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Abstract

The measure approach represents a preference relation over functions by the measure of
Ž .their epigraphs or hypographs . This paper proves a measure representation theorem for a

class of increasing functions and shows how its proof can be modified to yield another
measure representation theorem for functions of bounded variation. q 1998 Elsevier
Science B.V.
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1. Introduction and theme

The measure approach to the representation of preferences over lotteries was
Ž .proposed by Segal 1989; first version 1984 as a generalization of the rank-depen-

Ž . Ž .dent model initiated by Quiggin 1982 and Schmeidler 1989; first version 1982 .
Ž .According to a version of the rank-dependent model, a monetary lottery X on

the positive reals with cumulative distribution F can be evaluated by the func-
tional

RDEU X s u x d g(F x , 1Ž . Ž . Ž . Ž . Ž .H
w x w xwhere g : 0,1 ™ 0,1 is strictly increasing and onto. This form reduces to the
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special case of expected utility when the probability transformation function g is
the identity, but it still separates attitudes to outcomes, modeled through u, and
attitudes to probabilities. modeled through g.

Ž .Segal 1989 pointed out that the rank-dependent model may be interpreted as if
Ž .the underlying preference relation K over lotteries is represented by a product

measure of the epigraphs of the cumulative distribution functions. In fact, assume
Ž .without loss of generality that u 0 s0 and note that the two increasing functions

u and g are defined respectively on the outcomes axis and on the probability axis,
w . w .so that we can compute the measure of the rectangle x , x = p , p by the1 2 1 2

w Ž . Ž .x w Ž . Ž .xproduct u x yu x P g p yg p .2 1 2 1

Consider a lottery X with a finite number of possible outcomes 0Fx F PPP1
Ž . Ž .Fx . Let F x s0 and 1 reduces ton 0

n

RDEU X s g(F x y g(F x u x ,Ž . Ž . Ž . Ž . Ž . Ž .Ý i iy1 i
is1

w . w Ž .which is precisely the sum of the measures of the rectangles 0, x = F x ,i iy1
Ž ..F x . The union of these rectangles constitutes the epigraph of F truncated fromi

above at the level ps1.
Following this interpretation, a natural extension of the rank-dependent model

Žis to represent the preference relation K over lotteries by a general not
.necessarily product measure of the truncated epigraphs. This idea was pursued in

Ž . Ž . Ž .Segal 1989 , Green and Jullien 1988 and Chew and Epstein 1989 but the
statements of their representation theorems were incorrect, as shown by the

Ž . Ž .counterexamples in Wakker 1993 . Later on, Wakker 1993a gave a thorough
discussion of the difficulties related to the measure representation approach and

Ž . Ž .correct proofs were offered in Segal 1993 , Chew et al. 1993 and Chateauneuf
Ž . Ž .1996: first version 1990 . Recently, Chew and Wakker 1996 generalized the
representation from lotteries to acts.

The simple idea of a measure representation may be applied for preferences
Ž .over many relevant classes of functions. See Chateauneuf 1985 and Lehrer

Ž .1991 for a very general approach, closely related to the theory of qualitative
Ž .probability. Among the possible examples, we mention: i cumulative distribution

Ž .functions or, alternatively, probability densities; ii cumulated cash flows or,
Ž .alternatively, gainrloss processes; iii income distribution functions on the real

Ž .line or alternatively, concentration curves; and iv investment or, alternatively,
consumption profiles for a single good over time.

Most of these examples, however, refer to functions that are not necessarily
increasing and therefore require versions of the measure representation theorem
different from the ones available in the literature. So far, instead, the measure
representation approach has been mainly concerned with preferences over lotteries
represented by their cumulative distribution functions, i.e. with bounded, increas-
ing and right-continuous functions.
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The main purpose of this paper is to prove a similar result for a more general
class of functions as one of the many possible ‘variations’ on the theme of the
measure representation approach.

The paper is organized as follows. The first variation is a theorem for the
measure representation of preferences over increasing functions. The second
variation presents some technical comments on this result and prepares for the
third and last variation, which shows how to modify the proof given for increasing
functions and get a measure representation theorem for preferences over functions
of bounded variation.

2. Variation 1: Increasing functions

� 4We begin with some notation. Let FFs F,G, . . . be the set of all increasing
w . w .and right-continuous functions defined on 0,1 , taking values in 0,1 , and

different from the constant zero function. Given a function F in FF, we denote by
x, xX, . . . the elements of its domain and by y, yX, . . . the elements of its image.

Ž .Suppose that there is a preference relation i.e., a complete weak order K on
FF satisfying the following three properties:

Continuity. The preference relation K is continuous in the topology of the weak
convergence. That is, for any pair of functions F and G, suppose that the

� 4 Ž Ž . Ž .sequence of functions F weakly converges to F i.e., F x converges to F xn n
.at each continuity point x of F : then F KG for all n implies FKG and GKFn n

for all n implies GKF.

