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Abstract

This paper studies an order-driven stock market where agents have heterogeneous estimates
of the fundamental value of the risky asset. The agents are budget-constrained and follow a
value-based trading strategy which buys or sells depending on whether the price of the asset is
below or above its risk-adjusted fundamental value. This environment generates returns that
are remarkably leptokurtic and fat-tailed. By extending the study over a grid of different
parameters for the fundamentalist trading strategy, we exhibit the existence of monotone
relationships between the bid—ask spread demanded by the agents and several statistics of the
returns. We conjecture that this effect, coupled with positive dependence of the risk premium
on the volatility, generates positive feedbacks that might explain volatility bursts.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Price dynamics; Statistical properties of returns; Market microstructure; Agent-based
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1. Introduction

The agent-based paradigm has sparked a wealth of models that try to explain
many well known stylized facts of price dynamics in financial markets. These models
use rich sets of hypotheses about the behavioral strategies of the agents and the
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market microstructure underlying the mechanism of price formation. Among the
former, there are several known variants of value-based fundamentalist, noisy, and
chartist trading strategies, either with or without explicit optimization of an objective
function, compounded by communication, imitation and synchronization effects.
Among the latter, the most important variations concern the imposition of budget
constraints or the fine details of the trading protocol, ranging from tidtonnement
adjustments to the rarer but more realistic case of order-driven markets.

Many models in the literature are able to reproduce some (but seldom all) the
reported stylized facts, such as leptokurtic and fat-tailed distribution of returns,
volatility effects and volume persistence. However, a unifying view of agent-based
markets has still to come and it is difficult to understand unambiguously which
ingredients of a given model are the driving cause of the empirically observed
features.

This paper builds on [1], where it is shown that the interaction of purely
fundamentalist agents with heterogenecous estimates in a order-driven market is
sufficient to generate fat tails and a leptokurtic shape of the return distribution. We
confirm the robustness of this conclusion under an alternative formulation and
across a wide range of parameter values. The main contribution is to show that the
bid—ask spread demanded by the agents has a key role in shaping some
macroscopically observable properties of the returns’ time series, such as its excess
kurtosis, volatility and tail exponent. We find that there are monotone relationships
between the agents’ bid—ask spreads and these important statistics.

This monotonicity suggests an alternative explanation for volatility bursts that is
not based on the characteristics of the information flow or coupling effects (such as
imitation) among agents. The bid—ask spread demanded by an agent is directly
affected by his risk aversion and by his propensity to a higher efficacy (versus a
higher immediacy). If agents raise their risk premia or their efficacy requirements in
reaction to an increase in volatility, they widen their bid—ask spreads. As a
consequence, if the trading environment generates a volatility which is increasing in
the bid—ask spreads, we have a positive-feedback mechanism that can generate
volatility bursts without further assumptions. We strive to keep our model as simple
as possible precisely to help disentangling how much of this effect is attributable to
our behavioral or structural assumptions.

Our work relates to the literature in many important ways. Order-driven (also
known as book-based) markets have been studied in Ref. [2—4]. There is a mounting
evidence that a detailed modeling of the market mechanism is important to
understand the statistical properties of the returns’ time series; see Ref. [5—7]. The
model developed in Ref. [3] shows that noisy trading, generated by random orders
anchored to the current price, can produce fat-tailed returns. Our model shows that
the same conclusion holds when more realistic agents are used; moreover, it removes
the restriction (present in other papers as well) that an agent can trade at most one
unit of stock at a time.

The rich market model in Ref. [2] includes both noisy and value-based traders
interacting in a order-driven market in which both imitative effects and volatility
feedbacks are explicitly considered. Fundamentalists buy (or sell) stocks when the
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expected dividend rate exceeds (or is smaller than) the interest rate by a margin A
which is called “stickiness”. While the results of the model are complex and diverse,
they are the outcome of so many interacting variables that it is difficult to ascertain
which ones are more important in determining the overall outcome. This problem
is exacerbated, for instance, in Ref. [4], where budget-constraints and book
trading are coupled with networks of friends and an embarrassing number of
behavioral parameters (personal target price, expected gain, maximum loss, personal
stop-loss, ...).

