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Abstract

We consider a parametrized relaxation of the widely
adopted quadratic assignment problem (QAP) formula-
tion for minimum distortion correspondence between de-
formable shapes. In order to control the accuracy/sparsity
trade-off we introduce a weighting parameter on the com-
bination of two existing relaxations, namely spectral and
game-theoretic. This leads to the introduction of the elastic
net penalty function into shape matching problems. In com-
bination with an efficient algorithm to project onto the elas-
tic net ball, we obtain an approach for deformable shape
matching with controllable sparsity. Experiments on a stan-
dard benchmark confirm the effectiveness of the approach.

1. Introduction
Shape matching is a pervasive problem in computer

vision and arises in several different fields ranging from
robotics to medical imaging. In its most typical form, it con-
cerns the problem of determining a map f : X → Y among
two given shapes in such a way that their geometrical prop-
erties are preserved by the transformation. A particularly
challenging instance of this problem occurs when the two
shapes undergo general non-rigid deformations. As such,
matching of deformable shapes has attracted the interest
of researchers during the years and a wide variety of ap-
proaches have been proposed (see, e.g. [2] and references
therein for a recent comparison).

A prominent approach to the matching problem from
a metric perspective was introduced in [12], a concept
that was explored further in [3] with the introduction of
the GMDS framework, where the minimum distortion iso-
metric embedding of one surface onto another is explic-
itly sought. A different view on the problem stems from
the notion of uniformization space [9, 17]. Lipman and
Funkhouser [9] proposed to model deviations from isometry

by a transportation distance between corresponding points
in a canonical domain (the complex plane); the result of this
process is a “fuzzy” correspondence matrix, whose values
can be given the natural interpretation of confidence levels
attributed to each match. This idea of a fuzzy map of as-
signments is not novel, and can be traced back, for instance,
to the softassign method for graph matching [6]. In the
specific case of non-rigid shapes, fuzzy schemes are typi-
cally adopted to relax the point-to-point mappings [11, 14].
While methods based on uniformization theory are made
attractive by the low dimensionality of the embedding do-
main, they do not behave well with different kinds of de-
formations (e.g., topological changes), and are subject to
global inconsistencies in the final mapping. More recently,
Windheuser et al. [16] gave a linear programming relax-
ation to the matching problem; the method notably allows
to obtain continuous correspondences, but it is sensitive to
topological changes and, as noted by the authors, its GPU
implementation takes about 2 hours per matching.

In this paper, we consider the widely adopted quadratic
assignment problem (QAP) formulation for minimum dis-
tortion correspondence between deformable shapes. No-
table attempts at relaxing the NP-hard QAP include gradu-
ated assignment [6], spectral relaxation [8] and the more re-
cent game-theoretic approach [14]. Motivated by the obser-
vation that good accuracy often comes at the price of high
sparsity, whereas large cardinality tends to bring distorted
matches into the correspondence, we attempt to control the
accuracy/sparsity trade-off by introducing a weighting pa-
rameter on the combination of two effective relaxations,
namely the spectral and game-theoretic techniques, which
we relate to their regularizer counterparts from regression
analysis. This leads us to the introduction of the elastic net
penalty function [18] into shape matching problems.

The contributions of this paper are two-fold: First, we
provide an interpretation of the correspondence problem
from the point of view of regression analysis, yielding a nat-



ural connection between existing approaches and well es-
tablished regularization techniques. We introduce the fam-
ily of elastic net constraints into a relaxed QAP formula-
tion, and show how previous relaxation attempts naturally
constitute special cases of our formulation. Experiments
on a standard benchmark demonstrate densifying behavior
while maintaining at the same time high accuracy of the cor-
respondence. Second, we give a solution to the projection
problem onto the new set of constraints from the viewpoint
of variable selection, giving rise to an especially simple and
efficient projection algorithm.

