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1. Introduction

Time varying volatility is one of the main property of economic time series, common

especially to many financial time series. Moreover, describing and, where possible, fore-

casting volatility is a key aspect in financial economics and econometrics. It is not only

a statistical exercise but it has also important impacts in terms of asset allocation, asset

pricing as well as value-at-risk computation and thus for risk management. A lot of work

has been done on two popular classes of models which describe time-varying volatility:

Generalized Autoregressive Conditional Heteroschedasticity (GARCH)-type models and

Stochastic Volatility (SV)-type models. GARCH models (Bollerslev (1986), Nelson (1990),

Lamoureux and Lastrapes (1990)) are commonly known as observation-driven models (see

Shephard (1996)). In fact, they describe the variance as a linear function of the squares

of past observations and then one type of shock alone drives both the series itself and

its volatility. On the contrary, SV models (Taylor (1986), Harvey, Ruiz and Shephard

(1994)) belong to the class of parameter-driven models since these models are driven by

two type of shocks, one of which influences the volatility. The presence of unobserved or

latent components makes SV models harder to estimate and to handle statistically, while

GARCH parameters can easily be estimated using maximum likelihood procedure. In

the latter models, one potential source of misspecification is that the structural form of

conditional means and variances is relatively inflexible and it is held fixed throughout the

sample period. In this sense, they are called single-regime models since a single structure

is assumed for the conditional mean and variance.

In order to allow more flexibility, the assumption of a single regime could be relaxed in

favour of a regime-switching model. The coefficients of this model are different in each

regime to account for the possibility that the economic mechanism that generates the

financial serie undergoes a finite number of changes over the sample period. These coeffi-

cients are unknown and must be estimated, and, althought the regimes are never observed,

probabilistic statements can be made about the relative likelihood of their occurrence, con-

ditional on an information set.

A well-known problem to face when dealing with the estimation of Markov Switching

GARCH models is the path dependence. Cai (1994) and Hamilton and Susmel (1994) have

argued that MS-GARCH models are essentially intractable and impossible to estimate due

to the dependence of conditional variance on the entire path history of the data. That is,

the distribution at time t, conditional on the current state and on available information, is

directly dependent of the current state but also indirectly dependent on all past states due

to the path dependence inherent in MS-GARCH models. This is because the conditional

variance at time t depends upon the conditional variance at time t − 1, which depends

upon the regime at time t − 1 and on the conditional variance at time t − 2, and so on.
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Hence, the conditional variance at time t depends on the entire sequence of regimes up to

time t.

In the first part of this paper, we will consider the univariate version of MS-GARCH

and some methods proposed to bypass the problem of path dependence. The trick is

mainly found in adopting different specifications of the original MS-GARCH model. Some

authors propose Quasi Maximum Likelihood (QML) procedures of a model which allow

similar effects of the original one. Models which elude in this way the path dependence

problem are proposed by Gray (1996), Dueker (1997) and Klaassen (2002), among others.

Gray (1996) proposes a model in which path dependence is removed by aggregating the

conditional variances from the regimes at each step. This aggregated conditional variance

(conditional on available information, but aggregated over the regimes) is then all that is

required to compute the conditional variance at the next step. The same starting idea is

used in Dueker (1997), with a slightly different approach. He extends the information set

including also current information on the considered series. Furthermore, Klaassen (2002)

puts further this idea. Particularly, when integrating out the unobserved regimes, he uses

all available information, whereas Gray uses only part of it. Another method to deal with

MS-GARCH models has been proposed by Haas, Mittnik and Paolella (2004) for which

the variance is disaggregated in independent processes; this is a simple generalization

of the GARCH process to a multi-regime setting. Finally, Bayesian approach based on

Markov Chain Monte Carlo (MCMC) Gibbs technique for estimating MS-GARCH can be

found in Bauwens, Preminger and Rombouts (2010) and Bauwens, Dufays and Rombouts

(2011), Henneke, Rachev, Fabozzi and Metodi (2011) or Billio, Casarin and Osuntuyi

(2012). Other approaches based on both Monte Carlo methods combined with expectation-

maximization algorithm and importance sampling to evaluate ML estimators can be found

in Augustyniak (2013) and Billio, Monfort and Robert (1998a and 1998b).

In the second part of the paper, we will consider the extension of univariate SV model

with regime-switching features. If SV models are difficult to estimate due to the latent

variable, MS-SV are even more complicated because there are two hidden levels in the la-

tent structure. So, MS-SV models have been studied and estimated mainly with Bayesian

techniques. For example, So, Lam and Li (1998) adopt MCMC method and they con-

struct Bayesian estimators by Gibbs sampling. Another Bayesian approach is sequential

simulation based filtering (Particle Filter). See, for instance, Casarin (2004) and Carvalho

and Lopes (2007).

