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Abstract. In this paper we will consider Foata map as a function which associates an-
other permutation, known as F (�), to each permutation � = �1�2 ⋅ ⋅ ⋅ �m of the inte-
gers {1, 2, . . . ,m}, in such a way that the number of cycles of � is equal to the number
of left to right minima of F (�). We will analyze the behaviour of the iterated maps,
F 2(�) = F (F (�)), F 3(�), ... and so on. It is clear that given a permutation �, positive
integer numbers k exist such that F k(�) = �. Consider the smallest of these numbers and
call it n. We shall call the (ordered) set of permutations C(�) = {�, F (�), . . . , Fn−1(�)}
a Foata circuit and n its length. The length of Foata circuits is the main concern of this
paper: to our knowledge, no study has been devoted to this subject yet.
Experimental results are quite surprising. In computable cases, generally speaking, there
are one (at most two) circuit(s) of very large length (up to 85% of the total number of
permutations) and a number of little circuits, even of some units of components. In this
paper we will give a list of these circuits for permutations up to 11 elements. However these
data give rise to some conjectures, difficult to verify: the investigation on permutations of
more than 10 elements is a challenge and the case of m = 11 is a demonstration of this issue!
At the same time, in this paper we will also discuss some properties of ’short’ circuits, i.e.
the ones consisting in 2, 3 or 4 permutations.

Keywords: Circuits, Foata maps, Permutations.

JEL Classification Numbers: C43, C63.

MathSci Classification Numbers: 05E18.

Correspondence to:

Francesco Mason Dept. of Management, University of Venice
S.Giobbe, Cannaregio 873
30121 Venice, ITALY

Phone: [++39] (041)-234-6916
Fax: [++39] (041)-234-7444
E-mail: fmason@unive.it



 

1 

 

 

 

CIRCUITS OF ITERATED FOATA MAPS 

Andrea Borghesan – Francesco Mason 

Università degli Studi Ca’ Foscari di Venezia 

 

 

1. Introduction: basic definitions and hypothesis. 

Let be σ = σ1 σ2 … σm  a permutation whose elements are the ones in the set {1, 
2, …, m}.    The Foata map we will consider in this paper is defined as follows: 
   
1) Find the cycles in σ. 
 
2) Write every cycle in such a way that the first element is the minimum of the 
elements of the cycle.  Then write all the cycles in σ in order of decreasing minima.  
 
3) Erase the symbols of separation between cycles, in order to get a new 
permutation.  This will be called the Foata map (by decreasing minima) of the 
given permutation.   
 
Foata map was originally introduced in order to recognize the cycles in σ through 
left to right minima of F(σ).   
A left to right minimum is each element σi for which σj > σi for all j < i.  By 
definition, σ1 is always a left to right minimum.   
The main property of a Foata transformation is the following one (see for example 
[1], [2]): 
 
The number of cycles of a permutation σ is equal to the number of local left to right 
minima in the Foata map F(σ).  
 
The Foata map is a bijection: the inverse transformation, from σ to  ρ = F-1(σ)  is 
quite easy to perform (see [2], Transition Lemma).     
   
The Foata map may be defined in a different way assuming that every cycle is 
written beginning with the greatest element.  In this case we will dispose cycles in 
increasing order of maxima.  The theorem above can be reformulated in an 
evident way.  
However in what follows, however, we will always consider the Foata map as the 
one satisfying the ‘minima decreasing’ criterium. 
As long as 
 

a) the Foata map exists for every permutation; 
b) the permutations on a given number m of elements is a finite number (i.e. 

m!);  
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c) Foata map is a bijection, 
 
the following statements hold: 
 

- given a permutation σ, let n be the smallest positive integer ( m!) for which 
Fn(σ)=σ: in this way, σ, F(σ), F2(σ), …, Fn-1(σ) are all different and the Foata 
transform produces a circuit of permutations; we shall call every circuit of 
this kind a Foata circuit; n  will be called the length of the circuit; 

- every permutation belongs to one and only one Foata circuit. 
 
In this way, for every fixed m, the m! permutations of the elements 1, 2, …, m, are 
partitioned in a certain number of Foata circuits. 
Every Foata circuit can be represented (generated) by one of its permutations.  
Whenever possible, we shall identify a circuit by the lexicographically lest 
permutation.     
 