2. Minimum distortion correspondence
We model shapes as compact Riemannian manifolds en-

dowed with an intrinsic metric d. A point-to-point corre-
spondence between two shapes X and Y can be defined as
a binary function c : X × Y → {0, 1} satisfying the map-
ping constraints∑

x∈X
c(x, y) ≤ 1 ,

∑
y∈Y

c(x, y) ≤ 1 , (1)

for every x ∈ X and y ∈ Y . Note that these constraints en-
sure that every point in one shape has at most one corre-
sponding point in the other (and vice versa), thus allowing
the two shapes to have different size. In the following, we
will slightly abuse nomenclature and equivalently refer to
the correspondence as the respective collection of matches,
that is, the set of pairs C ⊂ X × Y for which c(x, y) 6= 0.

In order to give a measure of quality to the correspon-
dence, we evaluate the distortion induced by the map-
ping as measured on the two shapes using the respec-
tive metrics dX and dY . In particular, given two matches
(x, y), (x′, y′) ∈ C, the absolute criterion

ε(x, y, x′, y′) = |dX(x, x′)− dY (y, y′)| (2)

directly quantifies to which extent the estimated correspon-
dence deviates from isometry. Following [11, 14], we first
relax the correspondence from a discrete to a fuzzy no-
tion by letting c : X × Y → [0, 1], effectively setting off the
problem from its combinatorial nature and bringing it to a
continuous optimization domain. Further, we adopt the so
called Gromov-Wasserstein [11] family of metrics, which
give rise to a relaxed notion of proximity between shapes:

D(X,Y ) = (3)
1

2
min
C

∑
(x,y),(x′,y′)∈C

εp(x, y, x′, y′)c(x, y)c(x′, y′) .

Establishing a minimum distortion correspondence between
the two shapes amounts to finding a minimizer of the above
distance. To this end, note that the problem can be easily
recast as a relaxed QAP,

minC vec{C}TA vec{C} (4)
s.t. C1 � 1, CT1 � 1, C � 0 ,

where vec{C} is the |C|-dimensional column-stack vector
representation of the correspondence matrix C, A is a non-
negative symmetric cost matrix containing the pairwise dis-
tortion terms that appear in (3), 1 is a vector of n = |C|
ones, and � denotes element-wise inequality. Note that in
the standard QAP, function c is taken to be a binary corre-
spondence and the mapping constraints (1) hold with equal-
ity (requiring C to be a permutation matrix).

In the following, we present two existing approaches that
relax the mapping constraints in (4) to find a minimum dis-
tortion correspondence. Even though originating from dis-
tinct motivations, the two methods share a convenient inter-
pretation as partitioning problems in the space of potential
assignments. Their introduction here is useful for the con-
struction we will present in Section 3.
2.1. Spectral matching

Taking the point of view of graph clustering, [8] pro-
posed the simplified problem

minx xTAx (5)
s.t. ‖x‖22 = 1 ,

where x ≡ vec{C} ∈ Rn is the vector representation for
the correspondence. Following Rayleigh’s quotient theo-
rem, this modified QAP is minimized by the eigenvector
x? corresponding to the minimum eigenvalue of A. Note
that mapping constraints are not imposed in (5). The au-
thors follow a greedy algorithm to impose such constraints
only after a solution has been obtained. The method has a
tendency to produce matches for each point. This makes it
of limited use in real settings, where shapes may undergo
partiality deformations. Further, symmetries and structured
noise in the data (indeed a characteristic of the non-rigid
setting) may lead to unstable eigenvectors [8] and thus un-
reliable assignments. The spectral method has been applied
for non-rigid matching in [13].

The L2 relaxation to the QAP was introduced mainly be-
cause it allows to obtain a global solution to the modified
problem in closed form. Here we give another interpre-
tation of this approach as a relaxed two-way partitioning
problem [1]. Consider the set of constraints taking the form
x2
i = 1 for i = 1 . . . n; these constraints restrict the values

of xi to±1, so the problem is equivalent to finding the parti-
tioning (as “match” or “non-match”) on a set of n elements
that minimizes the total cost xTAx. Here, the coefficients
Aij can be interpreted as the cost of having elements i and
j in the same partition. Clearly, the new constraints imply∑n
i=1 x

2
i = ‖x‖22 = n; since this actually allows the xi to

take on any (small enough) real number, optimizing over
this feasible set will yield a lower bound on the optimal
value of the original partitioning problem.
2.2. Game-theoretic matching