Strict monotonicity. The preference relation K is strictly monotone with respect to
the pointwise order. That is, for any pair of functions F and G, suppose that
Ž . Ž . Ž . Ž .F x GG x for all x and there exists at least some x such that F x )G x ;1 1 1

then F%G, where % is defined as usual.

Ž .Independence w.r.t. the graph . The preference relation K is independent of
w .common pieces of the function graphs. That is, for any segment S in 0,1 and any

X X Ž . Ž . XŽ . XŽ .quadruple F, F , G and G , suppose that F x sG x and F x sG x on S
Ž . XŽ . Ž . XŽ . w .and that F x sF x and G x sG x on 0,1 _S; then FKG if and only if

FX
KGX.

Recall that a finitely additive and extended positive real-valued function m on
an algebra AA of subsets of a set X is called a measure on X. A measure m on X
is said to be continuous from aboÕe if, for all sequences of sets A in AA such thatn

Ž .A xB, m A x0. Whenever AA is a s-algebra, a measure m on X is countablyn n
Ž .additive if and only if it is continuous from above. A countably additive measure

m on X is said to be s-finite if there exists a sequence of sets A in AA such thatn
Ž .m A -` for all n and D A sX.n n n
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We will prove a measure representation theorem for K . Intuitively, its content
w . w .is the following. Denote by R the rectangle 0,1 = 0,1 . The graph of each

Ž .function F in FF is contained in R and uniquely defines its truncated hypograph
ˆ �Ž . Ž .4Fs x, y gR : y-F x . We can put the set of functions FF in a one-to-one

ˆrelation with the set FF of their truncated hypographs, so that each function F in
ˆ ˆFF corresponds to its hypograph F in FF. Continuity, strict monotonicity, and

Ž .independence w.r.t. the graph will be shown to imply the existence of a measure
ˆ ˆm on R such that FKG if and only if F is bigger than G.

If we knew m to be finite, this statement would be formalized as

ˆ ˆFKG if and only if m F Gm G . 2Ž .Ž . Ž .
However, it turns out that we can only prove that m is s-finite. Therefore. we

Ž .need a stronger formulation that implies 2 when m is finite. Thus, we will show
Ž .that continuity, strict monotonicity, and independence with respect to the graph

Ž .imply the existence of a countably additive and s-finite measure m on R such
ˆ ˆ ˆ ˆŽ . Ž .that FKG if and only if m F_G Gm G_F .

Ž . Ž .Alternatively, Segal 1993 suggests the following equivalent formulation. For
w . z � Ž . 4any zg 0,1 , let FF s FgFF : F x Gz for x)1yz be a subset of functions

ˆ z Ž . w .in FF and FF the set of their truncated hypographs. Let Zs 1yz,1 = 0, z .
z zŽ . Ž .Denote by m the measure on R defined by m A sm A_Z . For all z,

Ž .continuity, strict monotonicity, and independence w.r.t. the graph imply the
Ž . z zexistence of a countably additive and finite measure m on R such that m

represents K on FF z; that is, for every F and G in FF z, FKG if and only if
z ˆ z ˆŽ . Ž .m F Gm G .
Some more definitions are necessary before we state the theorem. A curÕe C in

1 w .R is the image of a continuous bijective function f : 0,1 ™R; note that a curve
Ž .does not necessarily belong to FF. A curve C in R is increasing if x , y gC1 1

�Ž .implies that the intersection between C and the northwest region x , y gR : x2 2 2
4 w x w .-x and y )y is empty. A rectangle is any set x , x = y , y in R such1 2 1 1 2 1 2

that x -x and y -y ; note that a rectangle is the product of two intervals1 2 1 2

closed on the left and open on the right and that by definition it has nonempty
interior.

The following characterization theorem is very similar to Theorem 1 in Segal
Ž .1993 , but our setting has some advantages that will be discussed in the second

Ž .variation. The proof is in three parts. For the first two easier parts, we follow
Ž .Segal 1993 . For the harder proof of the third part, we exploit an argument similar

Ž . Ž .to the one put forth in Green and Jullien 1988 and Chew and Epstein 1989 that
has also been used in the literature on rank-dependent models.

1 The standard definition of curve does not require bijectivity. We impose it because, by Netto’s
theorem, this rules out the possibility of space-filling curves. See for instance Theorem 1.3 in Sagan
Ž .1994 .
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Theorem 1. The following three statements are equiÕalent:
1. A preference relation K on FF satisfies continuity, strict monotonicity and

independence w.r.t. the graph.
Ž .2. There exists a countably additiÕe and s-finite measure m on R such that, for

all z,
Ž . z za the preference relation induced by K on FF is represented by m ;
Ž . zb m is countably additiÕe and finite;
Ž .c m assigns strictly positiÕe measure to any rectangle in R;
Ž .d m assigns zero measure to any increasing curÕe in R.

Ž . Ž .3. There exists a measure m on R as in Proposition 2 satisfying c and d and
ˆ ˆ ˆ ˆŽ . Ž .such that FKG if and only if m F_G Gm G_F .

Proof. We prove that Proposition 2 implies Proposition 3, which in turn implies
Proposition 1, which in turn implies Proposition 2.