 

2.  Empirical results about Foata circuits. 
 
It is easy to see that: 

- if m = 1, (trivial case), we have only one Foata circuit of length1; 
- if m = 2, we have a Foata circuit of the two permutations  1 2  and  2 1; 
- if m = 3, the six permutations belong to a unique Foata circuit. 

In the cases studied, for  m  4, the number of Foata circuits is greater than 1 (and 
always an even number!).   
For  m = 4 there are two Foata circuits, containing respectively 15 and 9 elements.   
The one containing 15 elements has, as its (lexicographically) smallest generator 
the permutation 1234; the other one has as smallest generator 1243.   
The case m = 5 gives a quite surprising result.  This particular result arose our 
curiosity and motivated our subsequent investigations.  In fact, the 120 
permutations are partitioned in two circuits, the first one of 117 elements and the 
second one consisting of the remaining 3 elements. 

The following tables report the list of the Foata circuits when 5  m  11.  For 
every m, we give the length of each circuit and the corresponding smallest 
generator. 
 
 
m = 5  (m! = 120)  
 
 
 
 
 
m = 6  (m! = 720)  

694 1 2 3 4 5 6 

17 1 4 5 3 2 6 

5 2 3 6 4 1 5 

4 1 6 4 5 2 3 

 

117 1 2 3 4 5 

   3 2 1 3 5 4 
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m = 7 (m! = 5040) 

4 804 1 2 3 4 5 6 7 

  197 1 2 3 4 6 7 5 

   21 1 2 5 4 6 7 3 

    8 1 2 5 3 6 4 7 

    7 2 4 5 1 6 7 3 

    3 2 6 3 7 1 4 5 

 

m = 8    (m! = 40 320)                              

34 864 1 2 3 4 5 6 7 8 

 2 426 1 2 3 5 7 6 8 4 

 2 033 1 2 3 5 8 7 6 4 

    574 1 2 7 6 8 4 5 3 

   213 1 2 4 8 5 7 3 6 

   196 1 2 8 4 5 3 7 6 

      7 1 3 8 7 4 2 6 5 

      7 1 4 8 2 5 7 6 3 

 
 
m = 9    (m! = 362 880)  
 

166 095 1 2 3 4 5 9 6 7 8 

139 800 1 2 3 4 5 6 7 8 9 

23 281  1 2 3 4 5 6 7 9 8 

13 337 1 2 3 4 6 8 7 5 9 

10 768 1 2 3 4 5 6 9 8 7 

  8 568 1 2 3 4 6 7 5 8 9 

     531 1 2 3 5 7 4 6 8 9 

     362 1 2 5 6 9 8 3 4 7 

     106 1 2 4 7 3 6 8 9 5 

      23 1 3 4 6 5 8 2 9 7 

       5 1 8 3 7 4 2 6 9 5 

      4 1 9 6 7 5 4 2 3 8 

 
 
m = 10    (m! = 3 628 800) 
 

3 223 086 1 2 3 4 5 6 7 8 10 9 

  208 809 1 2 3 4 5 6 7 8 9 10 

   80 379 1 2 3 4 5 6 7 10 9 8 

  75 045 1 2 3 4 5 6 9 8 7 10 

  23 513 1 2 3 4 7 10 8 9 5 6 

  11 331 1 2 3 4 6 9 7 10 8 5 

    2 856 1 2 3 7 6 9 5 4 10 8 

   1 809 1 2 3 6 4 8 7 5 9 10 

   1 207 1 2 3 6 4 9 5 7 10 8 

      416 1 2 4 9 10 6 5 7 3 8 
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       292 1 2 6 3 10 5 8 4 9 7 

        57 1 2 5 6 9 3 7 4 10 8 

 
 
 
m = 11    (m! = 39 916 800) 
  

