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Abstract
Agent-based models of market dynamics must strike a compromise between
the structural assumptions that represent the trading mechanism and the
behavioural assumptions that describe the rules by which traders make their
decisions. We present a structurally detailed model of an order-driven stock
market and show that a minimal set of behavioural assumptions suffices to
generate a leptokurtic distribution of short-term log-returns. This result
supports the conjecture that the emergence of some statistical properties of
financial time series is due to the microstructure of stock markets.

1. Introduction
The dynamics of a stock market depends on the interaction
between the trading mechanism and the behaviour of the
participants. The trading mechanism defines the rules of
the market, which specify how orders are placed and how
the price changes. The behaviour of the participants is the
outcome of their trading strategies, which include how they
form expectations or interpret signals.

An agent-based model of the stock market makes
structural assumptions that represent the trading mechanism
and behavioural assumptions that describe the rules by which
traders take their decisions. The models in the literature
strike different compromises between the accuracy of their
structural and behavioural assumptions. We believe that the
first generation of agent-based simulations of stock markets
has explored a very rich set of behavioural assumptions,but has
paid comparatively little attention to structural assumptions.

This neglect of structural assumptions in agent-based
modelling has a few notable exceptions. Stigler (1964,
p 125), for instance, sharply criticized a report prepared for the
Securities Exchange Commission by pointing out that it was
based on the structural assumption that ‘smoothness of price

1 Author to whom any correspondence should be addressed.

movements is the sign of an efficient market’. By simulating
a random stream of tenders, he showed that this assumption
was unwarranted. Gode and Sunder (1993) established
the allocative efficiency of a double auction regardless of
any specific behavioural assumptions by comparing the
experimental performanceof human traders with the simulated
choices of zero-intelligence traders.

The purpose of this paper is to present a structurally
detailed agent-based model of an order-driven stock market
and show that a minimal set of behavioural assumptions
suffices to generate a leptokurtic distribution of short-term
log-returns. While leptokurtosis is only one of several well
known ‘stylized facts’ about financial time series, this finding
backs up the conjecture that the emergence of some of the
statistical properties of order-driven markets is mostly due to
their microstructure.

With respect to one important point, this viewpoint is not
new. It has been advocated by several recent studies in the
physics literature about the statistical properties of order-driven
markets; see among others Bouchaud et al (2002) and Daniels
et al (2002). Their approach focuses on modelling the buying
and selling order flows affecting the book as random processes
and studies the emerging statistical properties associated with
order-driven markets. While being very parsimonious, models
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in this family exhibit impressive descriptive power and are able
to generate falsifiable predictions. See in particular Smith et al
(2002), which also provides methodological foundations and
a short but enlightening discussion of prior related work.

On the other hand, by electing order flows as its starting
point, this approach avoids the explicit modelling of agents’
behaviour. It is plausible to expect that most combinations of
reasonable behaviours should lead to sufficiently similar order
flows, but giving up agent-based modelling makes it impossible
to address this issue. Chiarella and Iori (2002) makes
an important step towards blending a statistical approach
with agent-based modelling. However, their behavioural
assumptions are so rich that the impact of the microstructure
remains hard to assess. Our paper aims to provide a stricter
agent-based test of the relevance of structural assumptions.

This test is based on a model of an order-driven stock
market that pays due attention to its structural features. Based
on this model, we show that a minimal set of behavioural
assumptions suffice to generate a bell-shaped but remarkedly
leptokurtic distribution of short-term log-returns. This
leptokurtosis combines deviations from normality both around
and far away from the mode of a bell-shaped density, which
in the literature are conventionally known as ‘narrow peak’
and ‘fat tails’. The minimality of the behavioural assumptions
supports the conjecture that these two common statistical
properties of financial time series stem from the market
microstructure rather than from sophisticated behavioural
assumptions.

1.1. Background

Since Beja and Goldman (1980), the dynamic behaviour of
stock prices has often been explained as the outcome of the
interaction of a few archetypal trading strategies. A common
approach is to simulate a one-asset economy with three types
of agents: fundamentalists, trend chasers and a market maker;
see Day and Huang (1990). The fundamentalists agree on a
long-term value vof the asset; they buy shares when the price p
of the stock is below v and sell them otherwise. Trend chasers
accumulate shares when p moves up and unload them when
it goes down. The market maker is a specialist who matches
excess demand out of his inventory and equilibrates the market.

