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Summary. The decision-theoretic literature has developed very few techniques
to bound the expected utility of a random variable when only simple statistics
like its median or mode or mean are known. One reason for this lack of results
is that we are missing a convenient way to link probability theory and expected
utility. This paper is written to demonstrate a general (and genuinely probabilistic)
technique to obtain upper and lower bounds for the expected utility of a lottery.
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1 Introduction

The theoretical importance of the expected utility model in the study of behavior
under risk is unquestioned. Its practical use, however, is hampered by many
difficulties. One of these is that both the agent’s utility functionU and the
cumulative distribution functionF of the random variableX must be available
in order to computeEU (X). In reality, one has often to settle for much less since
eitherU or F may be imperfectly known.

This leads to the problem of estimating expected utilities when the relevant
information is incomplete. For example, suppose that the agent is known to be
risk averse but that her (increasing) utility functionU is not fully specified. If
the expected valueE(X) of the random variableX exists, Jensen’s inequality
implies that her expected utilityEU (X) for X is bounded above by the utility of
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E(X). This is sufficient to conclude that any sure outcomex > E(X) is preferred
to X.

More generally, however, the decision-theoretic literature has largely been
silent on the problem of estimating bounds for the expected utility when only
little information about eitherX or U is known. Although there is a significant
area of probability theory specializing in techniques to establish inequalities,
these have not been brought to bear on the problem.

To my knowledge, the most notable exceptions are the following. Vickson
(1977) studies the case where the utility functionU (x) is known only at a number
of points. Willassen (1981, respectively, 1990) applies the general theory of
Tchebycheff bounds to derive upper and lower bounds forEU (X) when the first
two (respectively, three) moments ofX are known and the first three (respectively,
four) derivatives ofU alternate in sign. Birge and Teboulle (1989) assumes
convexity ofU and applies techniques based on the knowledge of the moments
of X.

One reason for this shortage of results is that we are missing a convenient
way to link probability theory and expected utility. The purpose of this paper is
to demonstrate a general (and genuinely probabilistic) technique to derive upper
and lower bounds for the expected utility of a random variable. This technique
may accomodate different assumptions about the knowledge available onU and
F . For example, Theorem 12 below provides a lower bound for the expected
utility of a risk averse agent; Theorems 3, 9, and 10, instead, deal with theS-
shaped utility functions advocated by Kahneman and Tversky (1979)’s prospect
theory.

To describe our technique, let us agree to writeX ∼ F to denote that the
random variable (r.v.)X has a cumulative distribution function (c.d.f.)F . The
basic idea is based on a probabilistic interpretation of the expected utility model
advanced in Castagnoli and LiCalzi (1996). Assume that the utility functionU is
bounded, increasing (but not constant) and continuous. By an appropriate positive
affine transformation, normalizeU so that infU (x) = 0 and supU (x) = 1.
Then U satisfies all the properties characterizing a c.d.f., as was first noted in
Berhold (1973).

Therefore, there exists (on some appropriate probability space) a random
variableV with cumulative distribution functionU . Moreover, the r.v.V ∼ U
can be taken to be stochastically independent of any givenX ∼ F . See Theorem
14.1 in Billingsley (1986). This implies that we can letU (x) = P(V ≤ x) and
rewrite the expected utility ofX as

EU (X) =
∫

U (x) dF (x) =
∫

P(V ≤ x) dF (x) = P(X ≥ V ). (1)

Hence, the problem to derive bounds onEU (X) can be attacked by studying how
to bound the probability that the r.v.X ∼ F is greater than another (stochastically
independent) r.v.V ∼ U .

It is worthwhile pausing a bit on the dual role ofU . In the expected utility
model, this is a (von Neumann and Morgenstern) utility function; in this paper,



Upper and lower bounds for expected utility 491

instead, we assume infU (x) = 0 and supU (x) = 1 and exploit the fact thatU can
be considered a cumulative distribution function. Bordley and LiCalzi (2000) and
Castagnoli and LiCalzi (1996) argue at some length on the possible advantages
of this second viewpoint in a decision-theoretic context. Here, however, all that
is needed is that the equality displayed in Equation (1) holds true and therefore
that boundingP(X ≥ V ) is tantamount to boundingEU (X).

