -

Table 1: Simulations of example 1 for θ0 = ln |t− 1|
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Let us apply the above statements to our problem. When n is big enough, the LS

estimates θ̂mn will be close to the respective limits θ(m) and this occurs uniformly for each

m belonging to a finite subset. Then there exists a value m0(n) such that

||θ̂mn − θ(m)|| ' 0, for each m = 1, 2, . . . ,m0(n) (9)

where m0(n) is a given natural satisfying 1 < m0(n) < n.

As a direct consequence of (9) we have

||θ̂mn − θ̂m
′

n || ' ||θ(m)− θ(m′)|| (10)

for each pair m,m′ ∈ IN satisfying 1 ≤ m,m′ ≤ m0(n). Therefore, the idea behind

the estimation of θ̂n is the existence of a natural m0(n) such that the LS finite di-

mensional estimates
{
θ̂mn : m = 1, . . . ,m0(n)

}
approximate closely their respective limits

{θ(m) : m = 1, . . . ,m0(n)} due to Statement 2.

Then, since θ(m)→ θ0, the LS estimates
{
θ̂mn : m = 1, . . . ,m0(n)

}
also converge, thus

explaining the low values taken by the first distances ||θ̂m200− θ̂
m−1
200 || in the second column

of Table 1. The value of m0(n), as well as θ0, is completely unknown; nevertheless, when

n tends to infinity it is possible to approximate it in a satisfactory way.

Since the estimation is based on the distances ||θ̂mn − θ̂m−1
n || it is natural to introduce

the notation used for intervals in order to denote the finite sequences of LS estimates.

Definition 1 If a and b are natural numbers (with a < b) it is intuitive to denote the

intervals of natural numbers [a, b] as follows:

[a, b] = {m ∈ N : a ≤ m ≤ b}. (11)
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Since our analysis is based on the sequences of consecutive finite dimensional LS esti-

mates θ̂mn , θ̂
m+1
n , . . . , θ̂m+k

n it is useful to introduce the intervals of LS estimates

[a, b] = {θmn : a ≤ m ≤ b}, (12)

where a, b are naturals not greater than the fixed n. Thus, hereafter [a, b] will be used

to denote an interval of LS estimates. For a given [a, b] there are two quantities which

characterize such a set

d(n)[a, b] = max
{
||θ̂mn − θ̂m−1

n || : m = a, a+ 1, . . . , b
}

(13)

and

ν(n)[a, b] = b− a+ 1, (14)

which denote respectively the maximum distance of consecutive estimates and the cardi-

nality of [a, b].

Furthermore, we define as complete a set [a, b] satisfying the following inequalities

||θ̂b+1
n − θ̂bn|| > d(n)[a, b] ||θ̂a−1

n − θ̂a−2
n || > d(n)[a, b].

Let us consider, for example, the set [6, 8] =
{
θ̂6

200, θ̂
7
200, θ̂

8
200

}
from the second columns

of Table 1. We take the distances

{
||θ̂6

200 − θ̂5
200|| = 0.03; ||θ̂7

200 − θ̂6
200|| = 0.12; ||θ̂8

200 − θ̂7
200|| = 0.13

}
and then d(200)[6, 8] = max{0.03; 0.12; 0.13} = 0.13, ν(200)[6, 8] = 3. Since the fifth value

in the second column is 0.00 and the ninth one is 0.06, the distances ||θ̂5
200− θ̂4

200|| = 0.00

and ||θ̂9
200− θ̂8

200|| = 0.06 are both smaller than d(200)[6, 8] = 0.13 so [6, 8] is not complete.
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Subsequently, we will consider only complete sets [a, b], for example the completed

version of set [6, 8]:

[5, 9] =
{
θ̂5

200, θ̂
6
200, θ̂

7
200, θ̂

8
200, θ̂

9
200

}
,

d(200)[5, 9] = max{0.00; 0.03; 0.12; 0.13; 0.06} = 0.13

ν(200)[5, 9] =5.