The main contribution of the present paper is to give a unique framework to reconcile

the estimation obtained by the above auxiliary models from one side, and Kim’s (1994)

filtering algorithm for Markov switching state space from the other. Kim’s algorithm can

be used, under some regularity conditions, to obtain inferences about any dynamic time

series model with Markov switching that can be put in a state space form. It is a very
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flexible approach and allows the estimation of a broad class of models. However, to make

the filter operable, at each iteration it collapses M2 posteriors (where M is the number

of states) in M of it, employing an approximation. Finally, Quasi Maximum Likelihood

estimation of the model recovers the unknown parameters. Then our first contribution is to

show duality in the estimation of Markov Switching processes for volatility. In particular,

having a suitable linear state space representation for the MS-GARCH model, we are able

to prove the equivalence in the estimation obtained by Kim’s Filter and through auxiliary

models proposed in the literature. The second contribution relates instead to MS-SV

models. In fact, we are able to extend the approach previously used for MS-GARCH to

MS-SV models. In particular, we parallel the model with the gaussian state space model

and we propose a linear Filter on which different conditioning information sets yield more

flexibility in the estimation. Numerical and empirical applications show the feasibility of

these approaches.

The paper is structured as follows. In Section 2 we specify the MS-GARCH model of

interest and introduce some concepts and notations. Section 3 reviews the main auxiliary

models for MS-GARCH which are proposed in the literature to overpass the path depen-

dence problem. In Section 4 we present a linear state space representation associated to

the MS-GARCH and determine the algorithm for the linear filter. This serves to prove

our duality results discussed in Section 5. In Section 6 we write a linear approximated

filter for MS-SV models. In Section 7 we compare estimation of the parameters using

different approximations in the proposed filter for simulated data and short-term interest

rates. Section 8 concludes. Finally, Appendix A describes in details some Formulae and in

Appendix B we recall the main results about the stationarity of Markov Switching models

and particulary applied to our specifications.

2. Markov Switching GARCH

Let εt be the observed univariate1 time series variable (as for instance, returns on a financial

asset) centered on its mean and let st be a discrete, unobserved state variable with M -

states. The Markov Switching GARCH(1,1) model is defined as

(1)

 εt = σt(Ψt−1, θ(st))ut

σ2
t (Ψt−1, st) = ω(st) + α(st)ε

2
t−1 + β(st)σ

2
t−1(Ψt−2, st−1)

1The proposed setting can be easily extended to a multivariate framework. This can be done on the

line of multivariate GARCH models to regime-switching framework proposed by Billio and Caporin (2005)

and Pellittier (2006). However, note that multivariate volatility models in the context of single regime

switching are the Constant Conditional Correlation (CCC) model of Bollerslev (1990) and the Dynamic

Conditional Correlation (DCC) model of Engle (2002).
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where ut ∼ IID(0, 1), ω(st) > 0, α(st), β(st) ≥ 0 and θ(st) is the parameter vector defined

as θ(st) = (ω(st), α(st), β(st))
′
. Here Ψt−1 = {εt−1, . . . , ε1} denotes the information set

of observations available up to time t − 1. Moreover, st is a M -state first order Markov

chain with transition probabilities, which are assumed time invariant2,

πij,t = p(st = j|st−1 = i)

where
M∑
j=1

πij,t = 1

for every i = 1, . . . ,M .

Let us introduce the following concepts and notations:

• p(st = j|Ψt−1) = pj,t|t−1 which is the prediction probability;

• p(st = j|Ψt) = pj,t|t which is the filtered probability.

From these we can compute the augmented filtered probability as

p(st−1 = i|st = j,Ψt−1) =
πij,t pi,t−1|t−1

pj,t|t−1
= pij,t−1|t,t−1.

Note that the filtering algorithm computes pt|t−1,t = p(st|st−1,Ψt) in terms of pt|t−1,t−1

and the conditional density of εt which depends on the current regime st and all past

regimes, i.e, f(εt|s1, . . . , st,Ψt−1). Computation details are shown in Appendix A1.

3. Auxiliary Models for MS-GARCH

As argued in the Introduction, the main problem to face when dealing with the estimation

of Markov Switching GARCH model is the path dependence, which is the dependence

of the conditional variance on the entire sequence of regimes. The common approach

to eliminate path dependence is to replace the lagged conditional variance derived from

the original MS-GARCH model with a proxy. Various authors have proposed different

auxiliary models which differ only by the content of the information used to define such

a proxy. In general, different auxiliary models can be obtained by approximating the

conditional variance of the MS-GARCH process

(2) σ2
t (Ψt−1, st) = ω(st) + α(st)

(SP )ε2t−1 + β(st)
(SP )σ2

t−1.

2If the information variables that govern time-variation in the transition probabilities is conditionally

uncorrelated with the state of the Markov process, which holds in general, Hamilton’s (1989) filtering

method is still valid also with time-varying transition probabilities.
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In the literature there are different specifications (in short, SP) of (SP )ε2t−1 and (SP )σ2
t−1

which in turn define different approximations of the original process. In this Section we

give a detailed description of four auxiliary models presented in the literature, specifying

the superscript in (2) with the initial letter of the author who proposed that specification.