The paper stresses this point in two ways. First, we write the statement of
our results in terms of bounds onEU (X) but provide proofs with reference to
P(X ≥ V ). Second, we let our discussion liberally switch between the first and
the second interpretation ofU depending on the context.

2 Preliminaries

Unless explicitly noted, we assume throughout the paper thatU is continuous.
This natural but slightly restrictive assumption can be axiomatically justified in
the expected utility model. See Grandmont (1972). Its purpose here is to rule
out some minor technicalities regarding the Riemann-Stieltjes integral involved
in Equation (1). On the other hand, note that we make no assumptions on the
c.d.f. F .

We also follow two simplifying conventions. First, we take the domain of
the c.d.f.F of a r.v. X to be the set of extended reals IR∗. Hence,F is positive,
increasing, right-continuous and such thatF (−∞) = 0 andF (+∞) = 1. Second,
we consistently pair the r.v.’sX, Y , Z , V with their respective c.d.f.’sF , G, H , U
so thatX ∼ F , Y ∼ G, Z ∼ H , andV ∼ U throughout the paper.

Our first result is a simple equality.

Theorem 1 Let Z1 and Z2 be two r.v.’s uniformly distributed on[0, 1], respec-
tively stochastically independent of X and V . Then

EU (X) = P(U (X) ≥ Z1) = P(Z2 ≥ F (V )).

Proof. We prove only the first equality. By the monotonicity ofU , P(X ≥ V ) =

P(U (X) ≥ U (V )). TakeZ1
d
=U (V ) and stochastically independent ofX. ut

This result is not interesting, but it illustrates a point. When working on
bounds forP(X ≥ V ), one may often obtain different statements depending on
whetherX or V are considered. Hence, many of our results admit two distinct
formulations which are however based essentially on the same proof. When both
formulations are offered, we always omit the proof of the dual result.

3 Cut-off inequalities

Given X ∼ F and Y ∼ G, we say thatX (first-order) stochastically dominates
Y and we writeX ≥st Y if and only if F (x) ≤ G(x) for all x ∈ IR . Our first
result is also proved as Thm. 3.4 in Wrather and Yu (1982, p. 322).



492 M. LiCalzi

Theorem 2 Suppose that X≥st V . Then EU(X) ≥ 1/2.

Proof. By stochastic dominance,U (x) ≥ F (x) for all x. Hence,

P(X ≥ V ) =
∫

U (x) dF (x) ≥
∫

F (x) dF (x) = 1/2 . ut

Recall that we assumeU bounded between 0 and 1. Hence, the expected
utility of an arbitrary r.v.X is a number in [0, 1]. Thus, the assumption that
U (x) ≥ F (x) for all x guarantees thatEU (X) achieves a value that is at least
halfway in the interval [0, 1]. This lower bound is sharp: just take a stochastically

independent r.v.X
d
=V (i.e., F = U ) and check thatEU (X) = 1/2.

This result may be extended into two directions. The first one restricts the
family of random variables out of whichX and V may be chosen; the second
one allows for a finer ordering.

We say that a r.v.X ∼ F is symmetricif there exists somem in IR such that
F (m − x) + F (m + x) = 1 for almost allx ∈ IR . We call m the symmetric median
of X; in fact, whenF is continuous, taking limits forx → 0 in the previous
equality givesF (m) = 1/2. Our definition implies thatm is unique even if the
set of x’s such thatF (x) = 1/2 is not a singleton. A version of the next result
appears in DellaVigna (1997).

Theorem 3 Let X and V be symmetric r.v.’s respectively with symmetric medi-
ans mX and mV . Suppose that at least one between X and V has an absolutely
continuous c.d.f. Then

mX ≥ mV if and only if EU(X) ≥ 1/2,

with equality holding if mX = mV .

