Prediction in a multidimensional setting
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Abstract This paper concerns the problem of prediction in a multidimensional set-
ting. Generalizing a result presented in Ueki and Fueda (2007), we propose a method
for correcting estimative predictive regions to reduce their coverage error to third-
order accuracy. The improved prediction regions are easy to calculate using a suit-
able bootstrap procedure. Furthermore, the associated predictive distribution func-
tion is explicitly derived. Finally, an example concerning the exponential distribu-
tion shows the good performance of the proposed method.
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1 Introduction

Let us assume that Y = (¥y,...,Y,), n > 1, is an observable continuous random vec-
tor. The problem of prediction, in a multidimensional setting, consists in defining
a suitable prediction region, that is a subset of #™, m > 1, with a fixed proba-
bility of including a further continuous random vector Z = (Z;,...,Z,). The joint
distribution of Z and Y is assumed to be known, up to a k-dimensional parameter
WeEQRCH k>1,0= @(Y) denotes an asymptotically efficient estimator for @,

Giovanni Fonseca
Universita di Udine, Dipartimento di Scienze Economiche e Statistiche, via Treppo 18, I-33100
Udine, Italy, e-mail: giovanni.fonseca@uniud.it

Federica Giummole
Universita Ca’ Foscari di Venezia, Dipartimento di Scienze Ambientali, Informatica e Statistica,
San Giobbe, Cannaregio 873, I-30121 Venezia, Italy, e-mail: gilummole @unive.it

Paolo Vidoni
Universita di Udine, Dipartimento di Scienze Economiche e Statistiche, via Treppo 18, 1-33100
Udine, Italy, e-mail: paolo.vidoni @uniud.it



2 Giovanni Fonseca, Federica Giummolé and Paolo Vidoni

usually the maximum likelihood estimator. For simplicity, ¥ and Z are considered
independent and we denote by f(z; @) the joint density function of Z.

The simplest predictive solution is the estimative or plug-in one. An estimative
prediction region, with nominal probability o € (0, 1), is a suitable subset of %"
derived from the estimative predictive density f(z; @), which is obtained by sub-
stituting the unknown parameter @ by @ in f(z; ®). Unfortunately the associated
coverage probability is not equal to the target value ¢. The error term has order
O(n~") and it is often considerable. For scalar Z, improved predictive solutions have
been proposed in Barndorff-Nielsen and Cox (1996) and Vidoni (1998), involving
complicated asymptotic calculations with the aim of reducing the coverage error to
order o(n~!). Recently, Ueki and Fueda (2007) suggested a simple simulation-based
procedure, useful to easily compute improved a-prediction limits. In this work we
extend the Ueki and Fueda’s procedure to the case of Z being a multidimensional
random variable. Furthermore, we specify a predictive distribution function associ-
ated to improved prediction regions. An application, concerning exponential distri-
bution, shows the good performance of the proposed method

2 Improved prediction region

As suggested in Beran (1990) and Ueki and Fueda (2007), we consider estimative
prediction regions of the form D(r, ®) = {z € ™ : R(z,®) < r}, for some real value
r and some smooth real function R(z, ®). Notice that the so-called highest prediction
density region is a special case with R(z, ®) = — f(z; ®). Prediction regions of this
form are identified by the value of r, which we refer to as the limit of the region.
From now on, our aim is to find a prediction limit 74 (y) such that

P2 [RIZ.O(Y)} < FalY)] = Ey [ L0y F 50| =

for all o € (0, 1), at least to a high-order of approximation. The above probability
is the coverage probability of the prediction region and it is intended with respect
to the joint distribution of Y,Z with parameter w. When Z is unidimensional and
R(Z,w) = Z, 7o (Y) is the a-prediction limit for Z.