3a. Gray’s Model

The first attempt to eliminate the path dependence is proposed by Gray (1996). He

approximates the original model by replacing the lagged conditional variance σ2
t−1 with a

proxy (G)σ2
t−1 as follows:

(3)

(G)σ2
t−1 = E[σ2

t−1(Ψt−2, st−1)|Ψt−2]

=

M∑
i=1

σ2
t−1(Ψt−2, st−1 = i) p(st−1 = i|Ψt−2)

=

M∑
i=1

(G)σ2
i,t−1|t−2 pi,t−1|t−2

where, according to the model, (G)σ2
t−1|t−2 turns out to be a function of Ψt−2 and st−1 = i.

Note that the model originally proposed by Gray is not centered as in our case, but this

can always be assumed without loss of generality.

3b. Dueker’s Model

In the previous approximation, the information coming from εt−1 is not used. Dueker

(1997) proposes to change the conditioning scheme including εt−1 while assuming that

σ2
t−1 is a function of Ψt−2 and st−2. Hence

(4)

(D)σ2
t−1 = E[σ2

t−1(Ψt−2, st−2)|Ψt−1]

=

M∑
k=1

σ2
t−1(Ψt−2, st−2 = k) p(st−2 = k|Ψt−1)

=

M∑
k=1

(D)σ2
k,t−1|t−2 pk,t−2|t−1

so that (D)σ2
t−1|t−2 is a function of Ψt−2 and st−2 = k, and pk,t−2|t−1 is one-period ahead

smoothed probability which, shifting one period, can be computed as

pi,t−1|t = p(st−1 = i|Ψt) = pi,t−1|t−1

M∑
j=1

πij,t pj,t|t

pj,t|t−1
.
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3c. Simplified Klaassen’s Model

The approximation proposed by Klaassen (2002) is similar to that from Dueker (1997) but

it assumes that σ2
t−1 is a function of Ψt−2 and st−1. So it results computationally simpler.

In fact, we have

(5)

(SK)σ2
t−1 = E[σ2

t−1(Ψt−2, st−1)|Ψt−1]

=

M∑
i=1

σ2
t−1(Ψt−2, st−1 = i) p(st−1 = i|Ψt−1)

=

M∑
i=1

(SK)σ2
i,t−1|t−2 pi,t−1|t−1.

Then from the considered model, (SK)σ2
t−1|t−2 results to be a function of Ψt−2 and st−1 = i.

3d. Klaassen’s Model

Finally, Klaassen (2002) generalizes the previous auxiliary model including in the condi-

tioning set the information also coming from the current regime st. So σ2
t−1 turns out to

be approximated as

(6)

(K)σ2
t−1 = E[σ2

t−1(Ψt−2, st−1)|Ψt−1, st = j]

=

M∑
i=1

σ2
t−1(Ψt−2, st−1 = i) p(st−1 = i|Ψt−1, st = j)

=

M∑
i=1

(K)σ2
i,t−1|t−2 pij,t−1|t,t−1

where pij,t−1|t,t−1 is the augmented filtered probability as defined in Section 2. Conse-

quently, here (K)σ2
t−1|t−2 becomes a function of Ψt−2 and st−1 = i.

4. State Space Representation and Filtering

In order to develop a theory of linear filtering for MS-GARCH models, we need to associate

to the model some linear state space representations. In this Section we propose a state

space representation and write the associated Kalman Filter. For this purpose, we use

notations from Kim (1994) and Kim and Nelson (1999) which study Markov switching

state space models. They propose basic filtering and smoothing algorithms, along with

maximum likelihood estimation, for a broad class of Markov switching models which can

be written in state space form. This linear filter can be used, under some regularity

conditions, to obtain approximate inferences. In fact, it introduces an approximation by
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collapsing information on the regimes story at each iteration. Such an approximation will

be presented hereafter.

Consider the model as in (1). For every st = j and st−1 = i, let us define ε2t = σ2
j,t + vt,

where σ2
j,t = σ2

t (Ψt−1, st = j) and vt = σ2
j,t(u

2
t − 1). Then vt is a white noise with zero

mean and variance σ2
vj and vt ∈ [−σ2

j,t,+∞[. Now we have

ε2t = σ2
j,t + vt

= ωj + αjε
2
t−1 + βjσ

2
i,t−1 + vt

= ωj + αjε
2
t−1 + βj(ε

2
t−1 − vt−1) + vt.

where ωj , αj and βj are the elements obtained by replacing st by j in ωst , αst and βst ,

respectively.

So we can write the MS-ARMA(1,1) representation of the process in (1) as

(7) (1− δjL)ε2t = ωj + (1− βjL)vt

where δj = αj + βj for j = 1, . . . ,M . See, for example, Gourieroux and Monfort (1997).

For stationarity conditions concerning with such a process we refer to Appendix B.

Setting Bt =

(
ε2t−1
vt−1

)
, we get

ε2t = ωj + (δj − βj)

(
ε2t−1
vt−1

)
+ vt = ωj + (δj − βj)Bt + vt

for every j = 1, . . . ,M . In order to simplify notations, let us define

yt = ε2t , Hst = (δst −βst), Fst =

(
δst −βst
0 0

)
, G =

(
1

1

)
, µst =

(
ωst
0

)
.

