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Abstract This paper concerns the problem of prediction in a multidimensional set-
ting. Generalizing a result presented in Ueki and Fueda (2007), we propose a method
for correcting estimative predictive regions to reduce their coverage error to third-
order accuracy. The improved prediction regions are easy to calculate using a suit-
able bootstrap procedure. Furthermore, the associated predictive distribution func-
tion is explicitly derived. Finally, an example concerning the exponential distribu-
tion shows the good performance of the proposed method.
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1 Introduction

Let us assume that Y = (Y1, . . . ,Yn), n≥ 1, is an observable continuous random vec-
tor. The problem of prediction, in a multidimensional setting, consists in defining
a suitable prediction region, that is a subset of Rm, m ≥ 1, with a fixed proba-
bility of including a further continuous random vector Z = (Z1, . . . ,Zm). The joint
distribution of Z and Y is assumed to be known, up to a k-dimensional parameter
ω ∈Ω ⊆Rk, k≥ 1; ω̂ = ω̂(Y ) denotes an asymptotically efficient estimator for ω ,
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Università Ca’ Foscari di Venezia, Dipartimento di Scienze Ambientali, Informatica e Statistica,
San Giobbe, Cannaregio 873, I-30121 Venezia, Italy, e-mail: giummole@unive.it

Paolo Vidoni
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usually the maximum likelihood estimator. For simplicity, Y and Z are considered
independent and we denote by f (z;ω) the joint density function of Z.

The simplest predictive solution is the estimative or plug-in one. An estimative
prediction region, with nominal probability α ∈ (0,1), is a suitable subset of Rm

derived from the estimative predictive density f (z; ω̂), which is obtained by sub-
stituting the unknown parameter ω by ω̂ in f (z;ω). Unfortunately the associated
coverage probability is not equal to the target value α . The error term has order
O(n−1) and it is often considerable. For scalar Z, improved predictive solutions have
been proposed in Barndorff-Nielsen and Cox (1996) and Vidoni (1998), involving
complicated asymptotic calculations with the aim of reducing the coverage error to
order o(n−1). Recently, Ueki and Fueda (2007) suggested a simple simulation-based
procedure, useful to easily compute improved α-prediction limits. In this work we
extend the Ueki and Fueda’s procedure to the case of Z being a multidimensional
random variable. Furthermore, we specify a predictive distribution function associ-
ated to improved prediction regions. An application, concerning exponential distri-
bution, shows the good performance of the proposed method

2 Improved prediction region

As suggested in Beran (1990) and Ueki and Fueda (2007), we consider estimative
prediction regions of the form D(r, ω̂) = {z∈Rm : R(z, ω̂)≤ r}, for some real value
r and some smooth real function R(z,ω). Notice that the so-called highest prediction
density region is a special case with R(z,ω) = − f (z;ω). Prediction regions of this
form are identified by the value of r, which we refer to as the limit of the region.
From now on, our aim is to find a prediction limit r̃α(y) such that

PY,Z [R{Z, ω̂(Y )} ≤ r̃α(Y )] = EY

[∫
D{r̃α (Y ),ω̂}

f (z;ω)dz
]
= α,

for all α ∈ (0,1), at least to a high-order of approximation. The above probability
is the coverage probability of the prediction region and it is intended with respect
to the joint distribution of Y,Z with parameter ω . When Z is unidimensional and
R(Z,ω) = Z, r̃α(Y ) is the α-prediction limit for Z.

The estimative solution is based on the estimative prediction limit rα(ω̂), such
that ∫

D{rα (ω̂),ω̂}
f (z; ω̂)dz = α.

The coverage probability of the estimative prediction region D{rα(ω̂), ω̂} is α̂(ω)=
α +O(n−1) and, in order to eliminate the O(n−1) coverage error term, we modify
rα(ω̂) as done by Ueki and Fueda (2007) in the unidimensional case. More pre-
cisely, the adjusted prediction limit, achieving coverage probability α +o(n−1), is

r̃α(ω̂) = 2rα(ω̂)− rα̂(ω)(ω̂), (1)
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where rα̂(ω)(ω̂) is the α̂(ω)-estimative prediction limit. The improved estimative
prediction region is D(r̃α(ω̂), ω̂) = {z ∈ Rm : R(z, ω̂) ≤ r̃α(ω̂)}. In order to ex-
plicitely calculate r̃α(ω̂), we only need to evaluate the estimative coverage proba-
bility α̂(ω). This can be easily computed in practice, using a suitable parametric
bootstrap procedure.