Proposition 2 implies Proposition 3. Let F and G be in FF. By definition of FF,
Ž . Ž .there exists ´)0 such that lim F x )´ and lim G x )´ . Therefore, byx ≠1 x ≠1

X � Ž . Ž .4 Xright-continuity, there exists ´ )0 such that min F x , G x )0 for xG1y´ .
� X4 zFor zsmin ´ , ´ , then, F and G are in FF and thus

z ˆ z ˆ ˆ ˆFKG if and only if m F Gm G if and only if m F_Z Gm G_Z .Ž . Ž . Ž . Ž .
ˆ ˆ ˆ ˆ ˆŽ . wŽ . xSince F_Zs F_G j FlG _Z , this implies by additivity of m that FKG

ˆ ˆ ˆ ˆŽ . Ž .if and only if m F_G G G_F . I

Ž .Proposition 3 implies Proposition 1. Strict monotonicity follows from c and
independence w.r.t. the graph from the measure representation. It remains to prove
that K is continuous in the topology of the weak convergence. It suffices to show

ˆ ˆŽ . Ž .that, for all sequences F weakly converging to F, m F converges to m F .n n
ˆ ˆ ˆ ˆŽ . Ž .Let S s F jF _ F lF be the symmetric difference between the hy-n n n

` � 4pographs of F and F . Let T sD S . Note that T is a decreasing sequencen n ksn k n
ˆ ˆ< Ž . Ž . < Ž . Ž .of sets: let Ts lim T sF T . Since m F ym F Fm S Fm T , we onlyn n n n n n n

Ž . Ž .need to show that lim m T s0. This will follow if we prove that m T s0.n™` n
� 4 2In fact, since m is countably additive and T is a decreasing sequence of sets,n

Ž . Ž .continuity from above of m implies that lim m T sm T ; see for instancen n
Ž .Theorem 10.2.ii in Billingsley 1986 .

Ž . )Thus, it remains to show that m T s0. Let F be the northwest boundary of
ˆ ) ˆ X X X X ˆ�Ž . Ž . Ž . 4F: that is, F s x, y gcl F : x -x and y )y implies x , y fF . Since

) Ž ) . )F is an increasing curve, m F s0. We show that T;F and therefore
Ž .m T s0.

) Ž X X.Suppose by contradiction that ToF . Then there exists some point x , y in
)

X Ž X.T which is not contained in F . There are two possible cases: either y )F x or

2 Ž .By the s-finiteness of m, it also holds that m T -`.1
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X Ž . Ž X X. `
Xy - lim F x . Moreover, since x , y is in TsF T sF D S sx ≠ x n n n ksn k

Žlim sup S , there exists a subsequence which we index by n as the originalk
. � 4 Ž X X .sequence F such that x , y gS .n n

X X X X ˆ X X ˆŽ . Ž . Ž .If y )F x , then x , y fF. Thus, by definition of S , x , y gF andn n
Ž . X

Xlim F x )y for all n. Since functions in FF are increasing and right-con-x x x n
Ž . w Ž X . X x X Ž .tinuous, there exists ´)0 such that F x - F x qy r2-y -F x , for alln

w X X . w X X .xg x , x q´ . As the interval x , x q´ must contain a continuity point of F,
F cannot be weakly converging to F.n

X X X ˆ X X ˆŽ . Ž . Ž .XSimilarly, if y - lim F x , then x , y gF; thus x , y fF ; andx ≠ x n
Ž . X Ž . X

Xlim F x Fy for all n. Then there exists ´)0 such that F x Fy -x ≠ x n n
w Ž . X x Ž . Ž X X x Ž X

Xlim F x qy r2-F x , for all xg x y´ , x . Again, the interval x yx ≠ x
X x´ , x must contain a continuity point of F and F cannot be weakly converging ton

F. I

Proposition 1 implies Proposition 2. This part of the proof is organized in four
steps that are conceptually simple, but somewhat cumbersome due to the number
of definitions involved. An overview of the proof is the following. First, we prove
the existence of a real-valued functional V defined on a subset FF of simpler

Ž . Ž .functions in FF such that V F GV G if and only if FKG for all F and G in
FF . Second we show that for any z this functional induces a representing measurer

m on the algebra AA z generated by the hypographs of the functions in FF z sFF lr r r
z Ž .FF and that m is s-finite and satisfies c of Theorem 1; that is, for any z a

measure representation holds for FF z. Third, we check that m extends to ther

s-algebra generated by the hypographs of all functions in FF and that this
extension is s-additive. Fourth, we prove that for any z this extension provides a

z Ž .measure representation for all functions in FF and satisfies d of Theorem 1.

Step 1. Existence of a representing functional on FF .r
w .A function F in FF is said to be simple if its image is a finite subset of 0,1 .