Given the inherent difficulty to solve for a minimum dis-
tortion correspondence under general deformations, in a re-
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Figure 1. Contour plots of the L2 (circle), L1 (diamond), and elas-
tic net (in between) balls in R2. In this example we set α = 0.6.
The strength of convexity varies with α.

cent paper [14] we proposed to shift the focus to the search
of a maximal group of matches having least distortion, re-
gardless of its cardinality. To achieve this, we proposed to
optimize over the probability simplex

‖x‖1 = 1TC1 = 1 , x � 0 . (6)

The main benefits of adopting such L1-type constraint
for the matching problem arise from its convenient game-
theoretical interpretation, leading to very efficient algo-
rithms for (local) optimization and, most remarkably, in
allowing the mapping constraints to be embedded directly
into the cost matrix A. Unfortunately, the strong selectivity
demonstrated by the game-theoretic approach is hardly de-
sirable for matching problems. While existing algorithms
may be applied to densify the few obtained matches, in
practice the high spatial locality of the final correspon-
dence does not allow to properly constrain such densifica-
tion methods [17, 13].

Similarly to the L2 case, the game-theoretic approach
can be regarded as an attempt to solve a partitioning prob-
lem where the two partitions are represented by xi = 0
or 1 for i = 1 . . . n. This, in turn, corresponds to impos-
ing a bound on the “counting” norm ‖x‖0, which is re-
laxed here to the continuous sparsity-inducing counterpart∑n
i=1 |xi| = ‖x‖1 = n, with xi ≥ 0 for all i.

3. Matching with the elastic net
Both methods presented in the previous section are vir-

tually free from parameters, but their performance directly
depends on the specific definition of the distortion function
ε. It is very difficult, in practice, to give a definition for
ε that works well for any given pair of shapes. This is, in
fact, a difficulty shared by any method attempting to min-
imize (4). Ovsjanikov et al. [13] recently introduced the
notion of shape condition number. According to this no-
tion, the stability of the matching can be characterized as an
intrinsic property of the shape itself, and is related to its in-
trinsic symmetries as well as the specific choice of a metric.

In order to incorporate a somewhat elusive notion of sta-
bility into the matching process, we propose to change the

point of view by drawing an analogy between the corre-
spondence problem and model-fitting. Our goal, in this
context, is to determine a good approximation of the true
relationship between the two shapes: we seek to fit or ap-
proximate the optimal correspondence x? as closely as pos-
sible, with deviation measured in the Gromov-Wasserstein
distance, i.e., in the quadratic form xTAx. Problems of
this kind are often studied with the tools of regression anal-
ysis [1]. Here the interest shifts from finding a best fit to
analyzing the relationships among the several variables that
build up the set of potential assignments {xi}i=1...n. These
candidate matches act as predictors for the minimum distor-
tion correspondence, and can be given the interpretation of
explanatory variables which we observe, while we seek to
find the combination that best describes the data in the mini-
mal distortion sense. Since in general these variables hold a
certain degree of correlation among them, it is of particular
interest to attempt to determine whole groups of highly cor-
related predictors, as they will likely form consistent groups
of matches in terms of the adopted measure of distortion.

In this view, spectral matching can be directly related
to ridge regression, whose L2 penalty is known to generally
improve conditioning of the problem, yet always keeping all
the predictors in the model. Similarly, the game-theoretic
technique finds its equivalent in the lasso, the sparsity-
inducing L1 regularizer performing continuous shrinkage
and automatic variable selection simultaneously [1, 18]; one
major limitation of the lasso is its tendency to select only
one variable from a group of variables among which the
pairwise correlations are very high. While none of the two
methods dominates the other in all circumstances, both have
appealing features. Our aim is to strike a balance between
the two. To this end, we adopt a family of constraints known
as elastic net [18]. This regularization technique shares with
the lasso the ideal property of performing automatic vari-
able selection, and most notably it is able to select entire
groups of highly correlated variables. The elastic net cri-
terion is defined as a convex combination of the lasso and
ridge penalties:

(1− α)‖x‖1 + α‖x‖22 , α ∈ [0, 1] . (7)

It becomes ridge regression for α = 1, and the lasso for
α = 0. This penalty function is singular at 0 and strictly
convex (differently from the lasso) for α > 0, thus possess-
ing the characteristics of both penalties (see Fig. 1).