A different strand of papers eschews order-driven markets in favor of alternative
price formation mechanisms, based on matching supply and demand [8], or
Walrasian auctioneer approximations [8—11]. These papers model herd effects or
other related synchronizations in trading strategies using random graphs or lattices,
which indeed produce fat tails and volatility bursts in the returns’ time series. They
leave it an open issue whether fat tails can be obtained in the absence of any kind of
herding phenomenon. By contrast, the model presented in this paper does not allow
agent to share knowledge or to coordinate in any way: the only common information
used by the agents is the current price. Based on this, we do not expect to see
heteroskedasticity in the returns’ time series: here, our result is weaker than what
others have obtained; on the other hand, we are able to rule out communication or
other informational effects as the source of the fat tails generated by our model.

Our fundamentalist agents buy (or sell) stock whenever it is under- (or over-)
valued with respect to their own individual risk-adjusted estimate of the fair value.
Besides budget constraints, the determinants of the trading decisions for all agents
are just four: their estimate of the fundamental value of the risky asset, their
investment horizon, the risk premium they require per unit of time, and their
propensity to search efficacious trading. Agents are heterogeneous with respect to
these four parameters. On the other hand, they are oblivious to external news or to
the trading patterns of other agents. These simple-minded or perhaps “‘stubborn”
fundamentalist agents, when interacting in an order-driven market, suffice to
robustly generate leptokurtic and fat-tailed returns. This provides a useful
benchmark in the search for the minimal set of assumptions ensuring the emergence
of these well known statistical properties.

Our study of different breeds of agents who share the same trading rule but have
different bid—ask spreads has uncovered the existence of monotone relationships
between the (average) demanded spread on one side and excess kurtosis, tail
exponents and volatility of the returns on the other side. An increase in the
demanded spread in the traders’ population appears to cause an increase in the
volatility of the returns and a decrease in the excess kurtosis and in the tail exponent.
We conjecture that these relationships can be used to explain other effects, when
appropriate feedback mechanisms are taken in due consideration. For instance,
suppose that agents form their preferences in a way that increases their demanded
spreads in reaction to (possibly local) increases in the volatility of returns. Then,
small noisy upward deviations in volatility would translate in higher spreads that
could in turn spark a further increase in volatility, starting an escalation analogous
to a volatility burst.
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The paper is organized as follows. Section 2 describes the agents and the market
model in a compact way; see [1] for additional details. Section 3 presents our
simulations and discuss the results. Finally, Section 4 offers some concluding
remarks.

2. The model

We consider an economy with two assets. One is a bond that pays a riskless yearly
interest rate r. The other is a stock that has a risky price p and pays no dividends. No
new information is ever released. There are n (potentially active) traders, who enter
or exit the market independently from each other. Upon entering the market, a
trader 7 is endowed with a quantity ¢; of cash and a quantity s; of stock. Agents are
budget-constrained: they are not allowed to short sell or to borrow money.

The market is order driven. There is a book of orders that each trader can check
at any time. Within his budget constraints, a trader can place market orders or
limit orders for arbitrary quantities. A market order is filled completely if it
finds enough capacity on the book, or partially otherwise. A limit order is stored
in the book and executed (partially or completely) when it finds a match during
the rest of the trading session. If a market order or a limit order are not filled
completely, the agent is rationed. For realism, prices on the book must be quoted
in ticks. The minimum tick allowed on the book is on the order of 1/1000 of the
stock price.

The value-based trading strategy used by the agents is the following. At any point
in time, each agent has two thresholds: when the price of stock is below the lower
threshold, he wants to load on stock (compatibly with budget constraints); when this
price is above the upper threshold, he wants to load on bond (compatibly with
budget constraints); when the price of stock is between the two thresholds, he stays
put. The lower threshold represents the highest bid price f§;(¢) that an agent is willing
to offer at time ¢ and the upper threshold is the lowest ask price o;(¢) that he is willing
to accept at time ¢. Clearly, the bid (ask) price of an agent bounds from above
(below) the best purchase (sell) limit order that an agent would place.

