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Abstract: We propose Bayesian Markov Switching Generalized Autoregressive Conditional Het-
eroscedasticity (MS-GARCH) models for determining time-varying Minimum Variance (MV) hedge
ratio in energy futures markets. We apply an efficient simulation based technique for inference and
suggest a robust hedging strategy which accounts for model parameter uncertainty. The hedging
model is further applied to crude oil and gasoline spot and futures markets.
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1. Introduction

Hedging is an investment position taken by investors to mitigate the adverse effect arising from
changes in the price of a companion investment. A crucial issue, which has been subject to both
theoretical discussions and econometric specifications, is the determination of the optimal hedge
ratio, i.e. the number of derivative contracts to buy (or sell) for each unit of the underlying asset on
which the investor bears risk. See |Chen et al.|[2003]] for a review. In this paper, we focus on the
econometric specification and estimation procedure of the optimal hedge ratio proposed by |Johnson
[1960] and called Minimum Variance (MV) hedge ratio.

The MV hedge ratio is defined as the ratio of the covariance between the underlying spot and futures
returns to the variance of the futures return. To apply this optimum hedge ratio in practice, Ederington
[1979] suggests regressing the underlying spot returns against the futures returns and to use the
estimate of the slope as MV hedge ratio. This approach has been widely criticized on the grounds
that some of the well known stylized facts about asset returns are ignored. For example, it is well
known that asset returns are usually not strictly stationary. To this end and to improve hedging
performance (Myers|[1991]]), time-varying hedge ratios are proposed in the literature.

Two main approaches have been developed in the literature to estimate time-varying MV hedge ratios.
One approach involves the estimation of the conditional second order moment of the underlying and
futures returns captured by Generalized Autoregressive Conditional Heteroscedasticity (GARCH)
models. See [Haigh and Holt [2002], Chang et al.| [2010] among others for illustration. The later
approach treats the hedge ratio as a time-varying regression coefficient and focuses on the estimation
of such a parameter (Lee et al.|[2006], Chang et al.|[2010] e.t.c.). Note that this hedge ratio works
by re-balancing the hedged portfolio on a period by period basis. This may involve huge transaction
costs and therefore it may not be worthwhile using this particular instrument for hedging. Also, it
has been well documented in the empirical literature that the class of GARCH models exhibit high
persistence of conditional variance, i.e. the process is close to being nearly integrated. In view of this,
a few authors allow the optimal hedge ratio to be state-dependent. In line with the first approach of
estimating time-varying hedge ratios, |Alizadeh et al.|[2008], Lee and Yoder| [2007al], Lee and Yoder
[2007b] among others propose various regime switching models. These models differ mainly by the
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characterization of time-varying covariance matrix. |Alizadeh and Nomikos|[2004] on the other hand
follow the second approach and estimate time-varying hedge ratio by specifying a Markov switching
variance model. More specifically, the time-varying variance is defined as an exponential function of
the lagged 4-week moving average of the difference between the logarithm of the underlying and the
logarithm of the futures. They further test their model with the FTSE 100 and S&P 500 indexes data
and find that the Markov switching approach can improve hedging performance in terms of variance
reduction and utility maximization.

Our contribution to the literature on time-varying hedge ratio is two-folds. First, we propose a MS-
GARCH approach. A direct translation of Bollerslev| [1986] GARCH model to regime switching
setting is known to be affected by path dependence which makes parameter estimation a challeng-
ing exercise. Based on this, Gray| [1996] propose a generalized version of the MS-GARCH models
which avoids the path dependence structure inherent in the former. To this end, a commonly used
model in the hedging literature is the multivariate extension of (Gray| [1996] model. While Gray’s
model is attractive, its analytical intractability is a drawback. We differ from this approach by taking
the direct translation of Bollerslev| [1986] GARCH model to a regime switching setting as given. We
address the inherent path dependence problem by following a Bayesian approach based on Markov
Chains Monte Carlo (MCMC). The estimation exercise is efficiently carried out by following Billio
et al. [2012] technique for efficiently sampling the state variable trajectory. The second contribution
is the use of robust hedging that accounts for parameter uncertainty. Most studies on hedging are
empirically implemented by using the ‘plug-in’ principle i.e. once the optimal decision hedge ratio
is derived, sample estimates of the model’s parameters are substituted directly. This approach to-
tally ignores parameter estimation risk. We follow the simple Bayesian model averaging procedure
as illustrated in Lence and Hayes [1994a]] and |Lence and Hayes| [1994b] for incorporating model
uncertainty into the hedging strategies. In the empirical applications, we also efficiently estimate
time-varying MV hedge ratios for crude oil and gasoline spot and futures prices used in|Chang et al.
[2010] and compare the result to conventional OLS method proposed by |[Ederington| [1979].