   28 022 027 1 2 3 4 5 6 7 8 10 9 11 

5 073 003 1 2 3 4 5 6 7 9 8 11 10 

2 247 005 1 2 3 4 5 6 7 8 9 11 10 

1 455 309 1 2 3 4 5 6 7 8 9 10 11 

1 141 445 1 2 3 4 5 6 7 9 11 10 8 

   845 854 1 2 3 4 5 6 8 10 7 9 11 

   822 240 1 2 3 4 5 6 7 11 10 8 9 

   110 743 1 2 3 4 6 5 10 7 9 11 8 

      94 762 1 2 3 4 6 5 9 7 11 8 10 

     46 888 1 2 3 4 5 8 9 10 6 7 11 

     19 516 1 2 3 4 6 11 5 7 9 10 8 

     15 437 1 2 3 4 6 8 10 9 11 5 7 

     10 890 1 2 3 4 7 11 10 5 8 9 6 

     10 350 1 2 3 5 10 4 7 11 9 6 8 

          777 1 2 3 5 10 6 4 11 9 8 7 

          224 1 2 3 8 10 7 11 9 4 5 6 

         169 1 2 9 8 4 5 7 11 6 3 10 

         161 1 2 3 10 5 8 7 4 11 6 9 

 
 
 
In the case m = 12 (in which there are 479 001 600 permutations), we began 
testing two generators, i.e. the identity permutation   

1 2 3 4 5 6 7 8 9 10 11 12 
and the permutation obtained exchanging the last two elements in the identity 
permutation: 

1 2 3 4 5 6 7 8 9 10 12 11. 
This was suggested us by some of the preceding cases, in which the identity 
permutations and the other one, obtained exchanging the last two elements, give 
rise to two different circuits.   
Indeed, this is also the case for m=12: the permutations above produced the first 
two cycles (see the following table), which contain together  474 149 644 
permutations.  This fact allowed, in searching other circuits, to reduce successive 
computing time, by stopping every search when the circuit under investigation 
demonstrated to be longer than 4 900 000 permutations.   
We proceeded the search changing the generator systematically on the basis of a 
lexicographical ordering of permutations on 12 elements.  
In this way, we found very quickly a circuit of near 450 000 elements and then, 
with 85 trials, a circuit of 746 402 permutations and with less than 200 trials, a 
circuit of more than 3 millions permutations. The 336th   instance gave the circuit 
with 109 369 permutations, while the 771th gave the one with 21294 permutations.    
The results at the moment are as follows:        
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    261 048 435 1 2 3 4 5 6 7 8  9 10 12 11 

213 101 209 1 2 3 4 5 6 7 8 9 10 11 12 

    3 135 130 1 2 3 4 5 6 8 10 11 12 9 7 

       746 402 1 2 3 4 5 6 7 11 10 8 9 12 

       454 788 1 2 3 4 5 6 7 8 9 11 10 12 

... ... 

       109 369 1 2 3 4 5 6 9 11 12 10 8 7 

... ... 

          21294 1 2 3 4 5 7 6 10 8 11 9 12 

... ... 

 
We cannot be sure that there are not any other circuits longer than 100 000 units, 
so the position of the 6-th and 7-th circuits of the list is not yet defined (other 
circuits longer than 100 000 elements can exist). 
However, the remaining permutations are 385 003, about 0.1 % of the total. 
 
In our analysis, which tests values up to 12, we have an increasing trend in the 
number of circuits (but pay attention to the two cases, m=9 and m=10, both with 
12 circuits).  The identity permutation  

1 2 3 … (m-1) m 

belongs to the longest circuit for m  8, while for m  9 this is not true.  Moreover, 

as we stated above, for m  9 if we exchange the last two elements in the identity 
permutation, we will get a generator of a different circuit.   
 
The experimental evidence suggests some conjectures: 

- an increasing (or not decreasing) number of Foata circuits as m increases; 
- one or two – at most, see cases m=9 and m=12 – very large circuits, 

containing more than 85% of all the permutations; 
- an increasing trend in the number of elements in the shortest circuit, when 

m  9 
Some other properties will be investigated in the following section. 
 
 

3. Theoretical results about ‘short’ circuits. 
 

The proof of the following statements is given in the Appendix. 
 

Lemma 3.1.  For every m > 1 and σ, F(σ)  σ. 
 
As a consequence, when m>1, every Foata circuit contains two permutations or 
more. 
 
Lemma 3.2  If σ = 1σ2σ3…σm, then F(σ) = ρ1 ρ2… ρm-11.   
Conversely, if σ = σ1σ2…σm-11, then ρ = F-1(σ) = 1ρ2…ρm. 
 