We operationalize the formation of bids and asks as follows. Each agent
formulates his own assessment v; of the fundamental value of the stock. Each agent is
a fundamentalist in the sense that, once v; has been estimated, it does not change
anymore. In particular, v; is not affected by the dynamics of the stock price p and
thus it can be thought of as a constant trait of agent i. When an agent enters the
market at time #, he has an investment horizon /; and he wishes to maximize his gains
over the time span /; — ¢, which is his activity period. He formulates an estimate of
the fundamental value v; that he expects the stock will reach by time 4;.

Since the bond has a riskless rate of return r and investment in the stock is risky,
trader i requires a yearly risk premium 7z;>0 to invest in the stock. One might
include transaction costs in n; or make the premium time-dependent, but for
simplicity we assume that it is constant per unit of time. Let p the price of the stock at
time ¢. Trader i is willing to load on stock at time ¢ if he expects a return sufficiently
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higher than the return on the riskless bond; that is, if

Ui rm)-(hi—
_ >e(’+nl)(1l 1) .

p
This implies that the highest bid price he is willing to offer at time ¢ is
Bty = v D M

Similarly, trader i prefers to load on bond when the risk-adjusted expected return
from holding stock is lower than the riskless return achievable from investing in the
bond. The risk premium is 7' <7, because the agent is moving away from risk.
Hence, the lowest ask price he is willing to accept at time 7 is

OC,‘(Z‘) — Uief(rJrn:)(/l,vft) ] (2)

To cut down on the number of free parameters, we parsimoniously assume ©’ = /2.
Except for the explicit time-dependence, this behavioral rule is similar to the one
suggested in Ref. [2] for the fundamentalists’ trading decisions; Ref. [12] provides a
strong case for the use of thresholds in modeling agent-based financial markets.

The spread between bid and ask may be affected by another important
component, which is known as the attitude towards the immediacy versus efficacy
tradeoff. Consider for instance f3;(¢). Agent i would never submit a purchase limit
order at a price higher than f3;(r). However, in the attempt to fetch a more favorable
transaction price, the agent may choose to offer a lower bid (or perhaps to wait for
more favorable price conditions). Doing so, of course, reduces the chances to
complete a transaction soon (decreasing immediacy) but increases its profitability
(improving efficacy). In general, we should not expect an agent to place a purchase
limit order at his ““bid” price f5;() but at some lower price [1 — J;(¢)]3;(¢) where J;(¢)
in [0, 1] is some appropriate “‘shading” factor. Similarly, a sell limit order should be
made at some higher price [l + d/(#)]o;(¢), for some 6}(7)=>0. In the agent-based
literature, this point was made clear in Ref. [13], where zero-intelligence agents
choose randomly by which shading factor to adjust their valuations before
attempting a trade; see also Ref. [14], where agents try to get a “profit level” in
excess of their limit prices. To cut down on the number of free parameters, we
parsimoniously assume 8}(¢) = 0;(?).

When ¢ = ;, the agent has reached his investment horizon and exits the market.
His endowment is transferred to a new trader who enters the market some time after,
with a new investment horizon and a new estimate for the fundamental value of the
stock. Investment horizons, risk premia and shading factors are randomly
distributed across traders. Horizons and premia are viewed as constant traits of
an agent, which are chosen when he becomes active and remain constant until he
exits the market. Shading factors are resampled every time the agent attempts a
transaction.

The theoretical bid—ask spread o;(¢) — f,(f) is smaller than the actual bid—ask
spread [1 4 0:(0)]oi(¢) — [1 — 0/(6)]P;(¢). In the following, we use bid—ask spread to
refer exclusively to the actual bid—ask spread demanded by an agent. This bid—ask
spread is decreasing in the residual time (4; — £) and it is increasing in 7; and ;(¢).
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Therefore, an agent is likely to trade more actively towards the end of his activity
period; moreover, increasing the general level of agents’ risk premia or bid—ask
spreads tends to increase the volatility of the transaction prices by making them
bounce in a larger corridor.