The structure of this paper is as follows. In the next section, we present the MV hedge ratio method-
ology and illustrate the empirical model that we used in this paper followed by the estimation tech-
nique. In Section 3, we illustrate with real data how the proposed model is implemented. Section 4
concludes the paper and provides possible extensions.

2. Measuring the Optimal Hedge Ratio

Johnson| [[1960] derives the optimal hedge ratio by minimizing the variance of the hedged portfolio.
Let RS, and RF; represent the underlying spot and futures returns at a given time, ¢, respectively.
Then, the optimal hedge ratio, h, is given as

B — COU(RSt, RFt>
~ Var(RF)

6]

The assumption of constant variance and covariance implies a time-invariant hedge ratio which sug-
gests the use of OLS for its estimation,

RS, = p+vRF, +¢ ¢~ (0,0%, 2)

where p, v and o are the regression parameters. The coefficient of RF}, v, estimated by ordinary
least squares (OLS) is the MV hedging ratio.

Equation (2) represents an oversimplification of assets returns dynamics because it ignores some of
the well known stylized facts, such as conditional heteroscedasticity and volatility clustering, com-
monly observed in financial data. In view of this and to allow for changes in the market conditions to
affect the hedge ratios, Equation (2)) is extended to an M state Markov switching model with a time-
varying volatility process also characterized by regime switching. Let s; be a discrete, unobserved,



state variable which could be interpreted as the state of the world at time ¢. Then,

RSt u(s)) + v(s)RF, +om  m < N(0,1),
=7y(st) + O‘(St)et 1t 5(315)‘71: 1

RF; = a(5t> + TG Gt ~ N N(0,1),
= w(st) +w(s)&y + U (se)Tiy,

where, ¢, = oy, & = TG pu(se), v(se), Y(se) > 0, as) > 0, B(s)) > 0, asy), k(sy) > 0,
w(sy) >0,9(s) >0,and s, € {1,...,M},t=1,...,T,is assumed to follow a M -state first order
Markov chain with transition probabilities {7;; }; j—12. wm:
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The parameter shift functions ju(s;), v(s;), a(se), Y(st), a(se), B(st), k(St), w(s;) and 1(s;) describe
the dependence of parameters on the realized regime s; e.g.

1. ifs, =
- Z [ | — with, I,,—,, = ) St 'm
m= 0, otherwise.

Given information up to time ¢ — 1, the conditional hedge ratio at time ¢, within this setting, is given
by
CO'U(RSt, RFt ’Qt71>

hel€%_1 = 5
t| t—1 Va/f’(RFt‘Qtfl) 9 ( )
where (2,_; denotes the information set available up to time ¢,
Cov(RSy, REYQy—1) = Cov(u(sy), RF,|Qy 1) + Cov(v(sy)) REy, REYQ-1)
= Cov(p(st), a(s:)|Qu-1) + Elv(s) (77 + a(s1)?) Q1] ©)

— Elv(si)a(se)|Q-1] Ela(se) [24-1],
and  V(RF|Q_1) = V(a(se)|Qu—1) + E[7}[Q1].