Then, for every st, we obtain the following state space representation 3:

(8)

 yt = ωst +HstBt + vt

Bt = µst + FstBt−1 +Gvt−1

3Note that other state space representations can be associated to the model in (1). For instance,

following the line of Kim and Nelson (1999), Example 2, Chapter 3. Our choice tends to be the less

restrictive in term of stationarity conditions, hence more general.
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Conditional on st−1 = i and st = j, the Kalman Filter is:

Prediction

• B
(i,j)
t|t−1 = µj + FjB

i
t−1|t−1

• P
(i,j)
t|t−1 = FjP

i
t−1|t−1F

′

j +GG
′
σ2
vj

• η
(i,j)
t|t−1 = yt − y(i,j)t|t−1 = yt −HjB

(i,j)
t|t−1 − ωj

• f
(i,j)
t|t−1 = HjP

(i,j)
t|t−1H

′

j + σ2
vj

Updating

• B
(i,j)
t|t = B

(i,j)
t|t−1 +K

(i,j)
t η

(i,j)
t|t−1

• P
(i,j)
t|t = P

(i,j)
t|t−1 −K

(i,j)
t HjP

(i,j)
t|t−1

where K
(i,j)
t = P

(i,j)
t|t−1H

′

j [f
(i,j)
t|t−1]−1 is the Kalman gain

Initial Conditions

• Bj0|0 = (I2 − Fj)−1µj =

(
(1− δj)−1ωj

0

)

• vec(P j0|0) = σ2
vj(I4 − Fj ⊗ Fj)−1 vec(GG

′
) = σ2

vj


(1− δ2j )−1(1− 2δjβj + β2

j )

1

1

1


• p(s0 = i) = πi (steady-state probability) .

So Yt−1 = {yt−1, . . . , y1} is the information set up to time t− 1, Bit−1|t−1 =

E(Bt|Yt−1, st−1 = i) is an inference on Bt based on Yt−1 given st−1 = i; B
(i,j)
t|t−1 =

E(Bt|Yt−1, st = j, st−1 = i) is an inference on Bt based on Yt−1, given st = j and

st−1 = i; P it−1|t−1 is the mean squared error matrix of Bit−1|t−1 conditional on st−1 = i;

P
(i,j)
t|t−1 is the mean squared error matrix of B

(i,j)
t|t−1 conditional on st = j and st−1 = i; η

(i,j)
t|t−1

is the conditional forecast error of yt based on information up to time t− 1, given st = j

and st−1 = i; and f
(i,j)
t|t−1 is the conditional variance of forecast error η

(i,j)
t|t−1. Each iteration

of the Kalman Filter produces an M -fold increase in the number of cases to consider. It

is necessary to introduce some approximations to make the filter operable. The key is to

collapse the (M ×M) posteriors B
(i,j)
t|t and P

(i,j)
t|t into M posteriors Bjt|t and P jt|t. Hence,
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we consider the approximation proposed by Kim and Nelson (1999) and Kim (1994) ap-

plied to this state space representation (explicit computations are in Appendix A2) . Let

Bjt|t be the expectation based not only on Yt but also conditional on the random variable

st taking on the value j. Then

(9) Bjt|t =

M∑
i=1

pij,t−1|t,t B
(i,j)
t|t .

5. Duality Results

Having such a convenient switching state space form associated to the initial MS-GARCH,

gives us the possibility to reconcile in an unique framework the estimation through linear

filter as described in Section 4 or via auxiliary models presented in Section 3. Duality

exists when modifying the approximation described in (9) with different conditioning sets.

From the measurement equation in (8) and using (9), we get

yjt|t = E(yt|st = j, Yt) = ωj +Hj B
j
t|t

= ωj +Hj

M∑
i=1

pij,t−1|t,t B
(i,j)
t|t

=

M∑
i=1

pij,t−1|t,t (ωj +Hj B
(i,j)
t|t )

=

M∑
i=1

pij,t−1|t,t y
(i,j)
t|t

as
∑M
i=1 pij,t−1|t,t = 1. Here the expectation operator is meant in the sense of Kim and

Nelson’s book (1999). In the same way we can obtain

yjt|t−1 = E(yt|Yt−1, st = j) =

M∑
i=1

pij,t−1|t,t−1 y
(i,j)
t|t−1

and
yjt−1|t−1 = E(yt−1|Yt−1, st = j) = E(σ2

t−1|Yt−1, st = j)

= σ2
j,t−1|t−1 =

M∑
i=1

pij,t−1|t,t−1 σ
2
ij,t−1|t−2.

In particular, if the conditional variance is not a function of st = j , we get

(10)

yt−1|t−1 = E(ε2t−1|Yt−1) = E(σ2
t−1|Yt−1)

= σ2
t−1|t−1 =

M∑
i=1

pij,t−1|t,t−1 σ
2
i,t−1|t−2

10



which coincides with (K)σ2
t−1 in Formula (6). Here (K)σ2

t−1 is only a function of st−1 = i.