The intuition supported in this approach is well known.
Different families of trading strategies endow the dynamics of
price formation with negative and positive feedbacks, whose
interplay generates time series that are consistent with many
qualitative and statistical properties of the price trajectories
observed in real markets, such as sudden and unpredictable
switchings between bullish and bearish regimes, short-term
correlations, fat tails or clustered volatility; see for instance
Lux (1998).

This (admittedly stylized) approach has at least two well
known limitations, which have sparked a new wave of research
about order-driven markets with finite resources. First, there
is no explicit trading mechanism. The market maker is risk
neutral and endowed with unbounded liquidity, which is used
to absorb excess demand and make trading always viable,
regardless of its size. In each period, the market maker

adjusts the price to reduce the excess demand. Inspired by
the metaphor of the Walrasian auctioneer, this price-adjusting
rule fails to recognize adequately that in a real market trade
occurs whenever two agents can match their requests at a
given price. This makes it impossible to test the following
plausible explanation for the narrow peak of returns: the
trading mechanism makes prices ‘stickier’ by increasing the
probability that orders cannot find a match; hence, returns
cluster around the mean.

Second, there is rarely mention of the liquidity constraints.
Trend chasers or fundamentalists can keep loading their
portfolio regardless of the amount of money they have already
spent or of the short selling they have incurred. While it is
possible to argue that most fundamentalists are large financial
institutions with copious budgets, this is less credible for trend
chasers who can end up being ‘sheared’ by the market forces.
Moreover, the absence of liquidity constraints for the market
maker implies that rationing never occurs and thus abnormally
large orders must cause significant swings in price, which
might be responsible for the fat tails. However, since rationing
does occur in real markets, we do not know how much of the
fat tails generated by this mechanism would survive in a more
realistic model.

The (so far scarce) literature reporting agent-based
simulations in order-driven markets initiated with Cohen et al
(1978) and Mendelson (1982). They do not provide a
reliable test for our conjecture, but offer some support for
its plausibility. Bak et al (1997, p 439) simulates markets
where agents place buy and sell orders; for the simple but
unrealistic case of pure noise trading, it analytically proves that
the ‘anomalous scaling behaviour (observed in real markets)
can arise as a consequence of the interactions between many
agents’. This conclusion is backed up by the simulations of
order-driven markets offered in Steiglitz and Shapiro (1998)
and Chiarella and Iori (2002).

Similarly to us, Maslov (2000) claims that some price
patterns may be a consequence of the trading mechanism and
shows that the interaction of pure noise traders in order-driven
markets leads to fat tails in the short-term log-returns density.
This finding is confirmed in the Genoa market described in
Raberto et al (2001); its abstract mentions the appearance of
leptokurtosis, but narrow peaks are not explicitly discussed in
the paper. Matassini and Franci (2001) obtain fat tails in order-
driven markets where traders’ strategies are based on a convex
combination of value trading, herding and chartism.

For the purpose of testing our conjecture, the main
limitation of these papers is that they assume either pure noise
trading or the coexistence of a variety of trading strategies.
Pure noise trading is not realistic, while the simultaneous
existence of sharply defined classes of trading strategies is a
strong behavioural assumption. For instance, consider how
fundamentalists and trend chasers tend to stay on opposite sides
of the market. Since only one side can gain from a transaction,
it remains unclear why agents do not switch strategies; see Lux
and Marchesi (2000).

One justification for clumping all the fundamentalists on
the same side of the market is that, if they agree on the exact
value of v, they cannot profitably trade among themselves;
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see Milgrom and Stokey (1982). Hence, the presence of
alternative strategies such as trend chasing or noise trading
is necessary to make the market viable. However, perfect
agreement about v requires extreme assumptions such as
common knowledge of the informational partitions. Even
financial analysts, who are supposed to look over fundamentals
and are prone to herding effects that tend to cluster their
predictions, rarely reach unanimous opinions; see Welch
(2000).

It seems more realistic to have enough heterogeneity to
make trade also possible within the class of fundamentalist
trading strategies. This can be easily achieved by assuming
that fundamentalists base their value trading on heterogenous
estimates of v. We interpret this heterogeneity as a clash
of opinions between equally smart fundamentalists who use
different estimation procedures or have access to different
information, or between better and worse forecasters; see
Arthur et al (1997).

A small degree of heterogeneity among fundamentalists
suffices to achieve market viability even in the absence of
other trading strategies. This provides a strong test for our
conjecture. If an order-based trading mechanism produces
fat tails and a narrow peak in a market where there are
only fundamentalists, the emergence of these two effects
must be due to the structural assumptions. A second and
complementary test needs to show that the same effects arise in
a market with zero-intelligence agents, whose trading choices
satisfies minimal behavioural constraints that set them apart
from pure noise traders or other irrational agents. We perform
these two tests in a variety of environments to check for their
robustness. The results strongly support the conjecture.