Strict convexity plays an important role as it guaran-
tees the grouping effect in the extreme situation with iden-
tical predictors (that is, whenever the distortion between
two matches is exactly 0), and provides a quantitative de-
scription of their degree of correlation (proportional in
our case to the deviation from isometry) otherwise. Let
x ∈ R|C| be the vector representation of some correspon-
dence C ⊂ X × Y , we expect the elastic net-penalized so-



lution to keep the difference |xi − xj | small whenever the
metric distortion ε(Ci, Cj) between the two matches is
small. The trade-off between size of the correspondence
and matching error is regulated by the convexity parameter
α, which allows to fine tune the model complexity and bal-
ance the action of the penalty ranging from the highly selec-
tive pure lasso for α = 0 to the more tolerant ridge behavior
for α = 1. This leads to the following family of relaxations
for the QAP:

min
x

xTAx (8)

s.t. (1− α)‖x‖1 + α‖x‖22 = 1, x � 0 ,

with α ∈ [0, 1]. The family directly generalizes the spectral
and game-theoretic techniques. Similarly to the spectral ap-
proach, this formulation does not guarantee the final solu-
tion to represent a bijective mapping, which can neverthe-
less be efficiently obtained a posteriori using, for instance,
the same greedy technique of [8]. Note that this final step is
only performed to emphasize the generalization property of
our formulation, as it will transition smoothly from a sparse
behavior equivalent to [14] to one similar to [8].
3.1. Optimization

We undertake a projected gradient approach [1] to deter-
mine a local optimum for problem (8). The optimization
process is governed by the equations

x(t+1) = Π
(
x(t) − γ(t)Ax(t)

)
, (9)

where Ax = 1
2∇x

TAx is a descent direction for the ob-
jective, γ > 0 is the step length taken in that direction,
and Π : Rn → Rn is a projection operator taking a solution
back onto the feasible set.

While efficient methods for projecting onto the L2 and
L1 balls have been proposed in literature [15], projection
onto their convex combination is a more involved task. A
detailed explanation of our approach on the computation of
Π is deferred to the next Section; nevertheless, we antic-
ipate here that this projection step can be performed in a
very efficient manner. This allows us to determine the op-
timal step size in (9) at each iteration by performing exact
line search [1] along the ray {x + γAx : γ ≥ 0} through
the application of Newton’s method [1], a quadratic fitting
algorithm having order two convergence.

Finally, we initialize x(0) to the barycenter of the elastic
net boundary, i.e., for all i = 1 . . . nwe set xi to the positive
solution of the quadratic equationαnx2+(1−α)nx−1 = 0.
3.2. Projection onto the elastic net ball

Computing the Euclidean projection Π(x0) onto the
(positive) elastic net ball boundary amounts to solving the
following projection problem

minx ‖x− x0‖22 (10)
s.t. (1− α)1Tx + αxTx = t, x � 0 ,

with α ∈ [0, 1]. Efficient attempts at solving this problem
arose only recently [10, 7]. Gong et al. [7] formulate the
minimization as a root finding problem for a piecewise con-
tinuous function. While the method allows to obtain a so-
lution in linear time, the procedure is highly susceptible to
numerical errors; these errors are exacerbated when the di-
mension of the projected vector is high, severely limiting
the applicability of the method in several practical settings.
Further, the approach draws its major benefits from sparse
projected vectors. However, in sparse matching problems
vectors tend to be dense, and in this situation the method
does not perform as efficiently. Mairal et al. [10] propose a
linear time projection algorithm based on randomized me-
dian search; the algorithm is numerically stable, but it is
outperformed by root finding for low dimensions [7].