Proof. SinceX is symmetric, dF (mX + y) + dF (mX − y) = 0. Hence,

P(X ≥ V ) =
∫ +∞

−∞
U (x) dF (x) =

∫ mX

−∞
U (x) dF (x) +

∫ +∞

mX

U (x) dF (x)

= −
∫ +∞

0
U (mX − y) dF (mX − y) +

∫ +∞

0
U (mX + y) dF (mX + y)

=
∫ +∞

0

[
U (mX − y) + U (mX + y)

]
dF (mX + y).

Consider the argument of the last integral. IfmX = mV , the symmetry ofV
implies U (mX − y) + U (mX + y) = 1 a.e., with equality holding everywhere ifU
is continuous. Hence, by the absolute continuity ofF or U ,

P(X ≥ V ) =
∫ +∞

0

[
U (mX − y) + U (mX + y)

]
dF (mX + y)

=
∫ +∞

0
dF (mX + y) =

1
2
.

If insteadmX − mV = ε > 0, then
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U (mX − y) + U (mX + y) = U (mV + ε − y) + U (mV + ε + y)

≥ U (mV − y) + U (mV + y) = 1

and therefore

P(X ≥ V ) =
∫ +∞

0

[
U (mX − y) + U (mX + y)

]
dF (mX + y)

≥
∫ +∞

0
dF (mX + y) =

1
2
.

For mX − mV = ε < 0, reverse the above argument. ut
WhenV is symmetric, its c.d.f.U is S-shaped around the inflexion pointmV .

In the language of expected utility, then, the assumptions of Theorem 3 imply
a utility function U consistent with the reflection effect described in Kahneman
and Tversky (1979), provided that the agent sets her reference point tomV .

Assuming this type of utility function and a choice set of symmetric r.v.’s,
Theorem 3 implies that one may learn a lot just from comparing their (symmetric)
medians: a (symmetric) r.v.X with mX ≥ mV must have a higher expected utility
than any other (symmetric) r.v.Y with mY < mV . This suggests a simple rule
to prune the choice set of this kind of expected utility maximizer when she is
choosing over symmetric r.v.’s: if there is an available lotteryX with mX ≥ mV ,
ignore all r.v.’s withmY ≤ mV .

We call this rulesearch over (symmetric) medians. Searching over symmetric
medians can be used to partition all r.v.’s into two classes: those with (sym-
metric) median above and respectively belowmV . Only r.v.’s in the first class
are candidates to maximize the expected utility. Note that this rule cannot be
strengthened to say thatmX > mY implies EU (X) > EU (Y): for instance, ifX
takes values 0 and 4 andY takes values 1/2 and 3/2 (both with equal proba-
bility), then mx = 2 > 1 = mY ; however, forV uniformly distributed on [0, 1],
EU (X) = 1/2 < 3/4 = EU (Y). The direct comparison of medians between r.v.’s
in the same class is not conclusive.

A second extension of the cut-off inequality in Theorem 2 is inspired by ideas
first presented in Karlin and Novikoff (1963). We say that a c.d.f.F crosses from
below another c.d.f.U if there exists a pointc∈ IR ∗ such thatF (x) ≤ U (x) for
all x ≤ c and F (x) ≥ U (x) for all x > c. Note that, using the right-continuity
of F andU , this impliesF (c) ≥ U (c) and thusF (c) = U (c). Also, note thatc
is an extended real. WhenF crossesU from below in c = +∞, thenX ≥st V .
A version of the next result appears in Nieddu (1997).

Theorem 4 Let X ∼ F and V ∼ U be such that F crosses U from below in c.
Then

F (c) − F 2(c)
2

≤ EU (X) ≤ 1 + F 2(c)
2

. (2)

Similarly, if U crosses F from below, then

1 − F 2(c)
2

≤ EU (X) ≤ 1 − F (c) +
F 2(c)

2
. (3)
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Proof. We prove only the upper bound of the first set of inequalities.

