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This paper studies an order-driven stock market where agents have heterogeneous

of the fundamental value of the risky asset. The agents are budget-constrained and

value-based trading strategy which buys or sells depending on whether the price of th

below or above its risk-adjusted fundamental value. This environment generates ret

are remarkably leptokurtic and fat-tailed. By extending the study over a grid of

parameters for the fundamentalist trading strategy, we exhibit the existence of m

relationships between the bid–ask spread demanded by the agents and several statist

returns. We conjecture that this effect, coupled with positive dependence of the risk

on the volatility, generates positive feedbacks that might explain volatility bursts.
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The agent-based paradigm has sparked a wealth of models that try to
many well known stylized facts of price dynamics in financial markets. These
use rich sets of hypotheses about the behavioral strategies of the agents
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former, there are several known variants of value-based fundamentalist, no
chartist trading strategies, either with or without explicit optimization of an o
function, compounded by communication, imitation and synchronization
Among the latter, the most important variations concern the imposition o
constraints or the fine details of the trading protocol, ranging from tâto
adjustments to the rarer but more realistic case of order-driven markets.

Many models in the literature are able to reproduce some (but seldom
reported stylized facts, such as leptokurtic and fat-tailed distribution of
volatility effects and volume persistence. However, a unifying view of age
markets has still to come and it is difficult to understand unambiguousl
ingredients of a given model are the driving cause of the empirically o
features.

This paper builds on [1], where it is shown that the interaction o
fundamentalist agents with heterogeneous estimates in a order-driven m
sufficient to generate fat tails and a leptokurtic shape of the return distribut
confirm the robustness of this conclusion under an alternative formulat
across a wide range of parameter values. The main contribution is to show
bid–ask spread demanded by the agents has a key role in shapin
macroscopically observable properties of the returns’ time series, such as i
kurtosis, volatility and tail exponent. We find that there are monotone relat
between the agents’ bid–ask spreads and these important statistics.

This monotonicity suggests an alternative explanation for volatility burst
not based on the characteristics of the information flow or coupling effects
imitation) among agents. The bid–ask spread demanded by an agent is
affected by his risk aversion and by his propensity to a higher efficacy (
higher immediacy). If agents raise their risk premia or their efficacy require
reaction to an increase in volatility, they widen their bid–ask spread
consequence, if the trading environment generates a volatility which is incre
the bid–ask spreads, we have a positive-feedback mechanism that can
volatility bursts without further assumptions. We strive to keep our model a
as possible precisely to help disentangling how much of this effect is attribu
our behavioral or structural assumptions.

Our work relates to the literature in many important ways. Order-driv
known as book-based) markets have been studied in Ref. [2–4]. There is a m
evidence that a detailed modeling of the market mechanism is impo
understand the statistical properties of the returns’ time series; see Ref. [5
model developed in Ref. [3] shows that noisy trading, generated by random
anchored to the current price, can produce fat-tailed returns. Our model sh
the same conclusion holds when more realistic agents are used; moreover, it
the restriction (present in other papers as well) that an agent can trade at m
unit of stock at a time.

The rich market model in Ref. [2] includes both noisy and value-based
interacting in a order-driven market in which both imitative effects and v
feedbacks are explicitly considered. Fundamentalists buy (or sell) stocks w
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which is called ‘‘stickiness’’. While the results of the model are complex and
they are the outcome of so many interacting variables that it is difficult to a
which ones are more important in determining the overall outcome. This
is exacerbated, for instance, in Ref. [4], where budget-constraints an
trading are coupled with networks of friends and an embarrassing nu
behavioral parameters (personal target price, expected gain, maximum loss,
stop-loss, y).

A different strand of papers eschews order-driven markets in favor of alt
price formation mechanisms, based on matching supply and demand
Walrasian auctioneer approximations [8–11]. These papers model herd e
other related synchronizations in trading strategies using random graphs or
which indeed produce fat tails and volatility bursts in the returns’ time seri
leave it an open issue whether fat tails can be obtained in the absence of any
herding phenomenon. By contrast, the model presented in this paper does n
agent to share knowledge or to coordinate in any way: the only common info
used by the agents is the current price. Based on this, we do not expec
heteroskedasticity in the returns’ time series: here, our result is weaker th
others have obtained; on the other hand, we are able to rule out communic
other informational effects as the source of the fat tails generated by our m

Our fundamentalist agents buy (or sell) stock whenever it is under- (o
valued with respect to their own individual risk-adjusted estimate of the fa
Besides budget constraints, the determinants of the trading decisions for a
are just four: their estimate of the fundamental value of the risky ass
investment horizon, the risk premium they require per unit of time, a
propensity to search efficacious trading. Agents are heterogeneous with re
these four parameters. On the other hand, they are oblivious to external ne
the trading patterns of other agents. These simple-minded or perhaps ‘‘st
fundamentalist agents, when interacting in an order-driven market, su
robustly generate leptokurtic and fat-tailed returns. This provides a
benchmark in the search for the minimal set of assumptions ensuring the em
of these well known statistical properties.