One major disadvantage of the existing methods lies in
their inherently sequential nature. With the advancement
of computational technologies and the applications they en-
able, it has become necessary to provide algorithms that
exploit this computational power and scale up with the in-
creased dimensionality of real-world problems. Both meth-
ods presented above are unable to address the need. To this
end, we take a different point of view and regard the projec-
tion problem as one of coordinate selection. Our method is
not susceptible to numerical errors, it is at least as efficient
as existing methods in its basic form and, most importantly,
it easily lends itself to a parallel implementation.

It is immediate to see that the solution to (10) lies in
the intersection of two convex sets: a sphere of equation
(1 − α)1Tx + αxTx = t (which we denote by C1), and
the non-negative cone (C2). Projection onto the intersection
of convex sets has been extensively studied in the past; of
particular relevance is a result which can be traced back to
Dykstra [5], an iterative technique usually referred to as the
method of alternating projections.

We determine a closed form projection onto C1 as fol-
lows. Disregarding the non-negativity constraints and in-
troducing Lagrange multiplier λ ∈ R, we obtain the La-
grangian associated to problem (10)

L(x, λ) = ‖x− x0‖22 + λ
[
(1−α)1Tx + αxTx− t

]
. (11)

The KKT optimality conditions require that the gradient of
L(x, λ) with respect to x vanish at the optimum, i.e.,

∇xL(x, λ) = 2(1 + λα)x− 2x0 + λ(1− α)1 = 0, (12)

from which we obtain the optimal x as

x =
x0 − λ 1−α

2 1

1 + λα
. (13)

Determining the optimal value for λ is straightforward; im-
posing the elastic net constraints on x, it must hold

α

n∑
i=1

(
x0i − λ 1−α

2

1 + λα

)2

+(1− α)

n∑
i=1

x0i − λ 1−α
2

1 + λα
= t. (14)



Figure 2. Example of matchings obtained with the game-theoretic, elastic net and spectral techniques. The set of potential assignments is
constructed by taking ∼200 farthest points on one shape (shown in the left image for reference), and then building the whole Cartesian
product with the correct corresponding points from the other shape, after 45% of them have been moved to random positions over the
surface. This setup simulates a moderately challenging scenario in which only ∼50% of the shape is matchable with low distortion, and
the feasible set comprises all possible assignments between the two shapes. The game-theoretic (L1) solution is highly selective and only
assigns 3% of the shape samples, with geodesic error 3.12 (left image); in contrast, the spectral (L2) approach favors dense solutions and
yields matches for 93% of the points, with total error 62.53 (right image). Elastic net matching (middle) allows to regulate the trade-off
between size and distortion: the correspondence is made more dense, and 53% of the points are matched while keeping the error at 15.87
(compare with Table 1). Here we set α = 0.85.

From this we obtain a quadratic equation in λ; substituting
the λ obtained into Eq. (13) we get the desired projection.

Projection onto the constraint set C1 ∩ C2 from prob-
lem (10) can be obtained in an iterative manner according to
the alternating projections scheme; however, the method of
alternated projections is mainly of theoretical importance,
while empirical evidence often reveals slow convergence
rate and poor scalability. In the following we present a novel
iterative approach, in which the original minimum-distance
problem is modified with the introduction of a selection
term on the optimization variables; the proposed formula-
tion is rather general, and as such it provides a heuristic to
a broader class of projection problems.

Let e ∈ {0, 1}n be an indicator vector used to select in-
active coordinates for C2; consider the minimization prob-
lem

minx,e ‖(x− x0) ◦ e‖22 (15)
s.t. (1− α)xTe + α(x ◦ e)T (x ◦ e) = t

e ∈ {0, 1}n,

where ◦ denotes the Hadamard product among two vectors.
Note that problems (10) and (15) are equivalent, since they
have the same minimizers; however, the addition of the in-
dicator variable allows us to devise an iterative procedure
which converges efficiently to the global optimum.

Let us assume we are given an initial guess for vector e,
for instance e

(0)
i = 1 for all i = 1 . . . n. Ruling out e from

the optimization variables, and following similar deriva-
tions as in Eq. (11)-(13), we get the solution

x =
x̄0 − λ(e) 1−α

2 e

1 + λ(e)α
, (16)

where x̄0 = x0 ◦ e, and λ is obtained in a similar manner to
Eq. (14) by solving the resulting quadratic equation:

c− bλ− α

2
bλ2 = 0 , with (17)

c ≡ (1− α)xT0 e + α(x0 ◦ e)T (x0 ◦ e)− t ,

b ≡ eTe

2
(1− α)2 + 2tα .