Thus the approximation of the Kalman Filter is dual to the one used as auxiliary model

from Klaassen (2002). This also means that if we change the conditioning scheme in (10),

we obtain others auxiliary models. In fact, if we assume probabilities to be only function

of st−1 = i and if still σ2
t−1 is a function of st−1 , we have the Simplified Klaassen’s model

(2002). This gives the expression in (5), in fact:

(SK)σ2
t−1 =

M∑
i=1

(SK)σ2
i,t−1|t−2 pi,t−1|t−1 .

Moreover, if we assume instead that σ2
t−1 is a function of st−2 = k and also considering

prediction probabilities of st−2 = k, we get the auxiliary model proposed by Dueker (1997):

(D)σ2
t−1 =

M∑
i=1

(D)σ2
k,t−1|t−2 pk,t−2|t−1

which is Formula (4). Finally, if we consider the conditioning set up to Yt−2 rather than

Yt−1, we obtain

(G)σ2
t−1 =

M∑
i=1

(G)σ2
i,t−1|t−2 pi,t−1|t−2

which is Formula (3) and corresponds to Gray’s model.

Hence, if we slightly change the conditioning set, we can obtain different specifications of

the auxiliary models, moving from the state space form in (8). To conclude, this proves

ambivalence in the estimation via Kalman Filter and via approximated models. In Section

7, we will show the feasibility of the filtering procedure through numerical and empirical

applications.

6. Markov Switching Stochastic Volatility

When we consider Markov Switching Stochastic Volatility model and in general parameter-

driven models, we are facing a double level of latency which makes estimation and sta-

tistical analysis harder. However, there are very good reason to investigate this kind of

models, as for instance, easier properties or generalization to the multivariate case as well

as continuous time counterpart. Then, we consider the following MS-SV model

(11)

εt = exp{ 12ht}ut
ht = µst + ρstht−1 + vt

where ut ∼ IIN(0, 1) and vt ∼ IIN(0, σ2
vst

). Here the error terms are assumed to be

independent of one other. To discuss stationarity conditions of the process, we will later
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rewrite the model in MS-ARMA form and stationarity conditions are discussed at the end

of Appendix B.

Following Harvey, Ruiz and Shephard (1994), we easily obtain a linear state space form.

In fact, squaring (11) and taking logs, we have

log ε2t = α+ ht + et

where α = E(log u2t )
∼= −1.270 and et = log u2t − E(log u2t ). Thus et ∼ IIN(0, π

2

2 ), where
π2

2
∼= 4.935, and higher moments of (et) are known. Now, replacing log ε2t with yt, the

MS-SV can be written as

(12)

yt = α+ ht + et

ht = µst + ρstht−1 + vt

Hence, it is natural to propose the Kalman filter for model (12) following the line of Kim

and Nelson (1999, Chapter 5). In this case, conditional on st = j and st−1 = i, we get

Prediction

• h
(i,j)
t|t−1 = µj + ρjh

i
t−1|t−1

• P
(i,j)
t|t−1 = ρ2jP

i
t−1|t−1 + σ2

vj

• η
(i,j)
t|t−1 = yt − y(i,j)t|t−1 = yt − h(i,j)t|t−1 − α

• f
(i,j)
t|t−1 = P

(i,j)
t|t−1 + π2

2

Updating

• h
(i,j)
t|t = h

(i,j)
t|t−1 + P

(i,j)
t|t−1[f

(i,j)
t|t−1]−1η

(i,j)
t|t−1

• P
(i,j)
t|t = P

(i,j)
t|t−1 − P

(i,j)
t|t−1[f

(i,j)
t|t−1]−1P

(i,j)
t|t−1

where K
(i,j)
t = P

(i,j)
t|t−1[f

(i,j)
t|t−1]−1 is the Kalman gain.

Initial Conditions

• hj0|0 = µj(1− ρj)−1

• P j0|0 = σ2
vj(1− ρ2j )−1

• p(s0 = i) = πi (steady-state probability).

12



If we apply the approximation proposed by Kim and Nelson (1999) to this state space

representation, we can write

hjt|t =

M∑
i=1

h
(i,j)
t|t pij,t−1|t,t.

At this point, different conditioning sets can be applied to the above approximation, mimic

the same ideas used to obtain different auxiliary models in the MS-GARCH model. In the

sequel we propose four approximations for the MS-SV in (12). Approximation 1 denotes

Kim and Nelson’s approximation as specified above. As done for the MS-GARCH, if we

change the conditioning set we can obtain different and possibily more precise estimates.

Approximation 2 changes the conditioning set on the volatility up to t− 1:

hjt|t =

M∑
i=1

h
(i,j)
t|t−1 pij,t−1|t,t.

Approximation 3 consider the information set up to Yt−1 only for the augmented filtered

probabilities:

hjt|t =

M∑
i=1

h
(i,j)
t|t pij,t−1|t,t−1.