Definition 2 Given the two sets of LS estimates [a, b] and [c, d], we say that [c, d] is

preferable to [a, b] if both of the following inequalities are satisfied

d(n)[c, d] ≤ d(n)[a, b]

ν(n)[c, d] = d− c+ 1 ≥ ν(n)[a, b] = b− a+ 1. (15)

The concept of preferable set has an intuitive meaning: the most interesting finite sequence

of LS estimates θ̂mn , θ̂
m+1
n , . . . , θ̂m+k

n have small distances ||θ̂mn − θ̂m−1
n || and possibly a

high number of elements because we are looking for elements which are convergent to the

unknown θ0. For each assigned sequence of observations {(xi, yi) : i ≥ 1} belonging to a

set with probability 1 (see Statement 2), there exists a sequence of values

{m0(n),m1(n), d(n)[m1(n),m0(n)] : n ≥ 1} (16)

where the two natural numbers m0(n),m1(n) with m1(n) < m0(n) define the interval of

estimates

[m1(n),m0(n)] =
{
θ̂mn : m1(n) ≤ m ≤ m0(n)

}
which is characterized by the value d(n)[m1(n),m0(n)].

Furthermore, a sequence (16) exists in such a way that the following properties are

satisfied
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R1 m1(n) < m0(n),∀n

R2 limn→∞m1(n) = limn→∞m0(n) = +∞

R3 limn→∞ [m0(n)−m1(n)] =∞

R4 limn→∞ d(n)[m1(n),m0(n)] = 0 and limn→∞ ν(n)[m1(n),m0(n)] = +∞

R5 {m1(n)} and {m0(n)} are both monotone not decreasing sequences.

R6 m1(n) < m0(n)−m1(n) ∀n

The sequence of random variables {Vn} introduced below plays an important role in

the approximation of values m0(n) and then in the estimation procedure.

Definition 3 For a fixed n and any assigned interval [m1(n),m0(n)] let Vn be the random

variable

Vn = max{b− a : [a, b] ⊂ [m0(n) + 1, n] and (17)

||θ̂mn − θ̂m−1
n || ≤ d(n)[m1(n),m0(n)] ∀m = a, a+ 1, . . . , b}.

The meaning of Vn is strictly connected with that of preferable set; in fact Vn indicates

the maximum length of the intervals [a, b] ⊂ [m0(n) + 1, n] whose consecutive estimates

have a distance not greater than d(n)[m1(n),m0(n)].

If Vn ≥ m0(n)−m1(n), then there exists an interval [a, b] on the right-hand side which

is preferable to [m1(n),m0(n)] and the behaviour of the θ̂mn ’s is inconsistent.

Conversely, if Vn < m0(n)−m1(n) we may state that [m1(n),m0(n)] admits no prefer-

able set; a preferable set [a, b] ⊂ [m0(n) + 1, n] cannot exist on the left-hand side because

of the inequality R6.
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The asymptotic behaviour of the sequence {Vn} is illustrated in the following State-

ment.

Statement 3 If, for each sequence of observations {(xi, yi) : i ≥ 1} belonging to a set

with probability 1, a sequence of values (16) is fixed in such a way that properties R1-

R6 are satisfied, then there exist two naturals ñ and k̃ (depending on the sequence of

observations) such that

Vn ≤ k̃ ∀n ≥ ñ

4 Definition of the estimator

In order to define the estimate θ̂n let us introduce the following finite and increasing

sequence of values

r1 = min{r ≥ 0 : ∃[a, b] ⊂ [1, n] satisfying d(n)[a, b] = r,

and such that [a, b] has no preferable sets}

r2 = min{r > r1 : ∃[a, b] ⊂ [1, n] satisfying d(n)[a, b] = r

and such that [a, b] has no preferable sets}

and so on for r3, r4, . . ., in such a way that for u ≥ 1

ru = min{r > ru−1 : ∃[a, b] ⊂ [1, n] satisfying d(n)[a, b] = r

and such that [a, b] has no preferable sets} (18)