The model parameters in Equation (3 are often not known with certainty. Based on this, we derive
the optimal hedge ratio under a simple Bayesian model averaging (see Lence and Hayes [1994a]) to
account for the parameter uncertainty to obtain

Ey[Cov(RS;, RE,|S—1)]

Ry, =
€ Eo[Var(RF,|Q1)]

(7

where Fjy[-] is the expectation operator with respect to the posterior distribution of the parameter 6 of
the model. Observe that the optimal hedge ratio given in Equation (/) does not only depend on the
coefficient of RF, v(s;), as it is the case in the conventional OLS approach, a precise Econometric
specification of the return process on futures is required.

2.1 Estimating time-varying MV hedge ratio

Following Billio et al.|[2012], we describe an efficient simulation based technique for Bayesian infer-
ence on the proposed hedging model. The Bayesian approach is based on MCMC Gibbs algorithm
which allows us to circumvent the path dependence problem and efficiently sample the state tra-
jectory. The purpose of this algorithm is to generate samples from the posterior distribution which
are then used for its characterization. We follow a data augmentation framework by treating the
state variables as parameters of the model and construct the completed likelihood function assuming
the states are known. Let s;; = (Sg,...,8;), RSsy = (RSs,...,RSy), RFsy = (RF,...,RF))
whenever s < t, 0, = (7'('11, ey TNy e e e s TIMy - v - 77TMM)5 953 = (ul,. RN 15V R 2 T ,uZM),
ORF = (ay,....am) 00 = (Y1, s Y00 Qs ooy r, By oo Bar)s O0r = (Kiy ooy Kap Wiy - - o Wit



U1, Un) and 0 = (0, 085 0FF 9 0.). We assume fairly informative prior for . and indepen-
dent uniform prior for 675, gRF 9 and 0, and denote with f(6) the joint prior density. To avoid
label switching we assume that Y1 < Y2 < --- < 7y 1.e. identifiability restriction. The posterior
density of the augmented parameter vector given by

f(@, 31:T|RSLT7 RFl:T) X f(R51:T|31:T7 97 RFl:T)f<RF1:T|31:T> 9)p(81T|0)f(9) (8)

cannot be identified with any standard distribution, hence we cannot sample directly from it. Our
Gibbs sampler generate samples from posterior distribution, by iteratively sampling from the follow-
ing full conditional distributions:

L p(SI:T"g; RSLT,RFLT),
L4 f(eﬂ’gi%F) 9537 007 0T7 S1.T, RSl:T7 RFl:T) = (9 ‘51 T) and
L f(9537 95F7 90’7 9T|97T7 S1.T, RSl:T, RFl:T) = f(egsa egF 90’7 97‘31:T7 RSl:Ta RFl:T)~
The full joint distribution of the state variables, s;.7, given the parameter values and return series
p(slzT‘(g; RSl:Ta RFl:T) X f(RSLT’RFlzTa 97 SlzT)f(RFlsza Sl:T) (9)

is a non-standard distribution. We consider a Metropolis Hastings (MH) strategy for generating pro-
posals for the state variables. We construct the proposal distribution by first considering an analytical
approximation of the regime switching GARCH model and then derive the joint distribution of the
state variables. See Billio et al.|[2012] for alternative approximations. For expository purpose, we
apply the Basic approximation given in Billio et al. [2012]]. Samples of the state trajectory are then
drawn by Forward Filter Backward sampling scheme.

While the full conditional of 8, is Dirichlet under Dirichlet prior distribution assumption, the poste-
rior density of (015 6EF 9, 0,)
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is non-standard. Hence, we apply adaptive Metropolis-Hastings (MH) sampling technique for this
step of the Gibbs algorithm.