� 4Note that the image of a simple function in FF cannot be the singleton 0 . Using
� 4the indicator function 1 P , a simple function can be written as a finite sum

Ž . n Ž . �w .4F x sÝ F x P1 x , x with 0Fx Fx F PPP Fx F1'x withis1 i i iq1 1 2 n nq1

at least one inequality holding strictly. The ranked n-tuple of points x , x , . . . , x1 2 n

used in this representation is called a nth dimensional basis for F and is denoted
by x. A simple function admits an infinite number of bases; however, there always
exists a smallest one that we call its minimal basis.

We say that a simple function F in FF is simpler if its minimal basis contains
only rational numbers of the type kr2 n for some ns2,3, . . . and ks1, . . . ,2 n y1.
Let FF be the set of all simpler functions in FF and FF n be the subset of allr r

simpler functions such that their minimal basis contains only rational numbers of
n n Ž ny1 n. n mthe type kr2 for ks1, . . . ,2 y1 and F 2 r2 )0. Note that FF ;FFr r

for all n-m and that FF s lim FF n sD FF n.r n r n r
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Consider a class FF n and an arbitrary element F in FF n. For each ks1, . . . ,2 n
r r

Ž n. ny1, let y sF kr2 and put each function F in FF in a one-to-one relationk r
Ž n . nwith the 2 y1 -tuple y which lists its image points 0Fy Fy F PPP Fy1 2 2 y1

Ž-1 possibly with repetitions and with at least one weak inequality holding
. n Ž n .strictly . Denote by I the set of these rank-ordered 2 y1 -tuples of realsr

n Ž n .representing the functions in FF . Note that the two 2 y1 -tuples consistingr

respectively only of 0’s and 1’s do not belong to I n. These would represent ther

extreme alternatiÕes which are respectively inferior and superior to any element in
I n; thus I n contains no extreme alternatives.r r

The restriction of the preference relation K to FF n defines another preferencer
n Ž .relation K on I that inherits the equivalent of the properties of K . First, Kn r n

is a complete weak order. Second, it is continuous with respect to the product
topology on I n. Third, K is strictly increasing in the following sense: writer n

n w .y a for y in I with the k th coordinate y replaced by a in 0,1 ; then a)byk r k
w .implies y a%y b for all a and b in 0,1 . Fourth, K satisfies coordinateyk yk n

independence: y aK yX
a if and only if y bK yX

b.yk n yk yk n yk
Ž . Ž n .By Theorems 3.2 and 3.3 in Wakker 1993a , then, there exist 2 y1 strictly

n w . Ž nincreasing and continuous real-valued functions V : 0,1 ™R for ks1,2, . . . ,2k
. nŽ . nŽ . ny1 such that V y sÝ V y represents K on I . Moreover, the functionsk k k n r

� k . � n4V are jointly cardinal; that is, they can be replaced by W if and only if theren k

exist real a , . . . ,a ny 1 and a positive b such that W n sa qb V n for all k.1 2 k k k

Through the one-to-one relation between FF n and I n, the functional V n : I n ™Rr r r

also represents the preference relation K on FF n. It remains to prove that therer

exists a functional representing K on FF . Since FF sD FF n, this will ber r n r

obtained by ‘pasting’ together the representations for each FF n
r

n Ž .Each set I has more than one representing functional V for K . However,r n n

since FF n ;FF m for n-m and K agrees with K on FF n, we can use ther r n m r
� n4degrees of freedom provided by joint cardinality to normalize the functions Vk

n Ž . nŽ .for all ns2,3, . . . and ks1, . . . ,2 y1 so that: i V 0 s0, and hencek
mŽ . nŽ . Ž .V 0 sV 0 for m)n; and ii if m)n,

2 ny1 2 my1
n m wV y s V y for all yg 0,1Ž . Ž . .Ý Ýk k

ks1 ks1

n Ž n . mŽ . nŽ .so that whenever y is an 2 y1 -tuple with y sy for all k, V y sV y .k
n � n n Ž n . n4 w .Let w be the real-valued functional on 0,1r2 ,2r2 , . . . , 2 y1 r2 = 0,1

defined by
kk

n n nw 0, y s0 and w , y s V yŽ . Ž .Ý sž /2n ss1

for all ns2,3, . . . and ks1,2, . . . ,2 n y1. Note that
n n2 y1 2 y1k ky1

n n n nw , y yw , y s V y sV y 3Ž . Ž . Ž .Ý Ýk k k kn nž / ž /2 2ks1 ks1
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represents K on FF n. Moreover, by the above normalization, w n is positive withn r
nŽ . � n n Ž n . n4w x,0 s0 for all n and all x in 0,1r2 ,2r2 , . . . , 2 y1 r2 .
Denote by Q the set of rational numbers of the type kr2 n for some ns2,3, . . .

and ks1, . . . 2 n y1. After the above normalization,

k k
n mw , y sw , y ,n nž / ž /2 2

for all m)n and thus, applying the definition of w n for all n, we obtain a
w . Ž .positive real-valued functional w defined on Q= 0,1 such that: i the form

Ž . Ž . Ž . Ž .given in 3 represents K on FF ; ii w x, 0 s0 for all x in Q; and iiir
Ž . w .w 0, y s0 for all y in 0,1 . I