2. The model
2.1. Structural assumptions

We consider an economy with two assets: one bond and one
stock. The bond pays a riskless yearly interest rate r . The stock
has a risky price p, which depends on demand and supply, and
pays no dividends. We assume that the interest earned on the
bond is spent elsewhere, so that the economy is closed: the
total amount of cash C and stock S in the economy is constant.
However, since the number of active traders may fluctuate over
time, the quantities of cash and stock available on the market
are not constant. We assume that no new information is ever
released and thus, except for the number of active traders, the
fundamentals of the economy are essentially unchanged over
time.

There are n (potentially active) traders, who enter or exit
the market independently from each other. Upon entering the
market, a trader i is endowed with a quantity ci of cash and
a quantity si of stock. An agent can use the money in his
possession to buy stock, or he can sell the stock he owns in
exchange for cash; but he is not allowed to short sell or to
borrow money. Thus, a trader can place a buy order only if he
has enough cash and a sell order only if he has enough stock;
in short, he is budget constrained both on the buy and the sell
side. Since the economy is closed, the gains and losses of
active traders must offset each other.

The market is order driven. There is a book of orders
that each trader can check at any time. Within his budget
constraints, a trader can place market orders or limit orders
for arbitrary quantities. A market order is filled completely if
it finds enough capacity on the book, or partially otherwise.
A limit order is stored in the book and executed (partially
or completely) when it finds a match during the rest of the
trading session. If a market order or a limit order are not filled
completely, the agent is rationed. For realism, prices on the
book must be quoted in ticks. The minimum tick allowed on
the book is of the order of 1/1000 of the stock price.

2.2. Behavioural assumptions

We assume that all agents are fundamentalists. This
assumption combines two hypotheses: the first one concerns
the trading strategy used (which is value based: buy low, sell
high), the second one concerns the estimate of the fundamental
value v. In a world where value-based traders are allowed to
disagree, each trader i may have reasons to suspect that his
estimate vi is off the mark. For instance, if the price drifts
away from vi , trader i may be induced to revise vi . Thus,
even if the underlying strategy is value based, the estimate of
vi may be tinged with some form of chartism, opening up an
interesting avenue of research. True to their name, however,
our (die-hard) fundamentalists never revise their own estimates
during their activity span. This strong assumption provides a
more stringent test for our conjecture, because it rules out any
indirect effects of price dynamics on the trading orders.

The value-based trading strategy used by our fundamen-
talists is the following. When an agent enters the market at time
t , he has an investment horizon hi and he wishes to maximize
his gains over the time span hi − t , which is his activity period.
He formulates an estimate of the fundamental value vi that he
expects the stock will reach by time hi . Since the bond has a
riskless yearly rate of return r and investment in the stock is
risky, trader i requires a yearly risk premium πi > 0 to invest
in the stock. One might include transaction costs in πi or make
the premium time dependent, but for simplicity we assume that
it is constant per unit of time.

Let p the price of the stock at time t . Trader i is willing
to buy stock at time t if he expects a return sufficiently higher
than the return on the riskless bond; that is, if

vi

p
� 1 + (r + πi)(hi − t).

This implies that the highest bid price he is willing to offer at
time t is

βi(t) = vi

1 + (r + πi)(hi − t)
. (1)

Similarly, trader i prefers to invest in the bond when the
expected return from holding stock is lower than the riskless
return achievable from investing in the bond. Hence, he is
willing to sell stock if

vi

p
� 1 + r(hi − t),

which gives

αi (t) = vi

1 + r(hi − t)
(2)
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Figure 1. The bid–ask spread.

as the lowest ask price that he is willing to offer at time t .
Except for its explicit time dependence, this behavioural rule
is similar to the one suggested in Bak et al (1997) for the
fundamentalists’ trading decisions.

If the agent enters the market at time ti , the two increasing
functionsβi(t) and αi (t) are defined for t in [t, hi ]. During this
interval of activity, and compatibly with his budget constraints,
the agent respectively buys or sells the stock if the current price
is below βi (t) or above αi (t), and hold his position in between;
see figure 1. This behavioural rule deserve two comments.