3. Empirical Applications

To illustrate the proposed method, we use daily closing energy prices for West Texas Intermediate
(WTI) crude oil futures and gasoline futures for the period January 1, 1996 to December 31, 2005
(2500 observations). Both spot and futures daily settlement prices are available from the database of
the Commodity Research Bureau. Futures contracts with a 1 week rolling period prior to expiration
of the current contracts to the next contract are used to circumvent the effects of thin markets and
expiration. The daily returns are computed using the first difference of the natural logarithm of the
daily settlements. Figure (I)) displays the sample path of the crude oil and gasoline squared returns
on spot and futures. We observe volatility clustering, which calls for the use of MS-GARCH models.
The estimated model considered is a two regime (M = 2) restricted version (a(s;) = a and 7; = T)
of the MS-GARCH model. In this case, the hedge ratio reduces to

hi| Q1 = EgE[v(s))|Q—1] Zump si=m|Q1)|, (11

and estimated using,

G M
1 L
Il =53 > vilp (s =miQs), (12)
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Figure 1:: Graphs for daily squared returns on WTI crude oil and gasoline spot and futures from
01/01/1996 to 31/12/2005

where G is the number of Gibbs samples. In this paper, the estimate of the hedge ratio is based on
G = 15000 Gibbs samples. Figure (2)) displays the dynamics of estimated hedge ratio for both the
MS-GARCH (blue line) and OLS (red line) models. We find that 95% of the time-varying hedge
ratio lies within the credible interval of (0.31,0.94) for crude oil and (0.86, 1.10) for gasoline. The
estimates of the hedge ratios, v(s;), of being state 1 is 0.9981 (1.1530) with standard deviation
0.0116 (0.0075) and 0.2006 (0.5266) with standard deviation 0.0508 (0.0423) for being in state two
for crude oil (gasoline). The OLS hedge ratio of Equation (2)) lies between these two hedge ratios for
both commodities. The probability of the hedge ratio for crude oil for staying lower volatility regime
is estimated to be 0.94 with standard deviation 0.0077 and 0.87 with standard deviation 0.0787 for
staying in the higher volatility regime. In the case of gasoline, the probability of staying in the lower
volatility regime is 0.92 with standard deviation 0.0082 and 0.49 with standard deviation 0.0285 for
remaining in the higher volatility regime. In both cases, the probability of staying in regime one is
very high suggesting a low transaction cost because the investor only needs to reblance his portfolio
ocassionaly. Following the estimation of the MS-GARCH and subsequently the hedge ratio using
Equation (12)), we formally assess the performance of these hedges by first constructing the portfolio
implied by the computed hedge ratios daily. Then we calculate the variance of the returns of these
portfolios over the sample. In mathematical forms, we evaluate

VGT’(RSt — h:RFt) (13)

where A are the estimated hedge ratios. The incremental variance improvement of the MS-GARCH
model against the OLS model, using Equation @), is calculated as follows

Var(OLS) — Var(MS-GARCH)
Var(OLS) ’

(14)

where Var(OLS) and Var(MS-GARCH) are respectively the variance of the returns on the hedged
portfolio (Equation (13)) estimated using hedge ratios obtained from the OLS and MS-GARCH mod-
els. For crude oil, the MS-GARCH model provides a better variance reduction (7%) when compared
to the OLS model. Whereas, the OLS model performs slightly better (0.84%) than MS-GARCH
model in terms of risk reduction for gasoline.
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Figure 2:: Graphs of estimated hedge ratios from 01/01/1996 to 31/12/2005



4. Conclusion

In this paper, we present and examine the performance of a robust Bayesian MS-GARCH model
for determining the time-varying hedge ratios in energy futures markets. The use of this type of
model is suggested by the fact that the dynamics of both spot and futures returns may be affected
by changes in the state of the world, conditional heteroscedasticity and volatility clustering. These
features suggest that allowing the hedge ratios to depend on the state of the market may produce more
efficient and perhaps superior hedging performance when compared to the conventional method.
Hedging strategies in practice are mostly implemented by using the plug-in principle. This approach
entirely neglects estimation risk. We account for the parameter uncertainty by considering a Bayesian
model averaging approach. We have considered a very restricted version of the MS-GARCH model in
our empirical applications for which we obtained mixed results. It is our opinion that if we allow the
dynamics of the futures returns to follow an MS-GARCH model a better result in terms of efficiency
and performance may be obtained. The in-sample performance of the hedging strategies consider in
this paper gives an indication of historical performance. However, investors are more interested in
how well they can forecast using different hedging strategies. In this respect, it is our plan to address
this issue in further research.
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