Step 2. A measure representation exists for FF z.r

Given z, we wish to show that there exists a representing measure m defined
on the algebra AA z generated by the hypographs of the simpler functions in FF z.r r

Observe that the hypograph of a simple function is the union of a finite number of
w X. w X.rectangles. For a simpler function, these rectangles are of the form x, x = y, y

Ž n1. X Ž n2 .with xs k r2 and x s k r2 . Without loss of generality, we take n sn1 2 1 2

sn. These rectangles will be called eÕenly rational. Denote by AA the algebrar

generated by all evenly rational rectangles and by AA z the algebra generated by ther

differences between all evenly rational rectangles and the southeast corner Zs
Ž . w . z zz,1 = 0, z . Note that AA s lim AA sD AA .r z ≠1 r z r

The basic tool to construct a measure m on AA z is the positive functional w onr
w .Q= 0,1 . It satisfies the following property, known as total strict positivity of

order 2 or strict supermodularity:

w xX , yX yw x , yX yw xX , y qw x , y )0, 4Ž . Ž . Ž . Ž . Ž .
X X w . Ž n. Ž n. Xfor all x-x in Q and y-y in 0,1 . In fact, for xs k r2 - k r2 sx ,1 2

X X X X
w x , y yw x , y y w x , y yw x , yŽ . Ž . Ž . Ž .

k k k k2 1 2 1
X Xn n n ns V y y V y y V y y V yŽ . Ž . Ž . Ž .Ý Ý Ý Ýs s s s s s s s

ss1 ss1 ss1 ss1

k k2 2
Xn ns V y y V yŽ . Ž .Ý Ýs s s s

ssk q1 ssk q11 1

k2
Xn ns V y yV y )0,Ž . Ž .Ý s s s s

ssk q11

where the inequality follows from strict increasingness of V n.
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Ž . w . w . zFor every evenly rational rectangle 0, x = 0, y in AA , define its measure byr

z w wn x , x = y , y sw x , y. . Ž .Ž .1 2 1 2 2 2

yw x , y yw x , y qw x , y . 5Ž . Ž . Ž . Ž .1 2 2 1 1 1

This gives a finite measure n on AA z characterized by the two-dimensionalz r
Ž . zŽw . w .. zdistribution function w x, y sn 0, x = 0, y . Moreover, for any z-w, AA ;r

w zŽ . wŽ . zAA and n A sn A if A is in AA . Therefore, applying the definition of nr z

for all z, we obtain a measure m on AA .r
Ž .By 4 , m is strictly positive on any rectangle in R. Moreover, since for any

Ž . � 4 Žw x w ..increasing countable sequence z converging to 1 we have m 0, z = z ,1n n n

-`, the measure m is also s-finite.
It remains to prove that m z represents K on FF z for any z. This follows easilyr

ˆ z zbecause the hypograph F of each function F in FF is an element of AA and ther r
ˆŽ . Ž .representing functional given in 3 computes m F . Iz

Step 3. Extension of m to a countably additiÕe measure on a s-algebra.
The extension of m from AA to the s-algebra generated by AA is a standardr r

Ž .procedure: see for instance Billingsley 1986 , Theorem 12.5. It is based on the
Caratheodory extension theorem, that we state in a version especially convenient

Ž .for our setting; see for instance Aliprantis and Border 1994 , Theorem 8.40.

Lemma 2. Let m be a measure continuous from aboÕe on an algebra AA of subsets
of R. Then m extends to a countably additiÕe measure on the s-algebra generated
by AA. MoreoÕer, if m is s-finite on AA, this extension is unique.

Ž .Denote by AA the algebra generated by all not necessarily evenly rational
rectangles. The s-algebra generated by AA and AA is the same, namely the Borelr

s-algebra BB for R. By the first part of Lemma 2, proving that there exists a
countably additive extension of m to BB requires only to show that m is

Ž .continuous from above or, more simply, that w is continuous separately in each
argument.

Ž . w .Continuity of w x, y with respect to yg 0,1 follows from continuity of
nŽ .V y for all n and k. Continuity with respect to xgQ is obvious for ys0k

Ž .because w x, y s0 for all x and follows by continuity of K if y)0. In fact,
Ž .suppose by contradiction that x converges to x but w x , y does not convergen n

Ž .to w x, y . Without loss of generality, assume that there exists z)x such that
�w .4 �w .4max x -z. Define F syP1 x ,1 and FsyP1 x,1 . Then F weaklyn n n n n

z ˆ z ˆŽ . Ž . Ž . Ž .converges to F, but m F sw z, y yw x , y does not converge to m F sn n
Ž . Ž . � 4 z 2 zw z, y yw x, y . Since F and F are in FF and m represents K on FF , thisn r r

would contradict continuity of K .
The following implication of the continuity of w will be useful. A subset

w X . � 4 � 4 w X.x, x = y in R is called a horizontal segment; similarly, a subset x = y, y
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Ž .in R is called a Õertical segment. The from now, extended measure m assigns
zero measure to any horizontal or vertical segment. For instance, the measure of

w X . � 4the horizontal segment x, x = y is
X X Xw w wm x , x =y s lim m x , x = y , y. . .Ž . Ž .