P(X ≥ V ) =
∫ c

−∞
U (x) dF (x) +

∫ +∞

c
U (x) dF (x)

≤ U (c)F (c) +
∫ +∞

c
F (x) dF (x) =

1 + F 2(c)
2

.

The other bounds follow from similar arguments. ut

Differently from the previous ones, this result provides both upper and lower
(non trivial) bounds. It is then interesting to consider the length of the interval
of possible values forEU (X). Taking the difference between upper and lower
bound in Equation (2), we find 1/2 − F (c) + F 2(c). This value is minimized for
F (c) = 1/2; that is, whenF crossesU from below (or from above) at the median
of X. In this case, Equation (2) provides the tight bound 3/8 ≤ EU (X) ≤ 5/8.
Analogous conclusion holds for Equation (3).

The bounds are sharp. For instance, assume thatV is uniformly distributed
on [0, 1] so thatU (x) = min{1, max{0, x}}. If the c.d.f. of X is F (x) = 0 for
x < 1/2 andF (x) = min{x, 1} for x ≥ 1/2 so thatF crossesU from below at
the median ofX, thenEU (x) = 5/8. Finally, note that whenF crossesU from
below in c = +∞, Theorem 4 implies Theorem 2.

4 Quantile-based inequalities

We say that a pointx in IR is of strict increase for a c.d.f.F if F (x−ε) < F (x+ε)
for all ε > 0. Thesupport of F is the set of its points of strict increase and will
be denoted bySF . Note thatSF is a closed subset of IR ; moreover,F is strictly
increasing (and hence invertible) on its support if and only ifSF is an interval.

The generalized inverse functionof a c.d.f.F is

F (−1)(z) = inf{x ∈ IR ∗ : F (x) ≥ z}.

The generalized inverseF (−1) : [0, 1] → IR ∗ is positive, increasing, left-
continuous and such thatF (−1)(0) = −∞ and F (−1)(1) = supSF . Moreover,
for any pointx in the support ofF , F (−1)◦F (x) = x; in particular, if SF is an
interval, F (−1) = F−1 on F (SF ).

Let X ∼ F . Given α ∈ [0, 1], we say thatxα = F (−1)(α) is the α-quantile
of F . The α-quantile exists and is unique for anyα ∈ [0, 1]. Given 0 =α0 <
α1 < α2 < . . . < αn < αn+1 = 1, we denote the corresponding quantiles ofF by
x(0), x(1), . . . , x(n), x(n+1). Note thatx(0) = −∞ andx(n+1) = supSF .

The results in this section concern the case where only the values of a few
quantiles are known for eitherU or F . Since in applications it is usually the case
that there is less information aboutU than aboutF , we cast our presentation in
terms of the quantilesv(0), v(1), . . . , v(n), v(n+1) of U .
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Theorem 5 Suppose that the support of U is an interval[a, +∞). Given any r.v.
X ∼ F,

αn −
n∑

k=1

F (vk)[αk − αk−1] ≤ EU (X) ≤ 1 −
n∑

k=1

F (vk)[αk+1 − αk ]. (4)

Proof. Breaking up the domain of integration,

P(X ≥ V ) =
∫ +∞

−∞
P(V ≤ x) dF (x) =

n∑
k=0

∫ v(k+1)

v(k)

P(V ≤ x) dF (x). (5)

For each term in the sum, consider the inequalities

αk
[
F (v(k+1)) − F (v(k))

] ≤
∫ v(k+1)

v(k)

P(V ≤ x) dF (x) ≤

≤ U (v(k+1))
[
F (v(k+1)) − F (v(k))

]
.

(6)

SinceU is invertible onU ([a, +∞)), U (v(k+1)) = αk+1. Hence, substituting Equa-
tion (6) into Equation (5), we obtain

n∑
k=0

αk
[
F (v(k+1)) − F (v(k))

] ≤ P(V ≤ X) ≤

≤
n∑

k=0

αk+1
[
F (v(k+1)) − F (v(k))

]
.