Trading over the book takes place as usual. Let a be the best ask price available
when trader 7 checks the book. If (1 — §)f5;(#) >a, then he places a market order for
purchasing stock at a price of «. If the supply available on the book at a price of a is
sufficiently large, he buys only the stock he can afford; otherwise, he buys all the
quantity available and then moves on to check the second best ask price, iterating
the process until the agent has no more cash or cannot find a nth level ask price on
the book lower than (1 — 9)f,(¢). If this second condition occurs, the agent places a
limit order at a price equal to the first tick below (1 — 9)p,(r) for the maximum
quantity of stock he can afford to pay for. Trading in the other direction takes place
similarly. We assume that each trading session lasts one day. Since there are about
250 trading days in a year, we clock time in increments of 2% Within one day, all
traders check the book and place orders asynchronously. We randomize with
uniform probability the order in which traders check the book within one day and
we clear the book at the end of a trading session. The book matches orders using
price priority and, in case of equal prices, temporal priority.

3. Simulations

This section reports on the simulation of various markets populated by the
fundamentalist agents described in the previous section. We view our procedure as
the simulation of a (discretely sampled) continuum of markets, which are
parsimoniously indexed by two parameters that shape the distribution of bid—ask
spreads demanded by the agents.

Each time a new agent enters the market, we randomly draw his individual risk
premium 7; according to the uniform distribution on the interval [0, IT], where I1>=0
is a global parameter identical across agents. While 7; is resampled (once and for all)
for each new agent, the overall impact of the risk premia can be appraised by II,
which yields an individual average risk premium of the order of I1/2. Similarly, each
time an agent attempts a transaction, we randomly draw his shading factor ()
according to the uniform distribution on the interval [0, A], where A>0 is a global
parameter identical across all agents. While 6,(¢) is resampled every time, the overall
impact of the shading factors can be evaluated by A.

The two global constants IT and A define a continuum of markets M (I1, A). In this
respect, the analysis reported below can be interpreted as a test of robustness which
shows that the conclusions in Ref. [1] hold in a variety of situations and are not an
artifact of specific parametric values. Alternatively, the agents trading in our
simulations can be thought as belonging to different two-parameter breeds of the
same behavioral family B(IT, A). A similar approach was used in Ref. [15], where the
vector (IT, A) is the genotype of the whole family of traders. Under this viewpoint,
perhaps more interesting, the study of different markets offers useful insights to
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understand how risk premia and shading factors affect the macroscopic properties of
the time series of returns.

Table 1 summarizes the parameters of the model. The symbol ~ denotes an
independent draw from a probability distribution. The global parameters are set
once and for all at time ¢ = 0; the individual endowments ¢; and s; are set once upon
activation and then inherited upon successive activations; all the individual
parameters are reset each time a trader is activated, except for §;(z) which is
resampled every time the trader attempts a transaction. The parameter 7; determines
how many periods it takes before a new agent replaces an old agent who has exited
the market.

This choice of parameters is loosely inspired by the empirical evidence, but we do
not attempt to calibrate the model to a specific set of real data. Our simulations are
meant to show that a simple order-driven market can generate both fat tails and a
narrow peak in the distribution of daily returns even if all the traders in the market
are fundamentalists. Here and in the rest of the paper, we follow custom and define
the return on stock as p, = log(p,/p,_,). The price p, is measured as the simple (i.e.,
not weighted by volume) average of the prices at which trade has occurred within a
trading session ¢. If no transaction occurred during the session, p, is set equal to p,_;.

We are interested in understanding how the determinants of the bid—ask spread
demanded by each agent impact on the statistical properties of the returns and on
other relevant aspects of the market, such as traded volume or global indicators for
its riskiness.

We have simulated 5500 trading days for each combination of values for IT and A.
Although transient initialization effects disappear very quickly (less than 20
sessions), we have followed a precautionary principle and we systematically report
statistics after discarding the first 500 returns. Therefore, all the subsequent analyses
are based on time series of 5000 returns, roughly equivalent to 20 years of daily data.
To help visual comparisons, we have used the same random seed in every simulation.