Our study of different breeds of agents who share the same trading rule b
different bid–ask spreads has uncovered the existence of monotone relat
between the (average) demanded spread on one side and excess kurto
exponents and volatility of the returns on the other side. An increase
demanded spread in the traders’ population appears to cause an increas
volatility of the returns and a decrease in the excess kurtosis and in the tail ex
We conjecture that these relationships can be used to explain other effec
appropriate feedback mechanisms are taken in due consideration. For i
suppose that agents form their preferences in a way that increases their de
spreads in reaction to (possibly local) increases in the volatility of return
small noisy upward deviations in volatility would translate in higher spre
could in turn spark a further increase in volatility, starting an escalation an
to a volatility burst.
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model in a compact way; see [1] for additional details. Section 3 prese
simulations and discuss the results. Finally, Section 4 offers some co
remarks.
2. The model
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We consider an economy with two assets. One is a bond that pays a riskle
interest rate r. The other is a stock that has a risky price p and pays no divide
new information is ever released. There are n (potentially active) traders, w
or exit the market independently from each other. Upon entering the m
trader i is endowed with a quantity ci of cash and a quantity si of stock. Ag
budget-constrained: they are not allowed to short sell or to borrow money

The market is order driven. There is a book of orders that each trader ca
at any time. Within his budget constraints, a trader can place market o
limit orders for arbitrary quantities. A market order is filled complet
finds enough capacity on the book, or partially otherwise. A limit order
in the book and executed (partially or completely) when it finds a match
the rest of the trading session. If a market order or a limit order are n
completely, the agent is rationed. For realism, prices on the book must be
in ticks. The minimum tick allowed on the book is on the order of 1/100
stock price.

The value-based trading strategy used by the agents is the following. At a
in time, each agent has two thresholds: when the price of stock is below th
threshold, he wants to load on stock (compatibly with budget constraints); w
price is above the upper threshold, he wants to load on bond (compati
budget constraints); when the price of stock is between the two thresholds,
put. The lower threshold represents the highest bid price biðtÞ that an agent i
to offer at time t and the upper threshold is the lowest ask price aiðtÞ that he i
to accept at time t. Clearly, the bid (ask) price of an agent bounds from
(below) the best purchase (sell) limit order that an agent would place.

We operationalize the formation of bids and asks as follows. Eac
formulates his own assessment vi of the fundamental value of the stock. Each
a fundamentalist in the sense that, once vi has been estimated, it does no
anymore. In particular, vi is not affected by the dynamics of the stock pri
thus it can be thought of as a constant trait of agent i. When an agent en
market at time t, he has an investment horizon hi and he wishes to maximize
over the time span hi � t, which is his activity period. He formulates an est
the fundamental value vi that he expects the stock will reach by time hi.

Since the bond has a riskless rate of return r and investment in the stock
trader i requires a yearly risk premium pi40 to invest in the stock. On
include transaction costs in pi or make the premium time-dependent,
simplicity we assume that it is constant per unit of time. Let p the price of the
time t. Trader i is willing to load on stock at time t if he expects a return su
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vi

p
XeðrþpiÞ�ðhi�tÞ .

This implies that the highest bid price he is willing to offer at time t is

biðtÞ ¼ vie
�ðrþpiÞ�ðhi�tÞ .

Similarly, trader i prefers to load on bond when the risk-adjusted expecte
from holding stock is lower than the riskless return achievable from investin
bond. The risk premium is p0op, because the agent is moving away fro
Hence, the lowest ask price he is willing to accept at time t is

aiðtÞ ¼ vie
�ðrþp0iÞ�ðhi�tÞ .