Xy x y

X X X Xs lim w x , y yw x , y y w x , y yw x , y s0Ž . Ž . Ž . Ž .
Xy x y

and a similar derivation holds for vertical segments. I

Step 4. For all z, a measure representation exists for FF z.
Given z, we wish to show that the measure m z represents K on FF z. First, we

ˆ zcheck that FF is contained in BB. Note that the hypographs of all continuous
Ž z . zfunction even those not in FF are contained in BB. Since each function F in FF

is increasing, it has at most a countable number of discontinuities. Therefore its
ˆhypograph F is the union of at most a countable number of hypographs of

ˆcontinuous functions; hence, F belongs to BB.
z z ŽTake now F in FF _FF . Observe that F is the limit in the topology of ther

. � 4 zweak convergence of some sequence F in FF . Therefore, by continuity of K ,n r
ˆŽ .it should be assigned the measure lim m F for the measure representation ton z n

hold. Hence, we need to show that

z zˆ ˆm F slim m F , 6Ž .Ž . Ž .n
n

for any sequence F converging to F.n
Ž . Ž .Given any such sequence, note that F x may fail to converge at F x only inn

Ž . � 4a possibly empty countable set Ds x , x , . . . of discontinuity points of F. If1 2
ˆ ˆ Ž .D is empty, then Fs lim F and 6 holds by continuity of m. If D is not empty,n n

� 4 w .for any x in D let Õ the vertical segment x = 0,1 . Thenk k k

z z z zˆ ˆ< <m F ylim m F Fm j Õ s m Õ s0Ž . Ž .Ž . Ž . Ýn k k k
n k

Ž .and again 6 follows.
Ž .There remains only to prove that m satisfies d of Theorem 1. First, note that

any increasing curve C is in BB because it can always be identified with the
northwest boundary of an appropriate function F in FF. Next, suppose by

Ž .contradiction that there exists an increasing curve C such that m C )0. Given F
Ž . w .in FF corresponding to C, choose a rectangle Zs z,1 = 0, z such that ZlCs

� 4 ŽB and let F be a sequence in FF converging from above to F in the topologyn
ˆ ˆ.of the weak convergence and such that C;F for all n. Since ClF contains atn

most vertical segments that have zero measure, we can assume without loss of
ˆ z ˆ ˆ z z ˆŽ . Ž . Žgenerality that ClFsB. Then we have that m F _F Gm C )0sm F_n

ˆ z ˆ z ˆ ˆ z ˆ ˆn. Ž . Ž . Ž .F . But this implies that m F sm F _F qm FlF cannot converge ton n n
z ˆ z ˆ ˆ z ˆ ˆŽ . Ž . Ž .m F sm F_F qm FlF , which is impossible. In n



( )M. LiCalzirJournal of Mathematical Economics 29 1998 255–269 265

It is worth pausing on the main difference between our proof of Theorem 1 and
Ž .the proofs of similar results given in Green and Jullien 1988 and Chew and

Ž . rEpstein 1989 . Our construction of the representing functional on FF in Step 1
partitions the x-axis instead of the y-axis. This simple trick, analogous to the
intuition that makes Lebesgue integration more general than Riemann integration,
will be crucial during our third variation.

We close this variation making two observations. First, the representing mea-
sure m is unique up to a ratio scale; that is, up to a positive scale factor. Second,

Ž .as shown by the counterexamples in Wakker 1993 , m may not be absolutely
continuous with respect to the Lebesgue measure l on R and, conversely, l may
not be absolutely continuous with respect to m.

3. Variation 2: Technical remarks

Theorem 1 may be generalized in many directions. This section considers and
comments on some of these possibilities. Recall that the functions in FF satisfy the

Ž . Ž . Ž .following four properties: they are i increasing; ii right-continuous; iii defined
w . w . Ž .on 0,1 and taking values in 0,1 ; and iv different from the constant zero

Ž .function. Leaving for the next section a relaxation of i , let us examine here how
Ž . Ž .ii – iv might be weakened.

We begin with right-continuity. Intuitively, its purpose is to exclude the
ˆ ˆpossibility of two functions F%G in FF with their hypographs F and G

Ž .coinciding everywhere except for an at most countable set of vertical segments.
Ž .In this case, the measure m could not represent F%G because of property d .

Obviously, we might substitute left-continuity for right-continuity.
More generally, we could start with a set FF

X of functions containing FF and
define an equivalence relation ; on FF

X such that F;G if and only if
ˆ ˆŽ . Ž .cl FF scl G . Then each right-continuous function in FF is the representative

Ž . Xelement of a distinct equivalence class. Assuming that K on FF is consistent
with ; , Theorem 1 would yield a representing measure for K on FF

Xr; . All in
Ž .all, however, right-continuity or left-continuity appear the most reasonable

assumptions.
Ž . Ž .Properties iii and iv , instead, have the purpose of excluding front FF the two

extreme alternatives, namely the constant zero and one functions. This is necessary
Ž .in order to apply Theorem 3.3 from Wakker 1993a during Step 1 of the proof

that Proposition 1 implies Proposition 2. The two properties could be removed if
the second-order Archimedean axiom for K described in Section 3.3 of Wakker
Ž .1993a would be added. However, as we find this axiom difficult to interpret, we
prefer to avoid it and impose some restrictions on the domain and the range of the
functions in FF.