Let arg(ru) be the interval [a, b] such that d(n)[a, b] = ru, let

rs = min{ru : arg(ru′) ⊃ arg(ru′−1), ∀u′ ≥ u+ 1} (19)

14



r1 = 0.01, arg(0.01) = [m = 2,m = 3]
r2 = 0.02 arg(0.02) = [m = 27,m = 29]
r3 = 0.13 arg(0.13) = [m = 5,m = 9]
r4 = 0.36 arg(0.36) = [m = 5,m = 14]
r5 = 0.54 arg(0.54) = [m = 2,m = 14]
r6 = 0.70 arg(0.70) = [m = 2,m = 17]

. . . . . .

Table 2: Some values of ru and arg(ru) for example 1

and let arg(rs) be the interval of finite dimensional LS estimates where we choose our

estimate θ̂n. Then we define θ̂n as follows.

Definition 4 We define as θ̂n any element θ̂mn ∈ arg(rs) which minimizes the set of the

distances

{||θ̂mn − θ̂m−1
n || ∀θ̂mn ∈ arg(rs)}. (20)

4.1 Examples

Consider again the simulation concerning θ0 = ln |t − 1| reported in Table 1; we are

interested in computing θ̂200 using the elements given in (18) and (19) as well as the

distances available in the second columns of each block in Table 1.

First of all, we have the distance 0.00 for m = 2, 5, 33, 39, 59. Following Definition 1,

each of the five intervals containing only one point, [2], [5], [33], [39] and [59], has four

preferable intervals. So, we cannot write r1 = 0.00. In fact r1 = 0.01 is the minimum

value such that arg(r1) has no preferable intervals and arg(0.01) = [m = 2,m = 3]; see

some other values in Table 2.

It is easy to check that arg(r3) ⊂ arg(r4) ⊂ arg(r5) ⊂ arg(r6) ⊂ . . . and therefore rs =

r3; arg(r3) = [m = 5,m = 9] and d(200)[m = 5,m = 9] = max{0.00; 0.03; 0.12; 0.13} =
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0.13. Furthermore, applying the definition, we obtain

θ̂200 = θ̂5
200.

The distances ||θ̂mn − θ0|| reported in the third column allow us to check the precision

of our estimate: ||θ̂5
200 − θ0|| = 0.56 and ||θ̂8

200 − θ0|| = 0.39 where θ̂8
200 is the optimal LS

estimate, i.e. the finite dimensional estimate which minimizes the distance from θ0. It is

important to note that θ̂8
200 is an element of rs.

Another interesting example is given by θ0(t) = sin(4πt); a simulation for n = 200 is

included in Table 3. As in the previous case, the estimation θ̂200 is computed on the basis

of the distances ||θ̂m200 − θ̂
m−1
200 || available in the second column. The first elements of the

sequence {ru} are given in Table 4.

In this case, rs = r2 = 0.01 and arg(rs) = [m = 20,m = 30] so θ̂200 is obtained

choosing any element within the set {θ̂20
200, θ̂

21
200, θ̂

23
200, θ̂

24
200, θ̂

25
200, θ̂

26
200, θ̂

28
200, θ̂

29
200, θ̂

30
200}.

A relevant aspect emerges considering both of the above examples. On one hand,

the intervals arg(rs) contain the optimal estimate θ̂mn which minimizes the distance with

θ0, whereas, on the other hand, considering the values in the third column, it is easy to

check that immediately after arg(rs) the distances of the estimates θ̂mn from θ0 assume

consistently higher values.

The simulations of θ0(t) = sin(4πt) are of particular interest, as we are able to compare

the estimates produced by the method presented in this paper and the results given by

Cardot et al. (1999, 2003), who derived an estimator for θ0 through a method introduced

by Bosq (1991, 2000) in the case of ARH processes.