First, as t → hi , the spread between αi (t) and βi (t)
narrows down and the agent becomes more prone to ‘taking
positions’. This provides liquidity to the market. In particular,
when t = hi , the agent has reached his investment horizon
and exits the market while keeping his endowment. The
endowment of an old trader who has quit the market is
transferred to a new trader who enters the market some time
after, with a new investment horizon and a new estimate for the
fundamental value of the stock. Since investment horizons are
randomly distributed across traders, this implies a staggered
entry of new traders which further increases the liquidity of the
market. However, the primary liquidity driver is the sensitivity
of agents’ behavioural rules to time.

Second, it is plain that the existence of the bond plays no
other role than providing the riskless rate of interest r used in
the definition of αi (t) and βi(t). Therefore, it could be effaced
at no cost. However, it provides a useful metaphor to discuss
changes in monetary policy, as we do below.

Let b and a be respectively the best bid price and the
best ask price available when trader i checks the book. If
βi(t) � a, then he places a market order for purchasing stock
at a price of a. If the supply available on the book at a price
of a is sufficiently large, he only buys the stock he can afford;
otherwise, he buys all the quantity available and then moves on
to check the second best ask price, iterating the process until

the agent has no more cash or cannot find a nth level ask price
on the book lower than βi(t). If this second condition occurs,
the agent places a limit order at a price equal to the first tick
below βi(t) for the maximum quantity of stock he can afford
to pay for.

Symmetrically, if αi(t) � b then he places a market order
for selling stock at a price of b. If the demand available on
the book at a price of b is sufficiently large, he sells only the
stock he owns; otherwise, he fills the available demand and
then moves on to check the second best bid price, iterating the
process until the agent has no more stock or cannot find a nth
level bid price on the book greater than αi (t). If this second
condition occurs, the agent places a limit order at a price equal
to the first tick above αi (t) for the quantity of stock he still
owns. At the end of the process a trader might end up with
two limit orders placed on different sides of the book, as he
stands ready to profit from either an increase or a decrease in
the price of the stock. Also, note that a trader finds his market
orders more profitable than the corresponding limit orders.

We assume that trading takes place in sessions and, for
convenience, we think of a trading session as 1 day. Since
there are about 250 trading days in a year, we clock time in
increments of 1/250. Each of these increments corresponds
to 1 day and one trading session. Within 1 day, all traders
check the book and place orders asynchronously. The book
matches order-satisfying price priority and, in case of equal
prices, temporal priority.

Temporal priority implies a standard trade-off between
efficacy and immediacy: a trader has both reasons to postpone
placing his limit orders (in the hope of passing it as a market
order) and to anticipate them (to limit the risk of being
rationed). We solve this issue by randomizing with uniform
probability the order in which traders check the book within 1
day and by clearing the book at the end of a trading session.
The day after, we draw a new permutation over the set of active
traders and let them all check the book and place again their
orders. This implies that limit orders unexecuted by the end of
a trading session are temporarily withdrawn and is consistent
with a common practice on real stock markets such as NYSE,
where most limit orders are ‘for today only’ rather than ‘good
until cancelled’.

Removing a limit order from the book between trading
sessions protects a trader from the risk that the arrival of new
information could force him to do a trade that is no longer
convenient. The arrival of new information is ruled out in
our model, where it is the time dependency of βi(t) and αi (t)
that requires a trader to update his limit prices. This effect
is implicitly suggested in Bak et al (1997). In contrast, in
the literature most agent-based simulations of an order book
assume that unexecuted limit orders have longer lifetimes. This
is irrelevant when both new information and time effects are
irrelevant, as in the pure noise trading model of Maslov (2000).
However, in models with mixed motives like Chiarella and
Iori (2002) or Matassini and Franci (2001), longer expiration
dates imply that traders with standing limit orders ‘freeze’ their
motives for quite a while.
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Table 1. The benchmark case.

Parameters Initialization
Global n = 3410

r = 0.02
p = 1000

Trader ci = 2000 (first activation)
si = 1 (first activation)
vi ∼ p[1 + U(−0.1, 0.1)]
πi ∼ U(0, 0.03)
hi ∼ t + �exp(1/250)� days
τi ∼ hi + �exp(1/250)� days

3. Simulations with fundamentalists
3.1. Identification

A simulation run for our model requires the specification of
three global parameters and a list of individual variables for
each trader whenever he is activated. The global parameters
are the number of potentially active traders n, the riskless rate
of interest r and the initial stock price p. Upon activation, a
trader i is characterized by his endowment of cash ci and stock
si and by a four-tuple (vi , π, hi ; τi) of parameters, where vi

is his estimate of the fundamental value, πi his risk premium
and hi is his activity period. When the active trader exits the
market, he is replaced by a new trader after a period of time τi .