To cut down on the number of free parameters, we parsimoniously assume p
Except for the explicit time-dependence, this behavioral rule is similar to
suggested in Ref. [2] for the fundamentalists’ trading decisions; Ref. [12] pr
strong case for the use of thresholds in modeling agent-based financial mar

The spread between bid and ask may be affected by another im
component, which is known as the attitude towards the immediacy versus
tradeoff. Consider for instance biðtÞ. Agent i would never submit a purch
order at a price higher than biðtÞ. However, in the attempt to fetch a more f
transaction price, the agent may choose to offer a lower bid (or perhaps to
more favorable price conditions). Doing so, of course, reduces the cha
complete a transaction soon (decreasing immediacy) but increases its pro
(improving efficacy). In general, we should not expect an agent to place a p
limit order at his ‘‘bid’’ price biðtÞ but at some lower price ½1 � diðtÞ	biðtÞ wh
in ½0; 1	 is some appropriate ‘‘shading’’ factor. Similarly, a sell limit order sh
made at some higher price ½1 þ d0iðtÞ	aiðtÞ, for some d0iðtÞX0. In the age
literature, this point was made clear in Ref. [13], where zero-intelligenc
choose randomly by which shading factor to adjust their valuations
attempting a trade; see also Ref. [14], where agents try to get a ‘‘profit l
excess of their limit prices. To cut down on the number of free parame
parsimoniously assume d0iðtÞ ¼ diðtÞ.

When t ¼ hi, the agent has reached his investment horizon and exits the
His endowment is transferred to a new trader who enters the market some tim
with a new investment horizon and a new estimate for the fundamental valu
stock. Investment horizons, risk premia and shading factors are ra
distributed across traders. Horizons and premia are viewed as constant
an agent, which are chosen when he becomes active and remain constant
exits the market. Shading factors are resampled every time the agent att
transaction.

The theoretical bid–ask spread aiðtÞ � biðtÞ is smaller than the actual
spread ½1 þ diðtÞ	aiðtÞ � ½1 � diðtÞ	biðtÞ. In the following, we use bid–ask sp
refer exclusively to the actual bid–ask spread demanded by an agent. This
spread is decreasing in the residual time ðhi � tÞ and it is increasing in pi a
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period; moreover, increasing the general level of agents’ risk premia or
spreads tends to increase the volatility of the transaction prices by maki
bounce in a larger corridor.

Trading over the book takes place as usual. Let a be the best ask price a
when trader i checks the book. If ð1 � dÞbiðtÞXa, then he places a market o
purchasing stock at a price of a. If the supply available on the book at a pric
sufficiently large, he buys only the stock he can afford; otherwise, he buy
quantity available and then moves on to check the second best ask price,
the process until the agent has no more cash or cannot find a nth level ask
the book lower than ð1 � dÞbiðtÞ. If this second condition occurs, the agent
limit order at a price equal to the first tick below ð1 � dÞbiðtÞ for the m
quantity of stock he can afford to pay for. Trading in the other direction tak
similarly. We assume that each trading session lasts one day. Since there a
250 trading days in a year, we clock time in increments of 1

250
. Within one

traders check the book and place orders asynchronously. We random
uniform probability the order in which traders check the book within one
we clear the book at the end of a trading session. The book matches orde
price priority and, in case of equal prices, temporal priority.
3. Simulations
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This section reports on the simulation of various markets populated
fundamentalist agents described in the previous section. We view our proc
the simulation of a (discretely sampled) continuum of markets, wh
parsimoniously indexed by two parameters that shape the distribution of
spreads demanded by the agents.

Each time a new agent enters the market, we randomly draw his individ
premium pi according to the uniform distribution on the interval ½0;P	, whe
is a global parameter identical across agents. While pi is resampled (once and
for each new agent, the overall impact of the risk premia can be appraise
which yields an individual average risk premium of the order of P=2. Simila
time an agent attempts a transaction, we randomly draw his shading fac
according to the uniform distribution on the interval ½0;D	, where DX0 is
parameter identical across all agents. While diðtÞ is resampled every time, th
impact of the shading factors can be evaluated by D.

The two global constants P and D define a continuum of markets MðP;D
respect, the analysis reported below can be interpreted as a test of robustne
shows that the conclusions in Ref. [1] hold in a variety of situations and ar
artifact of specific parametric values. Alternatively, the agents trading
simulations can be thought as belonging to different two-parameter breed
same behavioral family BðP;DÞ. A similar approach was used in Ref. [15], w
vector ðP;DÞ is the genotype of the whole family of traders. Under this vi
perhaps more interesting, the study of different markets offers useful ins
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the time series of returns.
Table 1 summarizes the parameters of the model. The symbol 
 den

independent draw from a probability distribution. The global parameters
once and for all at time t ¼ 0; the individual endowments ci and si are set on
activation and then inherited upon successive activations; all the in
parameters are reset each time a trader is activated, except for diðtÞ w
resampled every time the trader attempts a transaction. The parameter ti de
how many periods it takes before a new agent replaces an old agent who ha
the market.