The next section is devoted to the main proofs provided in a more general fashion

which is suitable for the estimation of a not necessarily linear regression function. To this
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m ||θ̂m200 − θ̂
m−1
200 || ||θ̂m200 − θ0||

1 1.00 1.58
2 0.00 1.58
3 0.00 1.58
4 0.00 1.58
5 0.00 1.58
6 0.00 1.58
7 0.00 1.59
8 0.01 1.58
9 0.02 1.60
10 0.00 1.59
11 0.27 1.58
12 1.11 1.26
13 0.12 0.23
14 0.05 0.12
15 0.04 0.09
16 0.02 0.07
17 0.01 0.06
18 0.02 0.05
19 0.02 0.05
20 0.00 0.05
21 0.00 0.05
22 0.01 0.05
23 0.00 0.04
24 0.00 0.04
25 0.00 0.04
26 0.00 0.04
27 0.01 0.04
28 0.00 0.04
29 0.00 0.04
30 0.00 0.04
31 0.02 0.04
32 0.00 0.05
33 0.00 0.05
34 0.00 0.05
35 0.02 0.05
36 0.01 0.06
37 0.00 0.06
38 0.00 0.07
39 0.00 0.07
40 0.00 0.08
41 0.00 0.08
42 0.01 0.08
43 0.00 0.08
44 0.00 0.08
45 0.02 0.08
46 0.00 0.10
47 0.01 0.10
48 0.02 0.11
49 0.00 0.13
50 0.02 0.13
51 0.01 0.15
52 0.00 0.15
53 0.00 0.15
54 0.01 0.15
55 0.01 0.15
56 0.00 0.16
57 0.00 0.16
58 0.03 0.16
59 0.01 0.18
60 0.00 0.19
61 0.00 0.20
62 0.00 0.20
63 0.01 0.20
64 0.00 0.20
65 0.02 0.20
66 0.00 0.23
67 0.00 0.22

m ||θ̂m200 − θ̂
m−1
200 || ||θ̂m200 − θ0||

68 0.00 0.22
69 0.05 0.22
70 0.00 0.29
71 0.01 0.30
72 0.01 0.30
73 0.00 0.32
74 0.01 0.32
75 0.01 0.33
76 0.02 0.34
77 0.05 0.35
78 0.04 0.39
79 0.05 0.41
80 0.00 0.45
81 0.25 0.45
82 0.04 0.71
83 0.00 0.74
84 0.04 0.74
85 0.05 0.75
86 0.06 0.80
87 0.07 0.79
88 0.03 0.86
89 0.00 0.89
90 0.11 0.90
91 0.06 0.89
92 0.05 0.99
93 0.03 1.00
94 0.00 1.00
95 0.00 1.01
96 0.04 1.01
97 0.02 1.09
98 0.02 1.14
99 0.02 1.18
100 0.00 1.24
101 0.00 1.24
102 0.06 1.23
103 0.16 1.35
104 0.12 1.45
105 0.00 1.42
106 0.07 1.43
107 0.00 1.48
108 0.21 1.47
109 0.00 1.79
110 0.10 1.79
111 0.02 1.87
112 0.02 1.93
113 0.39 1.97
114 0.09 2.33
115 0.57 2.35
116 0.00 3.27
117 0.00 3.26
118 0.00 3.27
119 0.28 3.28
120 0.00 3.57
121 0.09 3.58
122 0.32 3.55
123 0.01 3.85
124 0.03 3.85
125 0.12 3.88
126 0.06 4.15
127 0.04 4.28
128 0.01 4.45
129 0.09 4.40
130 0.12 4.51
131 0.03 4.74
132 0.17 4.78
133 0.03 4.62
134 0.06 4.60