We assume that the initial endowment of cash and stock
is identical across traders; successively, to keep constant the
amount of stock and cash in the economy, a new trader inherits
the same endowment of the trader that he replaces. For each
trader which becomes active, the four-tuple (vi , πi , hi ; τi) is
the outcome of a random realization. More precisely, for each
of these four parameters we choose a probability distribution
and set its value equal to an independent draw from that
distribution. Hence, the set of agents’ variables is described by
a combination of endowments which depends on the previous
history of the market and by a random realization of the
parameters.

3.2. The benchmark case

We have performed very different simulations2 for our
model. However, we define for concreteness the benchmark
case summarized in table 1, where U and exp denote
respectively the uniform and the exponential distributions. The
symbol ‘∼’ denotes an independent draw from a probability
distribution. The global parameters are set once and for all at
time t = 0; the individual endowments ci and si are set once
upon activation and then inherited upon successive activations;
the four individual parameters are reset each time a trader is
activated.

We stress that this choice of parameters is loosely inspired
by the empirical evidence, but it is not an attempt to calibrate
the model to a specific set of real data. We neither believe
nor claim that our model has reached the level of descriptive
power that would warrant a serious calibration exercise. Our

2 All the simulations have been performed using the ‘R’ computing
package, available as freeware at http://www.r-project.org/ for several
platforms. The source code for the benchmark case is available at
http://helios.unive.it/∼licalzi/research.html.

simulations are not meant to replicate the price dynamics
observed in real markets, but to show that a simple order-
driven market can generate both fat tails and a narrow peak
in the distribution of daily log-returns even if all the traders in
the market are fundamentalists.

We comment briefly on the parameters. The number
of potentially active traders is n = 3410. At the start
of the simulation, exactly half of them are declared active.
Successively, as old traders exit the market and new traders
enter it, the number of active traders fluctuates around an
average value of about 50% of the potentially active traders.
The fluctuation spans a band thinner than ±3.5%. As we
explain below, n = 3410 is a convenient choice that allows a
direct comparison in one of our subsequent tests of robustness.
The yearly rate of return r = 0.02 is close to the current rate of
inflation in the Euro zone, which is a reasonable lower bound
for the nominal riskless rate of return.

At time t = 0, all traders who become active enter the
market with an equal endowment of cash and stock. Later,
as an agent inherits the cash and the stock left by an exited
trader he is replacing, traders may have different endowments.
The amount of initial endowments (combined with the initial
distribution of v) ensures that the level of stock price is not
constrained by the overall liquidity in the system: there is
enough cash to support at least a stock price of 2000, while the
actual prices are far below this level.

At time t = 0, the estimates of the fundamental value
are uniformly distributed around 1000, with an offset of at
most ±4%. This choice induces the initial level of the stock
price to hover around 1000, which improves the readability
of the time series and allows us to set the size of a tick equal
to 1. The initial offset is smaller in size than the 10% given in
table 1 to cap the price oscillations occurring when the market
is jumpstarted. Traders who become active later and enter the
market at some time t > 0 are given an estimate vi uniformly
distributed around the last official3 price pt−1 with an offset of
±10%. The risk premium π can range from 0 to 1.5 the rate
of interest, in order to span a large set of possible attitudes to
risk.

Consistent with the standard assumption that entries in and
exits from the market follow (independent) Poisson processes,
both activity and inactivity periods are exponentially
distributed with an expected length of 250 trading days,
equivalent to 1 year. In particular, at time t = 0, this
assumption is used to initialize both the investment horizons
of the traders declared active and the inactivity periods of the
other traders. One might assume different expected lengths
for the two periods or even make these a function of other
parameters of the model. For simplicity, we assume that they
are constant and equal. This ensures that the birth and death
process is stationary and that the number of active traders is
on average constant. Note that, as time is discrete, the values
of hi and τi are rounded up to the lowest higher integer.

3 The official price is defined as the unweighted mean of all the transaction
prices recorded in the last trading session in which the trading volume was
positive.
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Figure 2. Daily time series for prices (top) and log-returns
(bottom).

3.3. Results

The time series for daily official prices and the corresponding
log-returns of the benchmark case are presented in figure 2.
Transient effects due to the initialization of the simulations
usually disappear within 2 months; however, we prefer to
be cautious and, throughout this paper, we systematically
discard the observations corresponding to the first 2 years
(500 trading days). We note that a model based on a
minimal set of behavioural assumptions like ours should not
be expected to generate ‘realistic’ time series. As is well
known in the agent-based literature, this requires a larger
set of behavioural assumptions; see for instance Lux (1998).
Testing our conjecture requires only to show that no special
behavioural assumptions are needed to generate ‘narrow peaks’
and ‘fat tails’ of daily log-returns provided that the structural
assumptions are sufficiently detailed.