These restrictions must be such that FF contains no extreme alternatives.
Among the many possibilities, our choice to set the domain and the range both
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w . 3equal to 0,1 is only a convenient normalization. In fact, we could substitute any
Ž . w . w . 2pair of clopen and bounded from below intervals a ,b = a ,b in R and, in1 1 2 2

particular, a s0 and b sq` for is1,2. This gives the class of positivei i
Ž . qpossibly unbounded real-valued functions defined on R . As these are often used
to model cumulated cash flows, for instance, Theorem 1 may be applied as it is to

Ž .yield a measure representation for positive and increasing cumulated cash flows.
All the measure representation theorems so far presented in the literature are

Ž .inspired by the rank-dependent model and refer to truncated epigraphs. Theorem
Ž .1, instead, is based on truncated hypographs. An obvious comment is that this is

a consequence of the direction in which strict monotonicity holds. More interest-
ingly, however, there is a simple way to turn Theorem 1 into a representation
result based on epigraphs.

Ž .For any increasing function F in FF, define its generalized inverse w by
Ž . � Ž . 4w y s inf x : F x )y . Let F be the set of all generalized inverses of FF and

let K
X be the preference relation on F induced by K . Note that the strict

monotonicity of K for FF is increasing with respect to the pointwise order on FF,
while the strict monotonicity of K

X for F is decreasing. Continuity and indepen-
dence with respect to the graph, instead, carry over naturally without modifica-
tions. Therefore, the measure representing K on FF via hypographs also repre-
sents K

X on F via epigraphs and the two approaches are equivalent.
Ž .Our last comment concerns the possibility to get another more natural

measure representation for functions taking both positive and negative values. We
present one example that should suffice to clarify the issue. Let FF be the set of all

w . w .increasing and right-continuous functions defined on 0,1 , taking values in y1,1
Ž .and different from the constant function F x sy1. Suppose that there exists a

preference relation K on FF satisfying continuity, strict monotonicity and inde-
w . w .pendence w.r.t. the graph. Then there exists a measure m on Rs 0,1 = y1,1

that represents K .
w . zFix some z 0,1 and define m on R_Z as above. Decompose R into the

q w . w . y w . w .union of the two disjoint sets R s 0,1 = 0,1 and R s 0,1 = y1,0 . Define
a finite signed measure n z on R by

n z A sm z AlRq ym z Ry_A ,Ž . Ž . Ž .
for any m-measurable set A. Since m z is finite, we have

z ˆ z ˆ q z ˆ ym F sm FlR qm FlRŽ . Ž . Ž .
z ˆ q z y z y ˆy z ˆ z ysm FlR qm R ym R _F sn F qm R .Ž . Ž .Ž . Ž .Ž .

zŽ y.Since m R is constant, we can represent K on R_Z by the signed measure
n z: that is, by the difference between the measure of the hypograph of the positive

q � 4 Ž .part F smax F,0 truncated between 0 and 1 and the measure of the epigraph
y � 4 Ž .of the negative part F smin F,0 truncated between y1 and 0 .

3 w . w .It suffices to map continuously 0,1 into a ,b .i i
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4. Variation 3: Functions of bounded variation

This section shows how the proof of Theorem 1 can be generalized to obtain a
measure representation for functions of bounded variation. The crucial ingredient
is having constructed the representing functional on FF r in Step 1 by partitioning
the x-axis instead of the y-axis. We will point out during the proof the key point
where this is used.

Unless explicitly mentioned, we keep the same notation as above. Let FF be
w .the set of all right-continuous functions of bounded variation F defined on 0,1 ,

w . Ž .taking values in 0,1 , and such that lim F x )0. Assume that K is ax ≠1

preference relation on FF.
The theorem that we present in this section is the analog of Theorem 1, except
Ž .for d which requires the following definition. A curve C in R is not backward

bending if its intersection with any vertical segment in R is either a singleton or a
vertical segment. Note that any increasing curve is also not backward bending.

Theorem 3. The following three statements are equiÕalent:
1. A preference relation K on FF satisfies continuity, strict monotonicity and

independence w.r.t. the graph.
Ž .2. There exists a countably additiÕe and s-finite measure m on R such that, for

all z,
Ž . z za the preference relation induced by K on FF is represented by m ;
Ž . zb m is countably additiÕe and finite;
Ž .c m assigns strictly positiÕe measure to any rectangle in R;
Ž .d m assigns zero measure to any curÕe in R which is not backward
bending.

Ž . Ž .3. There exists a measure m on R as in Proposition 2 satisfying c and d and
ˆ ˆ ˆ ˆŽ . Ž .such that FKG if and only if m F_G Gm G_F .