m ||θ̂m200 − θ̂
m−1
200 || ||θ̂m200 − θ0||

135 0.78 4.75
136 0.00 6.04
137 0.27 6.06
138 0.04 6.26
139 0.44 6.11
140 0.00 6.41
141 0.47 6.51
142 0.02 7.44
143 0.07 7.53
144 0.11 7.74
145 0.88 8.24
146 0.03 9.81
147 0.82 10.22
148 0.00 10.47
149 0.05 10.49
150 0.00 10.31
151 1.51 10.35
152 1.86 13.32
153 0.02 12.70
154 0.73 13.03
155 0.07 13.72
156 0.54 13.64
157 0.82 14.94
158 1.50 16.78
159 0.00 19.71
160 0.02 19.82
161 1.88 20.00
162 0.03 17.42
163 0.51 17.83
164 0.38 20.06
165 0.02 20.55
166 0.12 20.34
167 1.52 19.57
168 0.27 17.56
169 0.39 16.52
170 1.04 17.68
171 1.38 17.27
172 0.02 20.55
173 0.37 20.62
174 0.03 21.59
175 0.94 21.42
176 1.13 24.28
177 1.81 24.82
178 0.32 26.08
179 1.46 25.05
180 0.10 22.22
181 1.02 21.90
182 9.30 24.08
183 1.73 35.10
184 5.47 37.97
185 1.04 34.35
186 5.17 36.18
187 0.06 46.45
188 0.15 47.67
189 6.76 47.78
190 9.91 40.98
191 2.92 53.17
192 6.95 46.87
193 37.81 61.84
194 0.35 133.58
195 81.28 141.93
196 67.93 141.23
197 176.96 98.04
198 791.24 320.70
199 264.20 1148.34
- - -
- - -

Table 3: Simulations of example 2 for θ0 = sin(4πt)
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r1 = 0.00, arg(0.00) = [m = 2,m = 7]
r2 = 0.01, arg(0.01) = [m = 20,m = 30]
r3 = 0.02, arg(0.02) = [m = 16,m = 57]
r4 = 0.03, arg(0.03) = [m = 16,m = 68]

. . . . . .

Table 4: Some values of ru and arg(ru) for example 2

aim, we suppose that X is a random element taking values into an arbitrary complete

and separable metric space X having the Borel σ-field BX , whereas, Y is a real random

variable such that

E(Y |X = x) = T0(x) (21)

where T0 ∈ L2(X ,BX , PX) is an assigned square integrable function belonging to the

separable Hilbert space L2 and PX denotes the probability measure induced by X. The

analysis given below will be performed following closely the approach developed in Section

3 for the functional linear case and keeping the same notations although with the following

exceptions:

i. T0 (and not θ0) is the unknown parameter to estimate;

ii. the set {φj : j ≥ 1} is an orthonormal basis of L2(X ,BX , PX) and Sm = Sp (φj : j = i, . . . ,m)

is the finite dimensional subspace generated by the first m elements of the basis.

L(T ) = E[(Y − T (X))2] ∀T ∈ L2(X ,BX , PX) is a strictly convex real function hav-

ing T0 as its unique global minimizer;

iii. θ(m) is still the global minimizer for the restriction of L(·) to the subspace Sm;

analogously, θ̂mn denotes the global minimizer for the function

Ln(aj : j = 1, . . . ,m) =
1

n

n∑
i=1

yi − m∑
j=1

ajφj(xi)

2

;
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iv. the used norm is the usual L2 norm to respect to the measure PX , i.e.

||T || =
(∫
X
T 2(x)dPX(x)

)1/2

.

5 Technical results

The following two assumptions are the only hypotheses required by the following results.

A1 We assume that the conditional random variable Y |X = x admits a density function

fY |X=x(y) satisfying the boundedness condition

fY |X=x(y) ≤M ∀y ∈ R1, ∀x ∈ X

for some constant M .

A2 We assume that V ar(Y |X = x) is a PX - integrable function, i.e.∫
X
V ar(Y |X = x)dPX(x) <∞

Using A1 and A2 we can prove the following formal properties of the function L(·):

I) L(T ) is finite ∀T ∈ L2(X ,BX , PX)

II) L(·) is a strictly convex function having T0 as its unique global minimizer; further-

more L(·) is a real continuous function over all the domain L2(X ,BX , PX) with

respect to the L2 norm || ||.