(7)

Noting thatF (supSU ) = F (+∞) = 1, the result follows by rearranging the sums.
ut

The applicability of this result is immediate. After a once-and-for-all estimate
of a fewα-quantiles ofU , bounding the expected utility of a r.v.X ∼ F requires
only to compute the values of its c.d.f. at these quantiles. Theorem 5 may also be
easily generalized to accomodate the assumption that supSU < +∞ or that the
support ofU is not an interval. However, we think it more effective to maintain
here these two mild restrictions and pause on the special case where only the
median ofU is known.

For α = 1/2, theα-quantile ofF is called themedian of X, that we keep
denoting bymX . Note that the symmetric median of a symmetric r.v.X ∼ F (as
defined just before Theorem 3) always coincides with its medianm, except for
the very special case whereF (m) = 1/2 andm is not a point of strict increase
for F : then it is strictly greater than its median.

Corollary 6 Suppose that the support of U is an interval[a, +∞) and let its
median be m. Given any r.v. X∼ F,

1 − F (m)
2

≤ EU (X) ≤ 2 − F (m)
2

. (8)
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Proof. First, note that the proof of Theorem 5 still goes through when supSU =
+∞. Then substituten = 1 with α1 = 1/2 in Equation (4). ut

The bounds in Corollary 6 are (asymptotically) sharp. For instance, take the
exponential utility functionU (x) = 1 − e−x and assume that any r.v.Xk in the
choice set is exponentially distributed with parameterk > 0. Then the median of
U is m = log 2 and the expected utility ofXk is EU (Xk) = 1/(1 +k). Corollary 6
provides the bounds

1
2k+1

≤ EU (Xk) ≤ 1 + 2k

2k+1
.

As k → 0, bothEU (Xk) and the upper bound tend to 1. Similarly, ask → +∞,
both EU (Xk) and the lower bound tend to 0. Analogous results of (asymptotic)
sharpness hold for the bounds in Theorem 5.

Corollary 6 leads to another result that is probably more interesting from a
decision-theoretic point of view.

Corollary 7 Suppose that the support of U is an interval[a, +∞). Let mX and
mV be respectively the medians of X and V .

i) If mX = mV , then1/4 ≤ EU (X) ≤ 3/4.
ii) If mX > mV , then EU(X) ≥ 1/4.

iii) If m X < mV , then EU(X) ≤ 3/4.

Proof. Note that 1/2 = F (mX ) ≥ F (mV ) if and only if mX ≥ mV and derive the
results from the bounds in Equation (8). ut

WhenU satisfies the assumptions of Corollary 7, this suggests another simple
rule to prune the choice set of an expected utility maximizer choosing over
arbitrary r.v.’s. If there exists a r.v.X such thatEU (X) ≥ 3/4, ignore all r.v.’s
y Y with mY ≤ mV . We call this rulesearching over medians.

The results in this section admit dual formulations when there is incomplete
information about the c.d.f.F . For the sake of brevity, here we only state (and
do not prove) the equivalent of Theorem 5. GivenX ∼ F and 0 =α0 < α1 <
. . . < αn < αn+1 = 1, denote the respective quantiles ofF by x(0), x(1), . . . , x(n+1).
Note thatU is not required to be continuous.

Theorem 8 Suppose that the r.v. X has a continuous c.d.f. F whose support is
an interval[a, +∞). Given any increasing, bounded (but possibly not continuous)
utility function U ,

n∑
k=1

U (x(k))[αk+1 − αk ] ≤ EU (X) ≤
n∑

k=0

U (x(k+1))[αk+1 − αk ]. (9)

5 Mode-based inequalities

We say that a r.v.X ∼ F is unimodal if there exists a modeM ∈ IR such thatF
is convex on (−∞, M ) and concave on (M , +∞). For simplicity, in the following
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we assume that the mode ofX is unique, but our results may be generalized to
the case of multiple modes. Note that, except possibly inx = M , the c.d.f.F of
a unimodal r.v.X is continuous.