Eq. (17) always admits two real solutions, only one of which
gives the correct projection (we omit the complete deriva-
tions for space reasons).

Note that no positivity constraints are imposed on this
solution. The key step now consists in deselecting those co-
ordinates getting a non-positive value after an unconstrained
projection takes place: this gives us a rule for updating the
indicator vector in such a way that projecting again with
the new e will directly put those variables to zero. This
leads to an iterative scheme which converges to the unique
minimum-distance projection.
Lemma 1. Let x(0) = x0, and e(0) = 1 (a vector of n
ones). Then projection problem (10) is minimized by ap-
plication of the iterative rules

x(t+1) =
x(0) − λ(e(t)) 1−α

2 e(t)

1 + λ(e(t))α
(18)

e
(t+1)
i =

{
0 if x

(t+1)
i ≤ 0

e
(t)
i otherwise,

, (19)

where λ(e(t)) is a positive solution to the second order
equation (17).

The process terminates when it reaches the fixed point
e(t+1) = e(t) (equivalently when x(t+1) � 0).
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Figure 3. Precision/recall graphs for α ranging over [0, 1], computed with tolerance radii r = 1 (shape matching) and r = 10 (shape
retrieval). On the right, a scatter plot of error vs number of matches over the whole dataset. Color encodes the value of α.

Sketch of proof. In [15] it is shown that theL1 projection
is monotonic, i.e.,

x0i > x0j ⇒ xi = 0→ xj = 0 . (20)

Using an analogous derivation we can show that the same
holds for the elastic net projection. Further, projection (16)
is also monotonic in the active selected coordinates, i.e.,
those for which ei = 1. Due to this monotonicity of the
projection the entries of e are eliminated in coordinate rank
order, thus the algorithm never eliminates a coordinate that
has a non-zero value in the optimal projection and con-
verges in at most k steps, where k is the number of zero
entries in the final vector.
3.3. Performance of the projection

We compared the projection time against other projec-
tion methods onto the elastic net, namely piecewise root
finding [7], randomized median finding [10], our method
(coordinate selection), and its parallel version. The parallel
version was obtained compiling the code with OpenMP and
using 8 cores on an Intel Core i7. For these comparisons, we
generated random vectors of varying size and ran each pro-
jection method on the same input. The experiment was re-
peated 100 times per size, and projection times accumulated
and plotted for each method. Fig. 4 show a logarithmic-
scale plot of the measured times. While all methods demon-
strate linear complexity, we observed that the root finding
method produced suboptimal solutions for sizes larger than
104. The coordinate selection approach converged up to 4
times faster than previous methods in its single-core imple-
mentation, and two orders of magnitude faster in its parallel
version, showing the almost linear speedup with the number
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Figure 4. Comparison of projection methods for the elastic net.

of cores due to the intrinsically parallel nature of the algo-
rithm. Arguably we can expect even faster speedup with a
GPU implementation.

4. Experimental results
We performed a wide range of experiments on the

SHREC’10 standard dataset [2]. The dataset consists of 3
models of varying resolution (10K-50K points) undergoing
9 different types of deformation (listed in Table 1), each ap-
pearing in 5 intensity levels. We measure the matching er-
ror of a correspondenceC ⊂ X × Y as its average geodesic
distance from the ground-truth Cg , taking into account pos-
sible intrinsic symmetries, as in [2]:

D(C,Cg) =
1

|C|
min


|C|∑
k=1

dX(xk, x
′
k),

|C|∑
k=1

dX(xk, x
′′
k)