Finally, as proved in Fonseca et al. (2011), we may obtain an explicit expression
for the distribution function which gives, up to terms of order O(n−1), the improved
limit r̃α(ω̂) as α-quantile, for all α ∈ (0,1). Let FR(r;ω) be the distribution function
of R(Z,ω); thus, rα(ω̂) is such that FR{rα(ω̂); ω̂} = α . The improved predictive
distribution function corresponds to

F̃R(r;Y ) = FR(r; ω̂)+ fR(r; ω̂)
[
F−1

R {α̂(ω); ω̂}|α=FR(r;ω̂)− r
]
,

with fR(·;ω) the density function of R(Z,ω) and F−1
R (·;ω) the inverse of function

FR(·;ω). When the distribution function FR(r;ω) is not available, it may be approx-
imated by means of a further bootstrap procedure.

3 Example

Let Y1, . . . ,Yn,Z1, . . . ,Zm, n,m ≥ 1, be independent exponential random variables
with unknown scale parameter ω > 0. The maximum likelihood estimator for ω

is ω̂ = Ȳ = n−1
∑

n
i=1 Yi. A highest prediction density region is D(r, ω̂) = {z ∈

[0,+∞)m : z̄/ω̂ ≤ r}, with z̄ = n−1
∑

m
j=1 z j. Notice that Z̄/ω̂ is a pivotal quantity,

having a Fisher F distribution, F(2m,2n). Thus, a prediction region with exact cov-
erage probability α can be obtained by choosing as limit of the region fα,2m,2n, the
α-quantile of a F(2m,2n) distribution. Nonetheless, the aim of this example is to
test the performance of the improved prediction region. In order to do this, note
that R(Z,ω) = Z̄/ω has a Gamma distribution with shape parameter m and scale
parameter 1/m, so that the estimative limit rα(ω̂) coincides with the α-quantile of
a Gamma(m,1/m) distribution. The corresponding coverage probability, α̂(ω), can
be evaluated using a suitable parametric bootstrap procedure. The improved predic-
tion limit can thus be calculated by means of expression (1).

Table 1 shows the results of a simulation study for comparing coverage proba-
bilities for estimative and improved prediction regions of level α = 0.9, 0.95. The
scale parameter of the true distribution is ω = 10. It can be noticed that the coverage
probability associated to improved prediction limits is closer to the nominal value
α than that one corresponding to the estimative solution, especially as the number
of future variables m increases.

Finally, Figure 1 considers the case where ω = 1 and it shows the upper tail of the
exact predictive distribution function, which is based on the pivotal quantity Z̄/ω̂ ,
together with those ones of the estimative and the improved predictive distribution.
The exact solution turns out to be better approximated by the improved predictive
distribution.
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α = 0.9 α = 0.95
n m Estimative Improved Estimative Improved
10 1 0.878 0.898 0.929 0.947

5 0.818 0.873 0.877 0.928
10 0.784 0.854 0.842 0.909

20 1 0.884 0.896 0.938 0.949
5 0.855 0.888 0.912 0.940
10 0.830 0.882 0.890 0.934

Table 1 Independent exponential random variables with scale parameter ω = 10, n = 10,20 and
m = 1,5,10. Coverage probabilities for estimative and improved prediction regions of level α =
0.9, 0.95. Estimation based on 10,000 Monte Carlo replications and bootstrap procedure based on
5,000 bootstrap samples. Estimated standard errors are smaller than 0.005.
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Fig. 1 Independent exponential random variables with scale parameter ω = 1. Plots of upper-tail
of estimative (dashed), improved (dotted) and exact (solid) predictive distribution functions, for
different values of the sample size n = 10,20 and dimension of the future vector m = 1,5,10.
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