A close-up of the price time series is given in figure 3.
Except for an outlier, prices keep fluctuating approximately
within a ±1% band. Note that the price time series tend to
exhibit 3 day tents: usually, a decrease in the official price
between 2 days is followed by an increase in the following
trading session. (Remember that the official price is the
unweighted mean of all the transaction prices recorded in 1
day.) This dynamics is consistent with value-based trading,
as explained in Farmer and Joshi (2002), and shows up as a
significant negative autocorrelation at lag 1 in the daily log-
returns.

The viability of the simulated market can be gathered
from the top part of figure 4, which plots the histogram of the
trading volumes. There are only 48 days in which no trading
occurs, corresponding to 2.4% of the trading sessions4. The
bottom part of figure 4 shows that volumes exhibit a modest
but significant positive correlation at lag 1. This is consistent
with a market of fundamentalists where, if an agent is rationed,
he keeps issuing similar limit orders until he can find a match.
Note that we do not restrict agents to trade just one unit per
day. This assumption, common to most simulations of order-
driven markets in the literature, artificially extends the length

4 An increase (respectively, a decrease) of 40% in the number of potentially
active traders gave 6 (171) no-trading days, corresponding to 0.3% (8.55%)
of the trading sessions.
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Figure 3. Daily time series for prices over 1 year.
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Figure 4. Histogram of trading volumes (top) and volume
autocorrelations (bottom), with Bartlett’s confidence bands set at
5%.

of time an agent has to stay rationed and thus generates positive
volume autocorrelations at higher lags.

Finally, figure 5 provides a clear test for our conjecture.
On the left, we have plotted the histogram of daily log-returns
and we have superimposed a best-fit normal distribution. The
support has been truncated to about ±3 standard deviations
from the mean to improve readability. The narrow peak is
clear-cut and typical of all the simulations we have run. The
right part of the figure plots the sample quantiles against the
theoretical quantiles of the normal distribution: the divergence
for large values reveals fat tails and it is again clear-cut
and typical. The Shapiro–Wilk test rejects normality at a
confidence level far above 1 − 10−8 in each of the simulations
we have run. The empirical Fisher kurtosis is 43.92.

3.4. Robustness analysis

We have performed an extensive robustness analysis on our
model, individually testing each of the parameters in table 1 for
sensitivity. We have also specifically examined the probability
distributions, replacing them with other unimodal families or
modifying their distributional parameters. The narrow peak
and the fat tails of daily log-returns always emerge, unless the
choice of parameters is so extreme to make the market unviable
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Figure 5. Histogram of the distribution of daily log-returns superimposed on the best normal fit (left) and corresponding Q–Q plot (right).
The support of the histogram is truncated to improve readability.

for lack of liquidity. This holds even when the specific price
dynamics shows long-term effects due to the misalignment of
the initial parameters, backing up our claim that a narrow peak
and fat tails of short-term log-returns are structural effects.

We present just a few representative examples. (To
facilitate comparisons, all the examples presented in this paper
use the same seed.) The three time series in the top part of
figure 6 illustrate the price dynamics with ci = 2200 (top),
ci = 2000 (middle) as in the benchmark case, and ci = 1800
(bottom). Economic theory predicts that the total amount of
cash in the system affects positively the overall level of the
stock price. We observe that a change of 10% in the cash
endowment of each agent accordingly affects the long-term
stock price.

Moving to the middle part of figure 6, the time series from
top to bottom represent the price dynamics for three different
values of the risk premium: π = 0 (no risk premium); π as in
the benchmark case; and π = 0.03, respectively. These time
series have been smoothed to eliminate overlapping spikes and
improve readability by applying the variable span smoother
described in Friedman (1984). In accord with economic theory,
the stock price is higher when the risk premium of agents is
(on average) lower.

Consider now the time series in the bottom part of figure 6.
The middle time series is the benchmark case. The other two
time series are obtained when we offset the initial level of p
by ±10%. In either case, the system slowly drifts towards its
long-term level. The simulations show that our order-driven

market persistently exhibits homeostatic behaviour: the price
never settles down to a specific value, but oscillates within a
narrow band; when outside of it, the price moves towards this
band.