Proof. Again, we prove that Proposition 2 implies Proposition 3. which in turn
implies Proposition 1, which in turn implies Proposition 2. The proof that
Proposition 2 implies Proposition 3 carries over identically from Theorem 1 and
thus we omit it.

Proposition 3 implies Proposition 1. Assume that K is continuous in the topology
of pointwise convergence and proceed as in the proof of Theorem 1 until when it

) ˆ )Ž .remains to show that m T s0. Let F be the upper boundary of F; that is, F
ˆ X XŽ . Ž . Ž .is the set of all pairs x, y in cl F such that: i either x -x and y )y implies

X X X X X X ˆ )Ž . 4 Ž . Ž . 4x , y fF , or ii x )x and y )y implies x , y fF . Then F is not a
Ž ) . )backward bending curve and m F s0. We show that T_F is a subset of a

Ž . Ž ) .possibly empty countable union of vertical segments, so that m T_F s0.
Ž . Ž ) . Ž ) .Then m T sm T_F qm TlF s0.

) Ž .Suppose that T_F is not empty otherwise the claim follows immediately .
Ž X X . )Let x , y be a point in T which is not contained in F . There are two possible
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Ž . X � Ž X. Ž .4 Ž . X � Ž X. Ž .4X Xcases: i y )max F x , lim F x ; or ii y -min F x , lim F x .x ≠ x x ≠ x
� 4 Ž X X.Denote by F the subsequence for which x , y gS .n n

X X X X ˆ X X ˆ� Ž . Ž .4 Ž . Ž .XIf y )max F x , lim F x , then x , y fF. Thus, x , y gF andx ≠ x n
Ž X. X Ž X. X Ž X. XF x )y for all n. Then F x -y -F x for all n implies that x must be an n

discontinuity point of F.
X X X X ˆ X X� Ž . Ž .4 Ž . Ž .XSimilarly, if y -min F x , lim F x , then x , y gF. Thus, x , y fx ≠ x

ˆ X X X X X XŽ . Ž . Ž .F and F x Fy for all n. Then F x Fy -F x for all n implies that xn n n

must be a discontinuity point of F.
Recall that each function of bounded variation can be written as the difference

of an increasing function and a decreasing function and thus it has at most a
countable number of discontinuities. Denote by D the set of discontinuity points

Ž X X. )of F. We have just shown that any point x , y contained in T_F must be such
that xX gD. Therefore, if we let Õ denote the vertical segment corresponding tok

each x in D, it follows that T_F ) ;D Õ . I.k k k

Proposition 1 implies Proposition 2. Proceed as in the proof of Theorem 1 up until
n Ž n .the definition of I . Note that the 2 y1 -tuple y which is to be put in ar

one-to-one relation with each function F in FF n does not necessarily satisfyr

0Fy Fy F PPP y n y1-1 because F may not be increasing. Instead, we can1 2 2
w . n Žonly say that y g 0,1 for all i. Therefore, let I the set of all not necessarilyi r

. Ž n . nrank-ordered 2 y1 -tuples of reals representing the functions in FF . Again. ther

restriction of K to FF n defines a preference relation K on I n that inherits ther n r

properties of K .
Thus, instead of Wakker’s, we can call upon the additive utility theorems of

Ž . Ž .Debreu 1960 and Gorman 1968 – here is the key point – to deduce the
Ž n . nexistence of 2 y1 strictly increasing and continuous real-valued functions Vk

nŽ . nŽ . nsuch that V y sÝ V y represent K on I . The rest of the proof goes onn k k n r
ˆ wunchanged until Step 4, where we need to check that FF is contained in BB. This

follows because each function in FF is of bounded variation and thus has at most a
countable number of discontinuities. Now, we can resume the argument in the

Ž .proof of Theorem 1 up until to when we need to show that d holds. Note that any
curve C which is not backward bending is in BB because it can be identified with
the upper boundary of some appropriate function F in FF. The rest of the
argument goes through unchanged. I

We close this paper by noting a corollary of Theorem 3 that relies on some of
the technical remarks in our second variation. For a-0, let FF be the set of all

w .real-valued and right-continuous functions F of bounded variation on a,q`

ˆqŽ . Ž . Žsuch that F q` s lim F x )a. For F in FF, denote by F the trun-x ™q`
q ˆy y. Ž .cated hypograph of F and by F the truncated epigraph of F . Finally, given

� Ž . Ž .4 zF and G in FF, let z-min F q` , G q` and say that F and G are in FF .

Corollary 4. The following two statements are equiÕalent:
1. A preference relation K on FF satisfies continuity, strict monotonicity and

independence w.r.t. the graph.
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Ž .2. There exists a countably additiÕe and s-finite measure m on R that satisfies
Ž . Ž . zc and d of Theorem 3 and, for all functions F, G in FF , defines another
( ) zcountably additiÕe and finite measure m such that

z ˆq z ˆy z ˆq z ˆyFKG if and only if m F ym F Gm G ym G .Ž . Ž . Ž . Ž .
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