 ,

where dX is the geodesic metric onX and x′k, x
′′
k are the di-

rect and symmetric ground-truth positions of point xk ∈ X .
In order to make the computational task more tractable,

only a limited number of samples (m = 1000 in our experi-
ments) are considered from one shape, and then potential
matches are built with the 5 closest points (in descriptor
space) in the other. The descriptor adopted for this step is
the scale invariant HKS [4]. Samples are generated via far-
thest point sampling (FPS) [12, 11] using the extrinsic Eu-
clidean metric, since it gives for largem a good and efficient
approximation to the intrinsic measures while being more
robust to topological and partiality deformations. Fig. 2
(left) shows an example of FPS with m = 190. We em-
phasize that this step is performed to simplify computations
without sacrificing precision, and the goal is not to perform
feature detection for finding repeatable interest points. Note
also that in the matching process only one of the two shapes
is subsampled, while we keep all points in the other.

Finally, for the distortion terms εp in (3) we set p = 2,
and adopt for dX , dY the multi-scale diffusion metrics
of [14], using time scales (27, . . . , 216).

4.1. Trade-off analysis
Elastic net matching can be seen as an instance of mul-

ticriterion optimization, in which we wish to maximize the
size of the correspondence while simultaneously bringing



Transform. 1 ≤2 ≤3 ≤4 ≤5 1 ≤2 ≤3 ≤4 ≤5
Isometry 8.55 4.11 4.90 6.40 14.06 18.25/212 22.04/149 14.42/212 7.25/210 18.50/76
Topology 5.97 9.22 2.88 5.62 8.58 19.18/313 18.91/321 19.44/117 18.44/173 17.33/99
Holes 7.51 14.03 6.50 25.85 8.75 19.64/197 17.68/278 14.99/62 17.46/31 6.69/10
Micro holes 4.06 8.63 11.36 13.66 2.98 19.35/193 16.65/367 17.50/170 17.48/183 9.96/65
Scale 4.70 2.40 1.67 4.49 3.34 4.23/6 17.72/200 1.33/10 3.38/9 2.62/5
Local scale 6.54 10.89 3.47 59.16 3.69 19.86/178 17.42/302 19.12/178 55.18/19 11.19/45
Sampling 10.31 9.00 6.39 9.36 8.28 16.05/211 16.83/374 18.63/166 14.93/164 17.27/38
Noise 11.20 8.62 53.99 54.96 5.70 15.31/54 12.72/218 54.03/9 69.33/327 4.84/4
Shot noise 7.36 10.66 3.20 15.95 3.25 16.28/136 18.01/380 16.05/81 15.95/64 13.95/54
Average 7.36 8.62 10.49 21.72 6.51 16.46/167 17.55/288 19.50/112 24.38/131 11.37/44

Table 1. First table: Matching results obtained with α = 0.65. Average number of corresponding points is 50. Values in bold indicate
better performance than both GMDS and the (reiterated) game-theoretic method for the same number of matches. Second table: Matching
results (error/matches) obtained by selecting for each case the value of α giving the largest possible error below 20.

the matching distortion to zero. In most cases, it is very
difficult to satisfy these competing criteria exactly. Fig. 2
presents an example in which the correct matches have a
very small inlier ratio with respect to the set of candidates
(a full Cartesian product in this case). In this matching
scenario, our method provides a means to select only high-
precision correspondences in a situation where there is huge
ambiguity in most correspondences. In this view, we might
naturally ask how much we must pay in terms of distortion
in order to obtain an increase in the number of matches.

Solutions expressing this trade-off are called Pareto opti-
mal [1], and can be visualized as points in a plane whose di-
mensions correspond to the two scalar objectives. In Fig. 3
(right) we plot each shape-to-shape correspondence over the
whole dataset as a point in this plane; for each matching
instance, we vary the convexity coefficient α from 0 to 1
(shown by color). The figure suggests that this parameter
allows to regulate the compromise between the two criteria,
while maintaining a comparable error variance (note that
the plot is in log-log scale so we expect an expansion at the
lower end of the scale for a fixed variance).