This choice of parameters is loosely inspired by the empirical evidence, bu
not attempt to calibrate the model to a specific set of real data. Our simulat
meant to show that a simple order-driven market can generate both fat tai
narrow peak in the distribution of daily returns even if all the traders in the
are fundamentalists. Here and in the rest of the paper, we follow custom an
the return on stock as rt ¼ logðpt=pt�1Þ. The price pt is measured as the sim
not weighted by volume) average of the prices at which trade has occurred
trading session t. If no transaction occurred during the session, pt is set equa

We are interested in understanding how the determinants of the bid–ask
demanded by each agent impact on the statistical properties of the returns
other relevant aspects of the market, such as traded volume or global indica
its riskiness.

We have simulated 5500 trading days for each combination of values for P
Although transient initialization effects disappear very quickly (less
sessions), we have followed a precautionary principle and we systematicall
statistics after discarding the first 500 returns. Therefore, all the subsequent
are based on time series of 5000 returns, roughly equivalent to 20 years of da
To help visual comparisons, we have used the same random seed in every sim
Table 1

Identification of the model

Parameters Initialization Label

Global n ¼ 3410 Number of agents

r ¼ 0.01 Riskless interest rate

P 2 f0; 0:03; 0:06; 0:09; 0:12; 0:15g Risk premium

D 2 f0; 0:025; 0:05; 0:075; 0:1g Shading factor

Trader ci ¼ 2000 Initial cash endowment

si ¼ 1 Initial stock endowment

vi 
 1000 � ½1 þ Uð�0:1; 0:1Þ	 Fundamental value

pi 
 Uð0;PÞ Risk premium

diðtÞ 
 Uð0;DÞ Shading factor

hi 
 t þ dExpð1=250Þe days Investment horizon

ti 
 hi þ dExpð1=250Þe days Refresh time
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Table 2

Summary of results

1. Even in an order-driven market populated only by fundamentalists, leptokurtosis and fat tails in the

empirical distribution of returns are robust features.

2. The excess kurtosis and the tail exponents of the distribution of returns are decreasing in the bid–ask

spread demanded by the agents.

3. The volatility of returns is increasing in the bid–ask spread demanded by the agents.

4. The downside risk is increasing in the bid–ask spread demanded by the agents.

5. The traded volume is decreasing in the bid–ask spread demanded by the agents.

M. LiCalzi, P. Pellizzari / Physica A 359 (2006) 619–633626
reported in Table 2. The first finding confirms the robustness of a result
exhibited in Ref. [1]. The other four concern the comparative statics o
summary statistics with respect to the bid–ask spread demanded by the agent
we proxy by P and D. In particular, we assess the downside risk using two cu
measures such as the Value At Risk (VaR) and the Expected Shortfall (ES
series r̂t of the simulated returns. The VaR at a confidence level a is the valu
that Freqðr̂tp� xÞ ¼ a; given a VaR, the ES is E½r̂tjr̂tp� VaR	.

It is worthwhile noting that these findings imply that an increase
determinants of the bid–ask spread demanded by the agents inflates the v
of the returns and the downside riskiness of the market, but at the same time
reduce the leptokurtosis of returns.

The rest of this section reports on the evidence backing the results summa
Table 2. We begin with Fact 1. Fig. 1 represents the typical time series, den
normal quantile plot of the returns generated for P ¼ 0:12;D ¼

P ¼ 0;D ¼ 0:025, respectively. The first time series has parameters inspir
the equity premium puzzle first described in Ref. [16], that reports a histor
premium for NYSE stocks of around 6%. As our agents independen
uniformly draw their p in ½0; 0:12	, the average risk premium is very clos
value. These two time series have nearly the same standard deviation (0.0
0.0040). They are also remarkably leptokurtic and extremely fat tailed, as sh
the normal quantile plot. These general characteristics continue to hold ove
range of values for D and P.