WhenV is unimodal, its c.d.f.U is S-shaped around the inflexion pointmV .
However, differently from the case of a symmetricV , the two arms of theS
may not have the same curvature. Hence, this kind of utility function is consistent
not only with the reflection effect, but with a steeper slope over losses as well.
This makes it a prominent candidate as value function for the prospect theory of
Kahneman and Tversky (1979).

Theorem 9 Suppose that V∼ U is unimodal with mode M . Let U be absolutely
continuous with density function u andinf SU ≥ 0. If the r.v. X is positive and
integrable, then

EU (X) ≤ u(M )E(X). (10)

Proof. SinceM is the mode ofu, u(v) ≤ u(M ) for all v in SU . Hence,

P(X ≥ V ) =
∫

SU

P(X ≥ v)u(v) dv ≤ u(M )
∫

SU

P(X ≥ v) dv

= u(M )
∫

SU

(1 − F (v)) dv ≤ u(M )E(X),

where the second equality follows from the fact that the set on whichP(X ≥
v) /= P(X > v) has Lebesgue measure zero. The last inequality exploits the
well-known equality (see Shiryayev, 1984, Corollary II.6.2, p. 206)

E(X) =
∫ +∞

0
(1 − F (x)) dx,

controlling for SU ⊆ [0, +∞). ut
Wheneveru(M ) < 1/E(X), this simple inequality is not trivial. Let us con-

sider an example. Suppose that bothX and V are exponentially distributed
with parameters respectivelyα > 0 and β > 0. In particular, this implies
U (x) = max{0, 1− e−βx}. ThenE(X) = 1/α while the mode ofV is M = 0, so
that U (M ) = β. Theorem 9 states that

EU (X) =
β

α + β
≤ β

α
= u(M )E(X)

and the upper bound is more and more binding asβ/α → 0. In particular, note
that V ≥st X if and only if β ≤ α. Hence, by the dual to Theorem 2, forβ < α
we might derive the upper boundEU (X) ≤ 1/2. However, forα > 2β, the
mode-based upper bound given in (10) is tighter than this latter one based on
stochastic dominance.

The upper bound in Theorem 9 is sharp. For instance, assume thatV is
uniformly distributed on [0, 1] so thatu(M ) = 1. Then, for any r.v.X on [0, 1],
EU (X) = E(X) and (10) holds with equality.
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Theorem 9 gives an upper bound when the support ofU is bounded from
below by 0. The next result provides two different upper bounds for the more
general case whereSU is simply bounded from below.

Theorem 10 Suppose that V∼ U is unimodal with mode M . Let U be absolutely
continuous with density function u andinf SU = a > −∞. Then both

EU (X) ≤ Eu(X) · (M − a) + P(X > M ) (11)

and
EU (X) ≤ u(M ) · P(X ≤ M ) · (M − a) + P(X > M ). (12)

Proof. We begin with the first inequality. Forv ≤ M ,

u(v)P(X ≥ v) = u(v)
∫

x≥v

dF (x)

≤
∫

v≤x≤M
u(x) dF (x) + u(v)

∫
x>M

dF (x)

≤ Eu(X) + u(v)P(X > M )

Hence,

P(X ≥ V ) =
∫ M

a
u(v)P(X ≥ v) dv +

∫ b

M
u(v)P(X ≥ v) dv

≤
∫ M

a
[Eu(X) + u(v)P(X > M )] dv +

∫ b

M
u(v)P(X > M ) dv

= Eu(X)(M − a) + P(X > M ).

The proof of the second inequality is similar. Forv ≤ M ,

u(v)P(X ≥ v) = u(v)
∫

x≥v

dF (x)

≤ u(M )
∫

v≤x≤M
dF (x) +

∫
x>M

u(v) dF (x)

≤ u(M )P(X ≤ M ) + u(v)P(X > M ).

The rest goes on as above. ut
Inequalities (11) and (12) provide different upper bounds forEU (X). Com-

paring the two expressions on the right-hand side, it is obvious that which one
is tighter depends on which one is smaller betweenEu(X) andu(M )P(X ≤ M ).
The following example shows that both cases are possible.