Table 1
Identification of the model
Parameters Initialization Label
Global n = 3410 Number of agents
r = 0.01 Riskless interest rate
I € {0,0.03,0.06,0.09,0.12,0.15} Risk premium
A € {0,0.025,0.05,0.075,0.1} Shading factor
Trader ¢ = 2000 Initial cash endowment
S; = 1 Initial stock endowment
v; ~ 1000 - [1 4+ U(—0.1,0.1)] Fundamental value
T ~ u(0, IT) Risk premium
0i(1) ~ U(0,A) Shading factor
hi ~ t + [Exp(1/250)] days Investment horizon

T; ~ h; + [Exp(1/250)] days Refresh time
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Table 2
Summary of results

1. Even in an order-driven market populated only by fundamentalists, leptokurtosis and fat tails in the
empirical distribution of returns are robust features.

2. The excess kurtosis and the tail exponents of the distribution of returns are decreasing in the bid—ask
spread demanded by the agents.

3. The volatility of returns is increasing in the bid—ask spread demanded by the agents.

. The downside risk is increasing in the bid—ask spread demanded by the agents.

5. The traded volume is decreasing in the bid—ask spread demanded by the agents.

~

A concise summary for the results of the simulations we have performed is
reported in Table 2. The first finding confirms the robustness of a result already
exhibited in Ref. [1]. The other four concern the comparative statics of a few
summary statistics with respect to the bid—ask spread demanded by the agents, which
we proxy by IT and A. In particular, we assess the downside risk using two customary
measures such as the Value At Risk (VaR) and the Expected Shortfall (ES) for the
series p, of the simulated returns. The VaR at a confidence level o is the value x such
that Freq(p,< — x) = a; given a VaR, the ES is E[p,|p,< — VaR].

It is worthwhile noting that these findings imply that an increase in the
determinants of the bid—ask spread demanded by the agents inflates the volatility
of the returns and the downside riskiness of the market, but at the same time tends to
reduce the leptokurtosis of returns.

The rest of this section reports on the evidence backing the results summarized in
Table 2. We begin with Fact 1. Fig. 1 represents the typical time series, density and
normal quantile plot of the returns generated for IT=0.12,A=0 and
IT=0,A = 0.025, respectively. The first time series has parameters inspired from
the equity premium puzzle first described in Ref. [16], that reports a historical risk
premium for NYSE stocks of around 6%. As our agents independently and
uniformly draw their 7 in [0, 0.12], the average risk premium is very close to this
value. These two time series have nearly the same standard deviation (0.0036 and
0.0040). They are also remarkably leptokurtic and extremely fat tailed, as shown by
the normal quantile plot. These general characteristics continue to hold over a wide
range of values for A and II.

Consider now Fact 2. Fig. 2 shows the surface of the (empirical') excess kurtosis
for all different combinations of IT and A. (The z-axis is truncated to improve
readability.) The (empirical) excess kurtosis is always positive: our estimates spanned
the interval [1.91, 101.38], with mean 19.14 and median 5.01. The graph suggests that
an increase in either IT or A results in a smaller (empirical) excess kurtosis. Similar
relationships hold for the tail exponents of the empirical distribution of returns.
When we approximate the tails of the empirical distribution by x~®+tD we get
estimates of the magnitude u of the tail exponent in the range [2.03,6.76]. Fig. 3
depicts the surface of u for all different combinations of A and IT. It is apparent that
tails get fatter in correspondence of lower values of A and IT. Fig. 4 shows the scaling

'Our estimates of the tail exponent imply that the theoretical kurtosis might not be finite.
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Fig. 1. Time series, density and normal quantile plot for the return time series, when A = 0, IT = 0.12 (left)
and A = 0.025,I1 = 0 (right).

behavior of the tail exponent for the “Mehra-Prescott” case where A =0 and
IT = 0.12. The x-axis holds the returns scaled by their standard deviation and the y-
axis reports the probability that the absolute return exceeds a given value. The power
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law exponent is the slope of the straight line in the figure. Its estimated
value is ft =2.40 and falls within the usual range [2,4] generally observed in
empirical data.
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Consider now Fact 3. Fig. 5 exhibits the standard deviation of the returns as a
function of A, for different values of 1. The volatility of the returns (measured by the
standard deviation) is increasing in A and Il. The combination of Facts 2 and 3
suggests that the bid—ask spread demanded by the agents impacts differently on the
volatility and on the “normality” of returns. While a larger spread tends to increase
price bounces between bid and ask and therefore raises volatility, it also makes
systematic departures from normality less marked. There is more variability, but less
large deviations.