Consider now Fact 2. Fig. 2 shows the surface of the (empirical1) excess
for all different combinations of P and D. (The z-axis is truncated to
readability.) The (empirical) excess kurtosis is always positive: our estimates
the interval ½1:91; 101:38	, with mean 19.14 and median 5.01. The graph sugg
an increase in either P or D results in a smaller (empirical) excess kurtosis
relationships hold for the tail exponents of the empirical distribution of
When we approximate the tails of the empirical distribution by x�ðmþ1Þ

estimates of the magnitude m of the tail exponent in the range ½2:03; 6:76
depicts the surface of m for all different combinations of D and P. It is appa
tails get fatter in correspondence of lower values of D and P. Fig. 4 shows th

1Our estimates of the tail exponent imply that the theoretical kurtosis might not be finite.
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Fig. 1. Time series, density and normal quantile plot for the return time series, when D ¼ 0;P ¼ 0:12 (left)

and D ¼ 0:025;P ¼ 0 (right).
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P ¼ 0:12. The x-axis holds the returns scaled by their standard deviation an
axis reports the probability that the absolute return exceeds a given value. Th
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M. LiCalzi, P. Pellizzari / Physica A 359 (2006) 619–633 629
value is m̂ ¼ 2:40 and falls within the usual range ½2; 4	 generally obse
empirical data.
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function of D, for different values of P. The volatility of the returns (measure
standard deviation) is increasing in D and P. The combination of Facts
suggests that the bid–ask spread demanded by the agents impacts differentl
volatility and on the ‘‘normality’’ of returns. While a larger spread tends to
price bounces between bid and ask and therefore raises volatility, it also
systematic departures from normality less marked. There is more variability,
large deviations.

This makes the overall evaluation of the riskiness of the market less clea
the other hand, the literature on risk measurement has established that
informative evaluation of risk should especially insist on the downside risk.
best known measures are the VaR and the ES. While the VaR is simpler to
and therefore far more popular among practitioners, the ES is generally reg
a better risk measure because it satisfies coherence; see Ref. [17]. We have co
both indicators, obtaining the same qualitative results. For the sake of bre
report here only the results for the ES indicator. Fig. 6 graphs the ES for the
at the 0.01 confidence level. Consistently with our Fact 4, the ES is increasin
and P. This matches Fact 3, which shows that the standard deviations assoc
(log)-returns are also increasing in D and P. Given that the empirical distribu
Fig. 1 are nearly symmetric, this is not surprising. Taken together, Facts
confirm that the riskiness of the market increases with the bid–ask spread de
by the agents. This conclusion is robust to using alternative measure of riskin
standard deviation, VaR, or ES.
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Fig. 6. Expected shortfall at 0.01 confidence level for different values of D and P (from bottom to top,

D ¼ 0; 0:05; 0:1).
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bid–ask spread demanded by agents, leading to a self-reinforcing mechan
might explain volatility bursts and other similar effects. Related mechan
presented for example in Ref. [8], where the agents’ demand is inversely prop
to the local volatility of the price, and in Ref. [12], where agents upda
threshold for action on the basis of the most recent observed absolute return
not explore this avenue of research in the paper, but the assumption that the
spread demanded by the agents is positively correlated with the volatility o
appears reasonable and would indeed produce a positive-feedback l
increment of the volatility pushes the agents to upwardly revise their sprea
in turn ignites a greater volatility. We conjecture that this potentially
dynamics would eventually be controlled by a reduction in the liquidity
market, because budget constraints make impossible to sustain a trend ind

Finally, consider Fact 5. Fig. 7 shows the average traded volume per sess
function of D and P. As discussed above, the traded volume decreases w
agents demand a higher bid–ask spread, because this produces a wider ave
between bids and asks which is more difficult to close.

We close by noting a fine point2 about our comparative statics exercises. T
carried out with respect to changes in D and P. Increasing D and P simulta
raise both the mean and the variance of the uniform distributions from wh

2We thank one of our anonymous referees for raising it.
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population tend to be more heterogeneous with respect to the prices at wh
are willing to exchange the risky asset, we cannot rule out confounding ef
order to test this, we have run separate tests using, respectively, only upwa
(to alter the mean without affecting the variance) and mean-preserving
(to alter the variance without affecting the mean) of the supports of diðtÞ

Although the results are broadly similar to those reported here, it turns out t
are less clearcut and, in some instances, monotonicity may occasionally fai
4. Conclusions

riginally
effect of
erties of
ding can
r-driven
mia and
reeds of
nded by
kurtosis,
eedback
rsts.
This paper continues the study of the agent-based order-driven market o
presented in a simpler form in Ref. [1], with special emphasis on the conjoint
the risk premia and of the efficacy–immediacy tradeoff on the general prop
the time series of the returns. We show that even die-hard fundamentalist tra
generate fat-tailed and leptokurtic returns when it takes place in an orde
market. This results is shown to be robust for a wide range of risk pre
intensity of efficacy in order placing. Moreover, by simulating different b
agents, we detect monotone relationships between the bid–ask spread dema
the agents and some important statistical features of the returns like excess
tail exponents and risk measures. We leave to future research the study of f
loops affecting the spread that could explain the occurrence of volatility bu
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