Our purpose is to prove Statement 1 using the separation property that we now intro-

duce as a preliminary tool.
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Definition 5 (Separation property) The real convex function f , defined over the vec-

tor space V , and with a unique global minimizer v0 ∈ V , is said to satisfy the Separation

Property (S.P. hereafter) if for each fixed ε > 0 there exists a corresponding δ(ε) > 0 such

that for any v ∈ V with

d(v, v0) ≥ ε⇒ f(v)− f(v0) ≥ δ(ε)

where d denotes the metric defined over V .

The S.P. has an intuitive meaning; choosing any point v such that d(v, v0) ≥ ε the

difference f(v) − f(v0) cannot be arbitrarily close to zero: in fact there exists δ(ε) > 0

such that f(v)− f(v0) ≥ δ(ε). The S.P. was introduced by R.T. Rockafellar for a convex

function defined over Rn (see Theorem 27.2 on page 265 in Rockafellar, 1972). In the

case of a function defined over an infinite dimensional vector space, the S.P. is not easy

to obtain. Nevertheless, in the particular case of the strictly convex function L(·) having

T0 as its unique global minimizer, the S.P. holds true over all the domain.

Lemma 1 Given the function, L(·) for each fixed ε > 0 there exists a corresponding value

δ(ε) > 0 such that for all T ∈ L2(X ,BX , PX) satisfying ||T − T0|| ≥ ε⇒ L(T )− L(T0) ≥

δ(ε).

Sketch of the proof. Given the half-line having its origin in T0

T0 + t(T − T0) ∀t ≥ 0

and adopting as the first derivative

L′(t) = 2t

∫
X

(T (x)− T0(x))2dPX(x) = 2t||T − T0||2
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we have that L(·) has the same behaviour over each half-line.

Theorem 1 (Statement 1) The strictly convex function L(T ) = E[(Y −T (X))2], ∀T ∈

L2(X ,BX , PX), has T0 as its unique global minimizer; moreover the restriction of L to

each finite dimensional subspace Sm admits a unique global minimizer θ(m), ∀m ≥ 1 and

limm→∞ ||θ(m)− T0|| = 0.

Proof. The proof that T0 is the unique minimizer for L is omitted and then we consider

the existence and convergence for the sequence {θ(m)}.

For each natural m fixed let us denote by Tm =
∑m

j=1 a
0
jφj the m-th term of the

Fourier series of T0, where a0
j are the Fourier coefficients. Then limm→∞ ||Tm − T0|| = 0

and there exists a real τ > 0 such that

∞
∪
m=1

Tm ⊂ S̄(T0, τ)

in such a way that Sm ∩ S̄(T0, τ) 6= ∅. Let us consider its closure set denoted by cl[Sm ∩

S̄(T0, τ)]; such a set is a closed and bounded subset of a finite dimensional vector space

and, because of the continuity and the strict convexity of L, there is a unique minimizer

θ(m) of L, over cl[Sm ∩ S̄(T0, τ)]. Note that for a given T ∈ cl[Sm ∩ S̄(T0, τ)] satisfying

||T − Tm|| ≥ ε we have, due to the triangular inequality, that

||T − T0|| ≥ ||T − Tm|| − ||Tm − T0|| ≥ ε− ||Tm − T0|| ∀m fixed;

when m→∞ we have that ||Tm − T0|| → 0 while ε is a fixed constant and then

||T − Tm|| ≥ ε⇒ ||T − T0|| ≥ ε− ||Tm − T0|| > 0

for m big enough. The strict positivity of the difference ε− ||Tm − T0|| allows us to apply
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the S.P. and then the existence is stated for a value δ(ε− ||Tm − T0||) such that

L(T )− L(T0) ≥ δ(ε− ||Tm − T0||) (22)

We consider now the difference L(T )−L(Tm) when T ∈ cl[Sm∩S̄(T0, τ)] and ||T−Tm|| ≥ ε:

L(T )− L(Tm) = L(T )− L(T0) + L(T0)− L(Tm) = (L(T )− L(T0))− (L(Tm)− L(T0)).