Lemma 3.3  If σ = σ1σ2 … σm-1 m, then F(σ) = m ρ2…ρm-1ρ m.   
Conversely, if  σ = mρ2…ρm-1ρm, then ρ = F-1(σ) = ρ1ρ2…m. 
 
Lemma 3.4 If  σ = 1σ2…σm-1 m, then F(σ) = mρ2…ρm-11.  (And conversely). 
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Corollary 3.1 If  σ = 1σ2…σm-1 m, then ρ = F-1(σ) = ρ1ρ2… ρm-11. 
 

Lemma 3.5  If  σ = m σ2 … σm-1  1, then ρ = F(σ) = a ρ2 ρ3 … 1 m (obviously, a1, 

am); moreover τ= F2(σ) = m 2 3 … 1 a … m-1, where it possibly can results  
a = m-1. 
 
Corollary 3.2  In a Foata circuit, if  

σ = 1 σ2 σ3 … m 
then  

F(σ) = m  ρ2 …  ρm-1 1 

F2(σ) = a  2 …  m-2 1 m 

a  1, m; moreover  

                                              F-2(σ) = 1 2 … m; 

F-1(σ) = 1 2 … m-1 1; 
whereas  F3(σ) has a structure  

F3(σ) = m … 1 a … m-1 
in which it can be a = m-1. 
 
 
Corollary 3.3  In a Foata circuit, every couple of consecutive permutations  

Fh = 1 2 … m, Fh+1= 1 … m-1 1 
Is followed by a couple of permutations 

Fh+2 = ρ1 …  ρm-1 m, Fh+3= m 2 …  m 
 
Lemma 3.6  Whenever m>2, a Foata circuit of length n=3 cannot contain 
permutations in which the first element is 1.   
 
The only known case of a 2-length  circuit is m = 2.  We conjecture that this will be 
the unique case.  We did not succeeded in proving this result. However, it is 
possible to prove  
 
Lemma 3.7  Circuits of length 2, if any, cannot contain permutations beginning 
with 1, 2, m-1, m nor permutations in which the last element is 1, 2, m. 
 
 
 
4.  The challenge of the hidden permutations: discovering short circuits. 
 
In order to detect all the Foata circuits for a given m, we followed three different 
techniques. The main problem was to manage the total number of permutations 
and, particularly, given a set of circuits, to discover permutations not yet belonging 
to any of these circuits.  The task was relatively easy for large circuits.  But it 
became more difficult when we tried to identify the shortest circuits.  We could 
easily establish that they exist, but, when m = 10 or more, it was very problematic, 
to identify with precision their length and to identify a generator.     
The simplest idea, we performed for m ≤ 9, consisted in the building of the list of 
all the permutations and then in progressively deleting the permutations of found 
circuits.  The remaining permutations, obviously, must belong to circuits not yet 
found.  Assuming one of these as a new generator, we got a new circuit and so, 
step by step, all the permutations were classified. 
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The procedure can be represented by the following pseudo-algorithm: 
 

1. Build all the permutations and save them in a database “permutations”. 
2. Repeat 

2.1 Read the first permutation σ in the data base. 
2.2 Use σ in order to build a circuit.  
2.3 Delete all the permutations belonging to the circuit from the db 

“permutations”. 
3. Until permutations in the database “permutations” exist.    

 
This release suffers from some limits.  Generally speaking, it is not necessary to 
build all the permutations in order to find all the circuits, so in the above algorithm 
the needed time is not optimized.  In particular, the deletion of already met 

permutations is very time consuming.  
More efficient, and tested in case m=10, is the following release: 
     

1. Build recursively a permutation 
2.1 if the permutation does not belong to any of the circuits so far detected 
 2.1.1 build the corresponding circuit 
 2.1.2 save this circuit 
2.2 else, go to 1. 
2.3 finish when the global number of permutations in the detected circuits is     
m!  

 
This second release may appear heavy and time wasting, when we search if a 
permutation belongs to an already detected circuit. However, once we have 
detected some of the longest circuits, and known that q permutations have not yet 
been classified,  we can test if a new permutation can generate a new circuit by  
stopping the search after q+1 iterations of the Foata map. 
 