This homeostatic behaviour is illustrated in figure 7.
With respect to the benchmark case, we simulated three
interventions of monetary policy. We raised the riskless rate
from 0.02 to 0.03 at the beginning of the third year, added
a further raise from 0.03 to 0.04 at the beginning of year 5,
and cut the rate back to its original level at the beginning
of year 7. The time series of prices always reacted in the
direction predicted by economic theory. More interestingly,
once the initial conditions were restored, the price returned to
the original long-term level.

Finally, we investigated the dynamics of prices and
volumes under a different distribution of agents. Motivated by
the pervasive Zipf’s law, we assumed that agents were divided
in five classes endowed with different amounts of cash and
stock as given in table 2. This particular combination gives a
number n = 3140 of potentially active traders. This number
was used in the simulation of the benchmark case to facilitate
a direct comparison. We found no significant differences,
but verified that unequal initial endowments tend to increase
trading volumes and generate fatter tails for short-term log-
returns.
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Figure 6. Robustness analysis. Top: benchmark ci ± 10%. Middle:
π = 0, benchmark π , π = 0.03. Bottom: benchmark p ± 10%.
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Figure 7. Time series of prices with permanent shocks to the
riskless rate of interest: +0.01 in year 3, +0.01 in year 5 and −0.02
in year 7. (Vertical scale truncated for readability.)

Table 2. Endowments distributed according to a Zipf’s law.

Class Number of agents Stock Cash

1 10 × 44 20 2000 × 20

2 10 × 43 21 2000 × 21

3 10 × 42 22 2000 × 22

4 10 × 41 23 2000 × 23

5 10 × 40 24 2000 × 24

4. Simulations with zero-intelligence
traders
Several of the existing simulations of order-driven markets
assume pure noise trading. This is often implemented along the
following scheme. A random draw decides whether a trader
places a buy or a sell limit order. The order is for a unit quantity
of stock, at a price which is usually determined by means of
a simple mechanical rule such as ‘increase (or decrease) the
current price by one tick’. This trading behaviour provides a
rough test for the functioning of an order-driven market, but
it forfeits two important restrictions that impair its power to
convincingly test our conjecture.

The first restriction is that traders face budget constraints.
The second one is that trade should be loosely directed by

����

���

�

��

����

����

���

Figure 8. The bid–ask spread.

the purpose of achieving some gain. Our second major test
simulates a market with zero-intelligence traders that satisfy
this minimal set of behavioural constraints. We maintain all
the assumptions and the initializing choices of the benchmark
case, but we change the trading rule to the following value-
based strategy. When sampled, and compatibly with his budget
constraints, a trader places a buy order at a (ticked) price
uniformly distributed between (1 − �)vi and vi and a sell
order at a (ticked) price uniformly distributed between vi and
(1+�)vi . The bid and ask prices for a trader i are independently
renewed at each sample. Hence, trader i repeatedly (and
stubbornly) attempts to buy at a price slightly lower than vi

and to sell at a price slightly above vi . Given the heterogeneity
of the vi values, we believe that this is the minimal set of
restrictions that a sensible test for our conjecture should satisfy.

Figure 8 provides a graphical representation of the typical
behaviour of a zero-intelligence trader. Given his fundamental
value vi , each day he issues (random) limit orders that identify
a (random) band of inactivity around vi . The trader sells if
the price exits the band upward and buys if it exits downward.
In terms of the β(t) and α functions used for describing the
behaviour of fundamentalists, the trader’s bid and ask move up
and down in a systematic but unpredictable way.

Figure 9 summarizes this second test of our conjecture.
The top part reports the time series of prices for � = 5%. On
the left side of the bottom part,we have plotted the histogram of
daily log-returns and we have superimposed a best-fit normal
distribution. The support has been truncated to about ±3
standard deviations from the mean to improve readability.
The narrow peak shows up again and it is typical of all the
simulations we have run with zero-intelligence traders. On the
right side, we have plotted plot the sample quantiles against the
theoretical quantiles of the normal distribution: the divergence

8
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Figure 9. Zero-intelligence traders: price time series (top), histogram of the daily log-returns (bottom, on the left) and Q–Q plot (bottom,
on the right).

for large values reveals fat tails and it is again clear-cut and
typical. The Shapiro–Wilk normality test rejects normality
at a confidence level far above 1 − 10−8 in each of the other
simulations we have run. The empirical Fisher kurtosis is 8.44.

The robustness analysis for the case of zero-intelligence
traders is simpler than the analysis for fundamentalist traders,
because there are a few parameters such as r and π that are now
irrelevant and can be ignored. Except for these obvious cases,
however, we performed the same long series of individual
testing of each parameter and each distributional assumptions.
Invariably, a narrow peak and fat tails of daily log-returns have
emerged throughout.