The last approximation 4 simultaneously has the features of 2 and 3, conditioning both

volatility and probabilities at t− 1 :

hjt|t =

M∑
i=1

h
(i,j)
t|t−1 pij,t−1|t,t−1.

In the next Section we will test these specifications in a simulated study in order to

investigate differences in the implementation of the Filter.

7. Applications

In this Section we apply the methods described above both to Monte Carlo experiment

and real data. In particular, the aim of these applications is to show the feasibility of

the proposed approaches via linear filtering for both Markov switching GARCH and SV

models. Note that this method has the advantage of avoiding fine-tuning procedures im-

plemented in most Bayesian estimation techniques. In fact, giving some initial conditions,

the only duty of the researcher is to decide which approximation to adopt in the filtering

procedure.

13



7a. Simulation study

In this Subsection, we draw some comparisons from a simulation study performed by

So, Lam and Li (1998). In that paper, they simulate a Markov switching stochastic

volatility model with three states and parameters described hereafter and estimate the

model through MCMC procedure and Gibbs sampler. Thus the model is a MS(3)-SV as

in (11) with fixed ρ equal to 0.5, vt ∼ N(0, 0.2) and the intercept equal to

µst =


−1 if st = 1

−2 if st = 2

−5 if st = 3

.

The state variables are generated by a first order Markov process with transition proba-

bility matrix

P =

p00 p01 p02

p10 p11 p12

p20 p21 p22

 =

0.9 0 0.05

0 0.95 0.05

0.1 0.05 0.9


which implies high persistence in each regime. A dataset of n = 400 observations has been

simulated from the model. We estimate the model with the filter proposed in Section 6

and 2,000 iterations are considered.

Results are summarized in Table 1 where means and standard deviations are given, to-

gether with the Bayesian estimators of So, Lam and Li and true values. As point estimate,

all the approximated filters give close values to the corresponding true one. The persis-

tence parameter ρ is better captured by Approximation 3 or 4, which is also the faster;

those seem to be the best choices. Finally, our estimates obtained via Kalman filters give

closer result to the true values with respect to the Bayesian counterpart. In fact, the Mean

Square Error (MSE) value for the third approximation is equal to 0.00203 and the MSE

computed by So, Lam and Li is 0.00330.

7b. Real Data: an application on US Treasury Bill rates

As a second application, we use real data and the same dataset as in Gray (1996). The

data are one-month US Treasury bill rates obtained from FRED for the period January

1970 trought April 1994. Figure 1 plots the data. It is immediate the dramatic increase

in interest rates that occurred during the Fed experiment and the OPEC oil crisis, which

leads us to consider a 2 regimes model.

Then we fit the model in (1) as MS(2)-GARCH and in (11) as MS(2)-SV with both changes

in regimes in the intercept term and in the persistence parameters of the volatility process.

The values of the estimation are reported in Table 3 and 4, respectively. Table 3 describes
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Figure 1: The panel contains a time series plot of monthly one-month US Treasury bill

rates (in annualized percentage term). The sample period is from January 1970 to April

1994; a total of 1.267 observations. The data are obtained from FRED database.

the estimated values along with robust standard errors of model (1). In particular, the

model estimated by linear filter with Kim’s approximation is labelled with Approximation

1. The following approximations instead are those in Section 5, respectively. Note that

Approximation 2 mimics the auxiliary model of Gray (1996) and values are in fact in

line (see Gray (1996), Table 3, p.44). The high-volatility regime is characterized by more

sentivity to recent shocks (α2 > α1) and less persistence (β2 < β1) than the low-volatility

regime. Within each regime, the GARCH processes are stationary (αi + βi < 1) and the

parameter estimates suggest that the regimes are very persistent, so the source of volatility

persistence will be important. With regards to the MS-SV model, the approximated filters

are presented in Section 6. Most of the masses in the transition probability matrix are

concentrated in the diagonal, implying medium-high persistence in each regime. Moreover,

the first regime is associated with a intermediate level of persistence in the volatility

process while the second shows a highly-persistent volatility, with values close to one. In

both models, however, the four approximations are not very dissimilar to the others.

Figure 2 contains plots of smoothed probabilities Pr(st = 1|ΦT ) which are of interest

to determine if and when the regime switching occurs. The smoothed probability plots

manage to identify crises periods that affected the market indices. The top panel of Figure

2 refers to the MS-GARCH and the bottom panel to the MS-SV model. In particular,
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Approximations p̂ q̂ β̂1 β̂2 α̂1 α̂2 ω̂1 ω̂2

Approximation 1 0.8467 0.9982 0.4113 0.0085 0.0184 0.4967 0.023 0.068

(0.1402) (0.0334) (0.0407) (0.0927) (0.0338) (0.0331) (0.2626) (0.0908)

Approximation 2 0.8018 0.9157 0.391 0.0062 0.0203 0.4801 0.045 0.0713

(0.1146) (0.0157) (0.1624) (0.2609) (0.0640) (0.1089) (0.3591) (0.2853)