In order to reduce the search time, we build a third algorithm.  The main difference 
between this new algorithm and the preceding one is that we consider only 
permutations in which the first element is 1.  This is motivated by the empirical 
evidence that the shortest circuits, when m=10 contained more than 50 
permutations: if this represents a general trend, for m > 10, every circuit contains 
permutations beginning with the element 1.  
Indeed, this third procedure when applied to m = 11 revealed all the Foata circuits. 
The question is open about the detection of all circuits when m = 12 or more.        
 

 
4.  Some observations and conclusions 

 
The very high difference between the numbers of permutations in various circuits, 
makes somewhat problematic to identify some property that characterizes the 
permutations belonging to the same circuit.      
If the main interest in Foata map is to give a correspondence between cycles and 
left to right minima (or left to right maxima) the two Foata maps (obtained by 
‘decreasing minima’ or ‘increasing maxima’) may be considered equivalent.  
However the properties of circuits raising from the two kinds of maps are very 
different.  Circuits generated from ‘increasing maxima criterion’ are generally very 
short.   
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On the contrary, long circuits, such the ones obtained in the ‘decreasing minima’ 
method, may be interesting in other contests. We think to a possible use in a 
simulation framework, with some care in order to avoid the correlations between 
adjacent permutations in the same circuit due to the properties underlying some of 
the Lemmas and Corollaries in section 3.  However, we leave this issue to further 
deeper researches.     
 
 

5.  Appendix 
 
Proof of Lemma 3.1.  Consider  σ = σ1σ2…σm   and F(σ) = ρ1ρ2…ρm.  If σ1 = 1, 
then ρm = 1 (and consequently ρ1 ≠ 1).  On the contrary, if σ1 ≠ 1, then in σ we 
have a cycle of the kind (1 σ1 …) which will be the last cycle in F(σ) so in F(σ) the 
element σ1 cannot be in the first position. 
 
Proof of Lemma 3.2.  It is quite evident: the element 1 in σ will be a cycle by itself 
and so it will be transposed in the last position in F(σ) and vice versa.   
 
Proof of Lemma 3.3  The element  m in σ is a cycle (a loop) and in F(σ) it will be 
in the first position (because it achieves the maximum of the minima). Vice versa, 
the position of the element m in F(σ) can be originated only from the position of m 
in the first place of σ. 
Proof of Lemma 3.4.  It is an immediate consequence of the preceeding two 
Lemmas. 
 
Proof of Corollary 3.1.  It is a particular case of Lemma 3.2. 
 
Proof of Lemma 3.5.  The permutation σ contains the cycle (1 m), which will be 
the last one in F(σ).  Denoting with ‘a’ the first element in F(σ), in F2(σ) we will 
have: m, as first element (it is a loop in F(σ)); the couple (1 a) somewhere in F2(σ). 
 
Proof of Corollary 3.2. and 3.3 They are consequences of the above Lemmas. 
 
Proof of Lemma 3.6.  Effectively, from an empirical point of view, the property 
holds for m ≤ 4, so we can suppose m ≥ 5.  From the preceding Lemmas and 
Corollaries, in a Foata circuit, a permutation   σ = 1σ2σ3…σm  is followed by other 
three permutations in such a way that we get the scheme: 

σ = 1 … a 
F(σ) = b … 1 

F2 (σ) = c … m 
F3 (σ) = m … d. 

We prove that these four permutations are always different.   
Obviously, a≠1, b≠1; σ ≠ F(σ),  F(σ) ≠ F2(σ),   σ ≠ F3(σ), F2(σ) ≠ F3(σ).  Consider 
now two cases: a≠m and a=m. 

i)  If a≠m, σ ≠ F2(σ), but we also have F(σ) ≠ F3(σ), because it is impossible b 
= m (this would induce a = m); 

ii) If a = m, the above scheme becomes:  
σ = 1 … m 

F(σ) = m … 1 
F2 (σ) = c … 1 m 
F3 (σ) = m … d, 
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         so σ ≠ F2(σ).  On the other side, F2(σ) contains a cycle of the kind  
(1 c … m-1) 

      and consequently the element 1 cannot be in the last position in F3(σ).  In this 
      way we can assert d ≠ 1 and F3(σ) ≠ F(σ).    
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