The estimative solution is based on the estimative prediction limit rq(®), such

that
/ flz;@)dz = a.
Dira(d),0}

The coverage probability of the estimative prediction region D{rq(®),®d} is &(®) =
a+O(n~") and, in order to eliminate the O(n~!) coverage error term, we modify
ro(®) as done by Ueki and Fueda (2007) in the unidimensional case. More pre-
cisely, the adjusted prediction limit, achieving coverage probability o +o(n~!), is

Fa(®) = 2rq(®) — ra (o) (D), (1)
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where 74 (®) is the &(w)-estimative prediction limit. The improved estimative
prediction region is D(7(®),®) = {z € #™ : R(z,®) < Fo(®)}. In order to ex-
plicitely calculate 7, (@), we only need to evaluate the estimative coverage proba-
bility &(w). This can be easily computed in practice, using a suitable parametric
bootstrap procedure.

Finally, as proved in Fonseca et al. (2011), we may obtain an explicit expression
for the distribution function which gives, up to terms of order O(n~!), the improved
limit 7o (@) as o-quantile, for all & € (0, 1). Let Fr(r; @) be the distribution function
of R(Z,w); thus, ro(®) is such that Fr{rq(®);®} = a. The improved predictive
distribution function corresponds to

Fr(rY) = Fr(r; @) + fr(r; &) [Fy '{&(0): 0} i) — 71+

with fz(-; ®) the density function of R(Z, ®) and Fy; ' (-; ) the inverse of function
Fr(+; ). When the distribution function Fg(r; ®) is not available, it may be approx-
imated by means of a further bootstrap procedure.

3 Example

Let 11,....Y,,Zy,...,Zy, n,m > 1, be independent exponential random variables
with unknown scale parameter @ > 0. The maximum likelihood estimator for @
is ® =Y =n"'Y",Y. A highest prediction density region is D(r,®) = {z €
[0,+o0)™ : Z/® < r}, with Z=n""! Z;"Zl zj. Notice that Z/® is a pivotal quantity,
having a Fisher F distribution, F'(2m,2n). Thus, a prediction region with exact cov-
erage probability a can be obtained by choosing as limit of the region fy 2 24, the
o-quantile of a F(2m,2n) distribution. Nonetheless, the aim of this example is to
test the performance of the improved prediction region. In order to do this, note
that R(Z,w) = Z/® has a Gamma distribution with shape parameter m and scale
parameter 1/m, so that the estimative limit ro (@) coincides with the a-quantile of
a Gamma(m, 1 /m) distribution. The corresponding coverage probability, &(®), can
be evaluated using a suitable parametric bootstrap procedure. The improved predic-
tion limit can thus be calculated by means of expression (1).

Table 1 shows the results of a simulation study for comparing coverage proba-
bilities for estimative and improved prediction regions of level a = 0.9, 0.95. The
scale parameter of the true distribution is @ = 10. It can be noticed that the coverage
probability associated to improved prediction limits is closer to the nominal value
o than that one corresponding to the estimative solution, especially as the number
of future variables m increases.

Finally, Figure 1 considers the case where @ = 1 and it shows the upper tail of the
exact predictive distribution function, which is based on the pivotal quantity Z/®,
together with those ones of the estimative and the improved predictive distribution.
The exact solution turns out to be better approximated by the improved predictive
distribution.
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=09 a=0.95
n m Estimative Improved Estimative Improved
10 1 0.878 0.898 0.929 0.947
5 0.818 0.873 0.877 0.928
10 0.784 0.854 0.842 0.909
201 0884 0.896 0.938 0.949
5 0.855 0.888 0.912 0.940
10 0.830 0.882 0.890 0.934

Table 1 Independent exponential random variables with scale parameter @ = 10, n = 10,20 and
m = 1,5,10. Coverage probabilities for estimative and improved prediction regions of level o¢ =
0.9, 0.95. Estimation based on 10,000 Monte Carlo replications and bootstrap procedure based on
5,000 bootstrap samples. Estimated standard errors are smaller than 0.005.
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Fig. 1 Independent exponential random variables with scale parameter @ = 1. Plots of upper-tail
of estimative (dashed), improved (dotted) and exact (solid) predictive distribution functions, for
different values of the sample size n = 10,20 and dimension of the future vector m = 1,5, 10.
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