Approximation 3 0.8467 0.9983 0.4112 0.0086 0.0184 0.4967 0.023 0.068

(0.1406) (0.0336) (0.0420) (0.0923) (0.0342) (0.0337) (0.2651) (0.0799)

Approximation 4 0.8119 0.9160 0.397 0.0064 0.0212 0.4831 0.039 0.0692

(0.1140) (0.0157) (0.1629) (0.2618) (0.0642) (0.1092) (0.3603 ) (0.2867)

Table 2: Estimation of the parameters in model (1) MS(2)-GARCH. Robust standard

errors in parenthesis. The observables are one-month US Treasury bill rates (in annualized

percentage term). The sample period is from January 1970 to April 1994; a total of 1.267

observations. The data are obtained from FRED database.

Approximations p̂ q̂ ρ̂1 ρ̂2 σ̂v µ̂1 µ̂2

Approximation 1 0.8935 0.9542 0.5492 0.9256 0.2863 0.2460 0.4165

(0.0345) (0.3633) (0.1252) (0.1260) (0.0208) (2.5734) (2.5797)

Approximation 2 0.8677 0.8676 0.5388 0.9852 0.3478 0.2952 0.4905

(0.0347) (0.2813) (0.0651) (0.0585) (0.1148) (1.3258) (1.2977)

Approximation 3 0.8668 0.8435 0.6063 0.9730 0.2706 0.3143 0.5707

(0.0197) (0.2288) (0.0863) (0.0620) (0.3524) (1.7598) (2.4015)

Approximation 4 0.8668 0.8435 0.6063 0.9730 0.2706 0.3143 0.5707

(0.0197) (0.2288) (0.0863) (0.0620) (0.3524) (1.7598) (2.4015)

Table 3: Estimation of the parameters in model (11) MS(2)-SV. Robust standard errors

in parenthesis. The observables are one-month US Treasury bill rates (in annualized

percentage term). The sample period is from January 1970 to April 1994; a total of 1.267

observations. The data are obtained from FRED database.
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Figure 2: The top panel refers to MS-GARCH model and bottom panel to the MS-SV

model. They represent smoothed probabilities being in high-volatility regime. Parameters

estimates are based on a data set of one-month Treasury Bill rates, reported in annualized

percentage terms. The sample period is from January 1970 to April 1994; a total of 1.267

observations. The data are obtained from FRED database.

18



both plots identify three periods of high-variance. The first (1973-1975) corresponds to

the OPEC oil crisis. The second is shorter and more precise in the bottom panel and

correspond to the Fed experiment (1979-1983). The third is a short period around 1987

after stock market crash.

8. Conclusion

In this paper we deal with Markov Switching models for volatility. In particular, we

firstly consider MS-GARCH models which are known to suffer of path-dependence, i.e.,

dependence of the entire path history of the data. This makes Quasi Maximum Likelihood

procedure unfeasible to apply. Hence, some solutions to overcome this problem have been

proposed in the literature and particularly through the estimation of auxiliary models

that allow similar effects of the original MS-GARCH. However, rewriting the model in a

suitable state space representation, we propose an approximated linear filter following the

line of Kim and Nelson (1999) and then we are able to prove duality in the estimation by

Kalman filter and auxiliary models. Moreover, we introduce a linear filter also for MS-SV

model on which different conditioning sets in the approximation step yield more flexibility

in the estimation. We apply those methods to a simulation study and Treasury bill rates

(the same dataset as in Gray (1996)). These applications show the feasibility of the linear

filter for both MS models. In particular, this method has the advantage of avoiding fine-

tuning procedures implemented in most Bayesian estimation techniques. In fact, giving

some initial conditions, the only duty of the researcher is to decide which approximation

to adopt in the filtering procedure. So, the proposed methods have a large applicability in

financial and economics exercises and potential applications are those dealing with time

varying volatility.
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Appendix

Appendix A – Computation details of some Formulae

A1. We show that pt|t−1,t = p(st|st−1,Ψt) can be espressed in terms of pt|t−1,t−1 and

the conditional density of εt which depends on the current regime st and the past regimes,
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i.e, f(εt|s1, . . . , st,Ψt−1). In fact,

pt|t−1,t = p(st|st−1,Ψt) = p(st|s1, . . . , st−1,Ψt)

= p(st|s1, . . . , st−1, εt,Ψt−1)

=
f(εt|s1, . . . , st,Ψt−1)p(st|s1, . . . , st−1,Ψt−1)

f(εt|s1, . . . , st−1,Ψt−1)

=
f(εt|s1, . . . , st,Ψt−1)p(st|st−1,Ψt−1)

f(εt|s1, . . . , st−1,Ψt−1)

=
f(εt|s1, . . . , st,Ψt−1)pt|t−1,t−1

f(εt|s1, . . . , st−1,Ψt−1)

where

f(εt|s1, . . . , st−1,Ψt−1) =

M∑
st=1

f(εt|s1, . . . , st,Ψt−1)p(st|st−1,Ψt−1)

=

M∑
st=1

f(εt|s1, . . . , st,Ψt−1) pt|t−1,t−1.