Indeed, suppose thatV has a Beta c.d.f. with parametersα = β > 1. Then
V is symmetric around its modeM = 1/2. If X takes only values 0 and 1 with
probability 1/2, then
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Eu(X) =
1
2

u(0) +
1
2

u(1) = 0<
Γ (2α)
2Γ (α)

(
1
2

)2α−1

= u(M )P(X ≤ M ).

This can be used to show that Inequality (11) is sharp. In fact, note that either
Theorem 3 or simple symmetry considerations imply thatEU (X) = 1/2. Thus,
substitutingEu(X) = 0, M = 1/2 anda = 0 in (11), we find

EU (X) =
1
2

= Eu(X)(M − a) + P(X > M ).

On the other hand, consider the case whereX takes only the values (1/2)−ε
and (1/2) + ε with probability 1/2. Then

u(M )P(X ≤ M ) =
Γ (2α)
2Γ (α)

(
1
2

)2α−1

<
Γ (2α)
2Γ (α)

(
1
4

− ε2

)α−1

= Eu(X)

for sufficiently smallε > 0 and α > 1. Again, either Theorem 3 or simple
symmetry considerations implyEU (X) = 1/2. Taking for instanceα = 3/2, (12)
gives the upper bound

EU (X) =
1
2

<
1

4
√

π
+

1
2

= u(M )P(X ≤ M )(M − a) + P(X > M ).

The bound offered by (12) is sharp. For instance, assume thatV is uniformly
distributed on [0, 1] and thatX is degenerate onx = 1. ThenEU (X) = 1 =
P(X ≥ V ) = 1 = u(M ) · P(X ≤ M ) · (M − a) + P(X > M ). However, we suspect
(but have not been able to prove) that it is not sharp (even asymptotically) unless
the support is a singleton.

6 Markov-like inequalities

Most of this section is based on the following generalization of Markov’s in-
equality. See for instance Davidson (1994, Corollary 9.11, p. 132).

Lemma 11 Let g : IR → IR be a bounded function. Suppose that, for a given
constant a, x≥ a impliesg(x) ≥ g(a) ≥ 0. Then

g(a)P(X ≥ a) ≤ E(g(X)). (13)

Similarly, suppose that x≤ a impliesg(x) ≥ g(a) ≥ 0. Then

g(a)P(X ≤ a) ≤ E(g(X)). (14)

Proof. The first inequality follows from

g(a)P(X ≥ a) = g(a)
∫

x≥a
dF (x) ≤

∫
x≥a

g(x) dF (x) ≤ E(g(X)).

The proof of the second inequality is analogous. ut
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If g is positive and increasing, Equation (13) holds for any value ofa. Note
also that (13) implies the weaker inequalityg(a)P(X > a) ≤ E(g(X)). Similar
remarks apply to Equation (14) for a positive and decreasingg and for the
inequalityg(a)P(X < a) ≤ E(g(X)).

The next result provides bounds onEU (X) complementary to Jensen’s in-
equality whenU has bounded support.

Theorem 12 Let U be absolutely continuous with density function u and SU =
[a, b].

i) If U is convex, then

EU (X) ≤ Eu(X)(b − a). (15)

ii) If U is concave, then

EU (X) ≥ 1 − Eu(X)(b − a). (16)

Proof. WhenU is convex, its density functionu is increasing. Hence, applying
the first inequality in Lemma 11,

P(X ≥ V ) =
∫ b

a
u(v)P(X ≥ v) dv ≤

∫ b

a
Eu(X) dv = Eu(X)(b − a).

WhenU is concave, the densityu is decreasing. The weaker form of the second
inequality in Lemma 11 gives

g(a) [1 − P(X ≥ a)] = g(a)P(X < a) ≤ Eg(X);

that is,g(a)P(X ≥ a) ≥ g(a) − Eg(X). Thus,

P(X ≥ V ) =
∫ b

a
u(v)P(X ≥ v) dv ≥

∫ b

a
[u(v) − Eu(X)] dv = 1 − Eu(X)(b − a).

ut
An expected utility maximizer is risk-averse if and only ifU is concave.