Fig. 5 plots per-class Pareto curves, averaged over all
strengths and models. Each curve consists of 21 points,
corresponding to as many equally spaced values for α; in
particular, the endpoints correspond to the game-theoretic
(α = 0) and spectral (α = 1) solutions. In most cases, there
is a point of large curvature where a small increase in the
number of matches can only be accomplished by a large in-
crease in matching error. This is the proverbial “knee” of
the trade-off curve [1], and can be taken as a good compro-
mise solution; it will correspond, in general, to a different
value of α for each shape, which is indeed consistent with
the idea of shape condition number (Section 3). The same
figure reveals another interesting picture. First, the small
loops appearing in the plot indicate that matches could actu-
ally be “lost” as α is pushed from 0 to 1; this fact is justified
by the presence of rather challenging shapes in the dataset
(and the specific choice of the intrinsic metric), which ren-

der the Gromov-Wasserstein distance unstable, thus leading
to different local optima as the set of constraints is modi-
fied slightly. Second, it is evident that smaller values of α
do not necessarily lead to better solutions in terms of met-
ric distortion; in particular, the game-theoretic solution will
not always be the best choice, even when a sparse solution
is being sought. This particular point is also made clearer in
Fig. 3 (see the first samples of the first two graphs).

Table 1 (last five columns) reports the results of our
method on the whole dataset, averaged over the 3 mod-
els. The reported values are geodesic error and number of
matches. The aim of this table is not to compare against
other methods, but rather to show that elastic net regulariza-
tion allows to obtain denser correspondences while main-
taining a small distortion; thus, in this case, the value for
α is selected on a per-case basis as the one keeping the er-
ror in line with the state of the art on the same dataset [2].
In particular, this choice gives on average ∼4 times more
matches than GMDS, and ∼20 times more than sparse ap-
proaches with the same error.

Finally, Fig. 3 shows precision-recall graphs as α is var-
ied in [0, 1]. The five curves correspond to different defor-
mation strengths, averaged over all models and deforma-
tions. A match is defined as true positive if it lies within a
geodesic radius of r = 1 from the ground-truth; likewise, a

Figure 5. Error versus number of matches, for α varying in [0, 1].



false positive is a match with error larger than r, and false
negatives are low-error matches in the candidate set which
were not included in the final solution. Note that the small
recall we obtain in both graphs does not contradict the fact
that for large α we should obtain dense correspondences,
as it is due to a filtering step we perform on those matches
having a very small value for xi (below 10% of the median).
4.2. Comparisons

The adoption of a standard dataset allows us to compare
our method directly with other state of the art techniques.
Table 1 (first five columns) shows comparisons for the en-
tire dataset averaged over the 3 models, following the same
format of previous reports [2, 14]. Since we are able to
regulate the size of the final correspondence, we fix the fi-
nal number of matches to 50 (allowing us to compare di-
rectly with methods giving the same number of matches)
and determine the (unique) corresponding value of α yield-
ing, on average, the fixed number of matches over the whole
dataset. The entries in bold represent values that are better
than what is reported in the literature for similar number of
correspondences. We can see that the proposed approach is
in line and exceeds, on average, the state of the art.

In all our experiments we observed 30-100 gradient de-
scent iterations per matching, choosing as stopping criterion
the relative change in the objective value. This amounted
to ∼30 seconds per matching on average, with most of
the variance due to the specific value used for α. In fact,
since for small values it yields sparser solutions, the pro-
jection step needs more iterations to converge. For a vec-
tor of 10,000 elements, we need on average 8 iterations
with α = 0.01, and 2 iterations with α = 0.99. As a ref-
erence, the method of alternating projections for the same
vector takes up to 1800 iterations to reach a solution. Fi-
nally, adopting the parallel version of the projection algo-
rithm into the optimization process lowered the overall con-
vergence time to ∼5 seconds per matching.

5. Conclusions
In this paper, we proposed the adoption of the elastic net

family of constraints as regularizers for the quadratic as-
signment problem, which frequently arises in deformable
shape matching problems. The approach naturally gener-
alizes existing techniques. It allows to regulate the relative
contribution of distortion and size of the correspondence via
a single convexity parameter. We provided an efficient and
provably optimal solution to the projection problem onto
the new set of constraints, and demonstrated on a stan-
dard benchmark how the method allows to obtain sparse-
to-dense solutions with an accuracy at least as good as the
state of the art.
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