It is instructive to contrast the price time series for the
benchmark case in figure 2 with the time series on the top part
of figure 9. The only difference between the two cases is the
behavioural rule followed by traders. Yet, while the first time
series fluctuates around a roughly constant level, the second
one has a clear upward drift. This difference in behaviour is
easily explained by comparing figure 1 with 8. For equal vi

values, fundamentalists tend to place bids and asks at a lower
price than zero-intelligence traders. Hence, the stationary price
level in a market populated with the latter strategy is higher and
figure 9 shows the system chasing its own stationary level.

More importantly, this comparison underlines that the
fundamentalists of section 3 and the zero-intelligence traders
of section 4 share two important restrictions on behaviour:
they both apply value-based trading and they both satisfy the
budget constraints. The difference between the two classes
of traders concerns only the rules governing their bid–ask
spread: zero-intelligence trading requires no understanding
of the fundamentals of the economy (except for the estimate

vi ); fundamentalist trading requires processing other pieces
of information such as the time-value of money or the risk
attitude, which are here r and πi , respectively.

The limiting case for both trading rules leads to the ‘plain
vanilla’ modelling assumption for fundamentalist behaviour:
buy if the current price is strictly below vi and sell if it is strictly
above. This obtains as the limit of our fundamentalists’ bid
and ask functions (1) and (2) for r ↓ 0 and π ↓ 0, or as the
limit of the zero-intelligence rule for � ↓ 0. In this respect,
one can view our model as a noisy version of a system with
plain vanilla fundamentalists. The introduction of a degree of
heterogeneity in the traders’ parameters leads to an increase in
the noise of the system. However, it should be stressed that
neither our fundamentalist nor our zero-intelligence traders
are noise traders (such as those in Maslov (2000), for instance)
because they are forced to apply value-based trading and to
satisfy liquidity constraint. In other words, we have noise in
the system but the agents are not noise traders.

Based on this, one might wonder whether our claim
that a structurally detailed model of an order-driven market
suffices to generate fat tails and narrow peaks would still
hold in an environment populated only with plain vanilla
fundamentalists. To answer this legitimate concern5, we tested
the market assuming that fundamentalists follow the simplest
possible trading rule: buy (subject to budget constraints) as
much as possible whenever the current price is strictly below
vi and sell (subject to budget constraints) as much as possible
whenever it is strictly above. The simulation presented in
figure 10 uses the same parameters of the benchmark case

5 We thank the referees for raising it.
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Figure 10. Plain vanilla fundamentalists: price time series (top), histogram of the daily log-returns (bottom, on the left) and Q–Q plot
(bottom, on the right).

except for setting r = π = 0 throughout. The emergence of
fat tails and narrow peaks is once again clearly confirmed.

5. Conclusions

We have modelled the precise functioning of an order-
driven market and simulated its behaviour under two simple
but realistic behavioural rules, respectively associated with
fundamentalist and zero-intelligence value-based trading
under budget constraints. Unless the market is unviable for
lack of trading volume, all simulations consistently give a
leptokurtic distribution of daily log-returns which exhibits both
a narrow peak and fat tails. These two properties are so
pervasive that we advance the claim that they are a consequence
of the structural properties of the market rather than of the fine-
grained details of the agents’ behavioural rules.

This claim should not be used to downplay the importance
of behavioural assumptions in achieving a realistic description
of financial time series. There are many other well
known properties, such as volatility clustering or short-term
correlations, which the market structure alone simply cannot
explain. The agent-based literature has already uncovered
several behavioural assumptions that help to achieve time
series that are more realistic than ours. One of the next steps
will probably be to study how behavioural assumptions and
market structure combine to yield the characteristic ‘signature’
of different financial markets.

Acknowledgments
We thank three anonymous referees and participants at
CEF2002 for their comments. Financial support from MIUR
is acknowledged.

References
Arthur W B, Holland J H, LeBaron B, Palmer R and Tayler P 1997

Asset pricing under endogenous expectations in an artificial
stock market The Economy as an Evolving Complex System II
ed W B Arthur, S N Durlauf and D A Lane (Reading, MA:
Perseus Books) pp 15–44

Bak P, Paczuski M and Shubik M 1997 Price variations in a stock
market with many agents Physica A 246 430–53

Beja A and Goldman M B 1980 On the dynamic behaviour of prices
in disequilibrium J. Finance 35 235–48
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