A2. Here we derive the approximation of Kim and Nelson’s Filter applied to model in

(8), which is Formula (9):

Bjt|t =

∑M
i=1B

(i,j)
t|t p(st−1 = i, st = j|Yt)
p(st = j|Yt)

=

M∑
i=1

p(st−1 = i, st = j|Yt)
p(st = j|Yt)

B
(i,j)
t|t

=

M∑
i=1

p(st−1 = i|st = j, Yt) B
(i,j)
t|t

=

M∑
i=1

pij,t−1|t,t B
(i,j)
t|t .

Appendix B – Stationarity Conditions

Let us consider the MS-GARCH model in (1). Then we have

E(ε2t ) = E(σ2
t ) = E(E(σ2

t |st)) =

M∑
j=1

E(σ2
t |st = j)p(st = j)

=

M∑
j=1

πj(ωj + αjE(ε2t−1) + βjE(σ2
t−1))

=

M∑
j=1

πjωj +

M∑
j=1

πj(αj + βj)E(σ2
t−1).
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For any n ≥ 1, we have

E(σ2
t ) = a

n−1∑
i=0

bi + bnE(σ2
t−n)

where a =
∑M
j=1 πjωj and b =

∑M
j=1 πj(αj + βj). This immediately implies that the

MS-GARCH process in (1) is covariance stationary if and only if b < 1. Of course, if

δj = αj+βj < 1, for every j = 1, . . . ,M , the above condition is satisfied. Conversely, if the

MS-GARCH is covariance stationary, at least one of the regimes is covariance stationary.

The above condition is sufficient but non necessary for strict stationarity. By iteration,

we get

σ2
t = ωst + αstε

2
t−1 + βstσ

2
t−1

= ωst + σ2
t−1(αstu

2
t−1 + βst)

= ωst + [ωst−1 + σ2
t−2(αst−1u

2
t−2 + βst−1)](αstu

2
t−1 + βst)

...

= ωst +

∞∑
k=1

ωst−k

k∏
i=1

(αst−i+1
u2t−i + βst−i+1

).

For every n ≥ 2, define

σ2
t,n = ωst +

n−1∑
k=1

ωst−k

k∏
i=1

ast−i+1(u2t−i)

where ast(x) = αstx
2 + βst . Now

n−1∑
k=1

log[ωst−k

k∏
i=1

ast−i+1
(u2t−i)] =

n−1∑
k=1

{logωst−k
+

k∑
i=1

log ast−i+1
(u2t−i)}

is monotone. Then the limit n→ +∞ is finite whenever

E[log(αstu
2
t−1 + βst)] < 0.

Here log denotes the natural logarithm as usual. But we have

E[log(αstu
2
t−1 + βst)] = E[E[log(αstu

2
t−1 + βst)|st]] =

M∑
j=1

πjE[log(αju
2
t−1 + βj)].

So we get that σ2
t < +∞ a.s. (almost surely) and {ε2t , σ2

t } is strictly stationary if

M∑
j=1

πjE[log(αju
2
t−1 + βj)] < 0.
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This extends the strictly stationarity condition given by Francq and Zaköıan (2012) for a

GARCH(1,1) model to the case of changing in regime. See also Theorem 1 in Bauwens et

al. (2010). Of course, the covariance stationarity condition implies strict stationarity, but

the converse is not true in general.

The MS-GARCH(1,1) model in (1) can be represented by a MS-ARMA(1,1) process as in

(7)

(1− δstL)ε2t = ωst + (1 + θstL)vt

where δst = αst + βst and θst = −βst . The necessary and sufficient condition for second-

order stationarity of univariate MS-ARMA(1,1) models was given by Francq and Zaköıan

(2001), see Example 3 pag.351. We apply their result in our case. Let us consider the

M ×M matrix

Ω = (aij)i,j=1,...,M

where aij = pjiδ
2
i . Let ρ(Ω) be the spectral radius of the matrix, that is, its largest

eigenvalue in modulus. From Francq and Zaköıan (2001), ρ(Ω) < 1 if and only if the

process (ε2t ) in (1) is second-order stationary in the case where, for at least one regime,

the AR and MA polynomials have no common roots. For our model, this means that

δj 6= −θj , that is, αj > 0 for some j = 1, . . . ,M . Finally, note that the MA part in the

process (ε2t ) does not matter for the second-order stationarity condition.

Finally, with regards to the MS-SV model in (12), its MS-ARMA representation is easily

obtained as follows

(1− ρstL)yt = ξst + (1 + βstL)zt

where ξst = α−ρstα+µst and zt+βstzt−1 = vt+et−ρstet−1. Thus stationarity conditions

as discussed above apply. More precisely, the process is second-order stationary if and only

if ρ(Ω̃) < 1, where Ω̃ is the matrix obtained by replacing δj by ρj in the definition of Ω.
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