Applying the inequality (22) to the difference L(T )− L(T0) we have that

L(T )−L(Tm) = (L(T )−L(T0))− (L(Tm)−L(T0)) ≥ δ(ε−||Tm−T0||)− (L(Tm)−L(T0)).

If m → ∞ it follows that ||Tm − T0|| → 0 and (L(Tm) − L(T0)) → 0 because of the

continuity of L, while ε− ||Tm − T0|| → ε and then we have, when m is big enough, that

||T − Tm|| ≥ ε⇒ L(T )− L(Tm) ≥ δ(ε− ||Tm − T0||)− (L(Tm)− L(T0)) > 0.

Taking now the minimizer θ(m) for L over cl[Sm ∩ S̄(T0, τ)], we have necessarily that

L(θ(m))−L(Tm) ≤ 0 and the equality holds true when θ(m) = Tm. Then ||θ(m)−Tm|| < ε

and

||θ(m)− T0|| ≤ ||θ(m)− Tm||+ ||Tm − T0|| ≤ ε+ ||Tm − T0||.

If we choose an arbitrarily small η > 0 there exists m(η) such that

||θ(m)− T0|| ≤ ε+ η.

Finally the strict convexity of L allows us to prove that each θ(m) is the global minimizer

for L over the space Sm.

Theorem 2 (Statement 2) For any sequence of observations {(xi, yi) : i ≥ 1}, belong-

ing to a set of probability one, the following statements hold true
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• for each fixed m the sequence of convex random functions

Ln(aj : j = 1, . . . ,m) =
1

n

n∑
i=1

yi − m∑
j=1

ajφj(xi)

2

is convergent to the strictly convex function

L(aj : j = 1, . . . ,m) = E

Yi − m∑
j=1

ajφj(X)

2
uniformly over each compact subset K ⊂ Rm;

• for each fixed m, limn→∞ ||θ̂mn − θ(m)|| = 0 where θ̂mn and θ(m) denote respectively

the global minimizer for Ln and L over the m-dimensional subspace Sm.

Proof. Applying countably many times the strong law of large numbers the convergence

is obtained

lim
n→∞

Ln(aj : j = 1, . . . ,m) = L(aj : j = 1, . . . ,m)

for each point (aj : j = 1, . . . ,m) belonging to a dense and countable subset of Rm.

The first comma is then proved by applying the Theorem 10.8 on page 90 of Rockafellar

(1972). Furthermore, as the limit function L is strictly convex and with a unique global

minimizer θ(m) over Sm, the S.P. holds true for L. Thus for fixed ε > 0, there exists a

positive δ(ε) such that for each point (aj : j = 1, . . . ,m) not belonging to the compact

ball S̄(θ(m), ε) we have

L(aj : j = 1, . . . ,m)− L(θ(m)) ≥ δ(ε).

Finally, because of the convergence of Ln to L uniformly over the compact set S̄(θ(m), ε)

it is easy to prove that θ̂mn belongs to S̄(θ(m), ε) for n big enough.

23



6 Conclusions and remarks

Lastly we observe that the strong consistency of θ̂n may be obtained via Statement 3

proving that for each sequence of observations {(xi, yi) : i ≥ 1} belonging to a set with

probability one there exists n̄ (depending on the given sequence of observations) such that

the inclusion

arg(rs) ⊂ [m1(n),m0(n)] ∀n > n̄

is satisfied.

The proposed method shows interesting results also in estimating not regular functions;

for instance, several other simulations show the possibility of detecting the position of

discontinuities as well as the jumps size of a regression function.
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