Assuming risk-aversion, Jensen’s inequality impliesU (E(X)) ≥ EU (X) for any
integrableX. Hence, under the assumptions of Theorem 12, risk-aversion implies
the following bounds on the expected utility of any integrable r.v.X:

1 − Eu(X)(b − a) ≤ EU (X) ≤ U (E(X)).

Similarly, risk-seeking preferences give

U (E(X)) ≤ EU (X) ≤ Eu(X)(b − a).

For instance, assume risk seeking preferences withU (x) = x2 on the support
[0, 1]. If the r.v. X has c.d.f.F (x) =

√
x on the same support, then

U (E(X)) =
1
9

≤ EU (X) =
1
5

≤ Eu(X)(b − a) =
2
3
.
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The inequalities in Theorem 12 are sharp. For instance, assume thatV is
uniformly distributed on [0, 1] and thatX is degenerate onx = 1. ThenP(X ≥
V ) = 1 = Eu(X)(b − a) and (15) holds with equality. The same is true for (16)
if we chooseX to be degenerate onx = 0.

More interestingly, the bounds in Theorem 12 are (asymptotically) sharp for
nondegenerate distributions. For instance, take the (convex) power utility function
U (x) = xα (with α ≥ 1) on the support [0, 1]. For k ∈ (0, 1/2), assume that the
r.v. X takes valuesk and 1− k with probability 1/2. Then

0 ≤ EU (X) =
1
2

[
kα + (1 − k)α

] ≤ α

2

[
kα−1 + (1 − k)α−1

]
= Eu(X)(b − a).

For α → +∞, the right-hand side tends to 0 and the upper bound becomes
asymptotically sharp. Analogous results hold for the second inequality in Theo-
rem 12.

The dual of Theorem 12 is the following.

Theorem 13 Let X ∼ F have an absolutely continuous c.d.f. with density
function f and bounded support SF = [a, b]. If F is convex, then EU(X) ≥
1 − Ef (V )(b − a). If F is concave, then EU(X) ≤ Ef (V )(b − a).

7 Moment generating functions

Our last result relies on the moment generating functions.1 Since one is unlikely
to know the moment generating functions better than the underlying c.d.f.’s, its
interest is mostly theoretical.

Given a r.v.X, let MX (t) = E(etX ) be its moment generating function (m.g.f.)
andDX the domain over whichMX (t) is defined. Given two stochastically inde-
pendent r.v.’sX ∼ F and V ∼ U , define the r.v.Y = X − V and letH be the
c.d.f. of Y . For all positivet in DX ∩ DV , we have

P(X ≥ V ) = P(Y ≥ 0) =
∫ +∞

0
dH (y) ≤ E(etY ) = MX (t) · MV (−t).

The following result follows immediately.

Theorem 14 Suppose that the m.g.f.’s of X and V exist. Define the set D=
DX ∩ DV ∩ IR +. Then

EU (X) ≤ inf
t∈D

MX (t) · MV (−t). (17)

This bound is trivial when the minimizer for the right-hand side ist = 0.
However, if E(X) < E(V ) < +∞, the derivative ofMX (t) · MV (−t) is strictly
negative int = 0 and thus the right-hand side of (17) is strictly decreasing on
some right neighborhood oft = 0. Therefore, the bound is certainly not trivial
wheneverE(X) < E(V ).

1 This approach was kindly suggested to us by Yosi Rinott.
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We consider an example. Suppose that bothX andV are exponentially dis-
tributed with parameters respectivelyα > β > 0. ThenE(X) = (1/α) < (1/β) =
E(V ). Moreover, their m.g.f.’s

MX (t) =
α

α − t
and MV (t) =

β

β − t

are respectively defined fort < α and t < β. The minimum ofMX (t) · MV (−t)
overD is attained att∗ = (α−β)/2 > 0, which givesEU (X) ≤ (4αβ)/(α+β)2 <
1.
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