This makes the overall evaluation of the riskiness of the market less clearcut. On
the other hand, the literature on risk measurement has established that a more
informative evaluation of risk should especially insist on the downside risk. The two
best known measures are the VaR and the ES. While the VaR is simpler to compute
and therefore far more popular among practitioners, the ES is generally regarded as
a better risk measure because it satisfies coherence; see Ref. [17]. We have computed
both indicators, obtaining the same qualitative results. For the sake of brevity, we
report here only the results for the ES indicator. Fig. 6 graphs the ES for the returns
at the 0.01 confidence level. Consistently with our Fact 4, the ES is increasing with A
and IT. This matches Fact 3, which shows that the standard deviations associated to
(log)-returns are also increasing in A and IT. Given that the empirical distributions in
Fig. 1 are nearly symmetric, this is not surprising. Taken together, Facts 3 and 4
confirm that the riskiness of the market increases with the bid—ask spread demanded
by the agents. This conclusion is robust to using alternative measure of riskiness such
standard deviation, VaR, or ES.
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Fig. 6. Expected shortfall at 0.01 confidence level for different values of A and IT (from bottom to top,
A =0,0.05,0.1).
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Volume

Fig. 7. Traded volume for different combinations of A and IT.

It is conceivable that more volatile markets can trigger further adjustments of the
bid—ask spread demanded by agents, leading to a self-reinforcing mechanism that
might explain volatility bursts and other similar effects. Related mechanisms are
presented for example in Ref. [8], where the agents’ demand is inversely proportional
to the local volatility of the price, and in Ref. [12], where agents update their
threshold for action on the basis of the most recent observed absolute return. We do
not explore this avenue of research in the paper, but the assumption that the bid—ask
spread demanded by the agents is positively correlated with the volatility of returns
appears reasonable and would indeed produce a positive-feedback loop: an
increment of the volatility pushes the agents to upwardly revise their spread, which
in turn ignites a greater volatility. We conjecture that this potentially unstable
dynamics would eventually be controlled by a reduction in the liquidity of the
market, because budget constraints make impossible to sustain a trend indefinitely.

Finally, consider Fact 5. Fig. 7 shows the average traded volume per session as a
function of A and II. As discussed above, the traded volume decreases when the
agents demand a higher bid—ask spread, because this produces a wider average gap
between bids and asks which is more difficult to close.

We close by noting a fine point® about our comparative statics exercises. They are
carried out with respect to changes in A and II. Increasing A and IT simultaneously
raise both the mean and the variance of the uniform distributions from which 6;(¢)

>We thank one of our anonymous referees for raising it.
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and 7; are extracted. Since, in particular, a higher variance implies that the agents’
population tend to be more heterogeneous with respect to the prices at which they
are willing to exchange the risky asset, we cannot rule out confounding effects. In
order to test this, we have run separate tests using, respectively, only upward shifts
(to alter the mean without affecting the variance) and mean-preserving spreads
(to alter the variance without affecting the mean) of the supports of J,(¢) and =;.
Although the results are broadly similar to those reported here, it turns out that they
are less clearcut and, in some instances, monotonicity may occasionally fail.

4. Conclusions

This paper continues the study of the agent-based order-driven market originally
presented in a simpler form in Ref. [1], with special emphasis on the conjoint effect of
the risk premia and of the efficacy—immediacy tradeoff on the general properties of
the time series of the returns. We show that even die-hard fundamentalist trading can
generate fat-tailed and leptokurtic returns when it takes place in an order-driven
market. This results is shown to be robust for a wide range of risk premia and
intensity of efficacy in order placing. Moreover, by simulating different breeds of
agents, we detect monotone relationships between the bid—ask spread demanded by
the agents and some important statistical features of the returns like excess kurtosis,
tail exponents and risk measures. We leave to future research the study of feedback
loops affecting the spread that could explain the occurrence of volatility bursts.
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