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Abstract 
  A trader's execution strategy has a large effect on his profits.  Identifying an optimal strategy, 
however, is often frustrated by the complexity of market microstructure's.  We analyse an 
order book based continuous double auction market under two different models of trader's 
behaviour.  In the first case actions only depend on a linear combination of the best bid and 
ask.  In the second model traders adopt the Markov perfect equilibrium strategies of the 
trading game.  Both models are analytically intractable and so optimal strategies are identified 
by the use of numerical techniques.  Using the Markov model we show that, beyond the best 
quotes, additional information has little effect on either the behaviour of traders or the 
dynamics of the market.  The remarkable similarity of the results obtained by the linear model 
indicates that the optimal strategy may be reasonably approximated by a linear function.  We 
conclude that whilst the order book market and strategy space of traders are potentially very 
large and complex, optimal strategies may be relatively simple and based on a minimal 
information set. 
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1 Introduction

How should a trader optimally execute a trade? As academic understanding of financial

markets and the e↵ect of their structure has grown this question has become more nuanced

and sophisticated. In early models markets were assumed to have a single price and react

smoothly to changes in demand. In this context the question of optimal trading was often

one of timing - when should a trader trade. As these models became more sophisticated

and market makers started to play a role, issues such as order splitting and information

hiding came to the fore. More recently with the inclusion of architectures such as order

books the question has acquired new facets - not just when should a trader trade but

also at what price and with what tool. Should a trader trade now with a market order?

This guarantees trade at a specified, but potentially inferior, price. Or should they post

a limit order in the belief that prices will improve and that greater returns will be made?

The ability of traders to select the best order may potentially have a large e↵ect on

their profits. The size of this e↵ect is increasing as algorithmic trading aimed at picking

o↵ ine�cient submission becomes more common. The trader’s choice will be contingent

on their own information but importantly also the state of their environment - the order

book. How this information should be used and just which pieces are important, however,

is an open question.

In this paper we investigate the important and e↵ect of information on trading strate-

gies and market dynamics. We draw conclusion from two models. The first permits

continuous prices, i.e. there is no minimum tick size, and trading strategies are condi-

tioned on the prices of the best bid and ask quotes. In this model strategies are optimised

through the use of Evolution Strategies, an optimisation technique based on evolution and

adaptation of the most profitable strategies. In the second model traders submit orders on

a discrete grid of ticks. Strategies are identified via the algorithm of [Goettler et al., 2005]

ensuring that they are optimal for the specified game. We find that the amount of in-

formation traders use in their strategies has little e↵ect either on the dynamics of the

market or on the behaviour of the traders either under the optimal strategies or the linear

approximations. We conclude that optimal trading strategies in a microstructure context
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may be simpler than believed and importantly may be characterised by a linear combina-

tion of the information available at the best quotes. Further we conclude from this that

models of financial markets do not need to concern themselves with interpreting the full

information set available to traders strategies. Indeed, restricting consideration to the

best quotes has little e↵ect on results.

The dynamics of order book markets constitute complex situations through which

traders interact. Traders and academics, when analysing or modelling these markets, are

both faced with the task of combining large amounts of information to find an optimal

strategy. One reason for this is the complexity of the environment - the amount of

information available to traders in the book. Even under a Markov assumption - that

the entire payo↵ relevant history may be captured by the current state of the book the

information available is very substantial. Order books typically constitute price grids. At

each discrete price there may be any quantity available to buy or sell (under the constraint

that the highest buy price must be less than the lowest sell price). As a result the size

of the information space is potentially infinite. Some of this information is undoubtedly

more important than other pieces. Orders far from the best prices are unlikely to result in

trades and therefore are potentially less important. Their presence in the book, however,

would have an e↵ect on extreme price movements and therefore may not be ignored. As

such, di↵erent pieces of information will be more or less important and may have a smaller

or larger e↵ect on trading behaviour. Constructing the strategy - the optimal mapping

between states and actions - in these markets is therefore a daunting task.

Since the relatively early stages of the academic microstructure literature models have

been constructed in an attempt to do this. Frequently, however, this requires strong as-

sumptions in order to maintain analytical tractability. For example [Parlour, 1998] consid-

ers a book of only 4 ticks in which two have infinite liquidity whilst [Rosu, 2009] assumes

continuous prices and time, permitting instantaneous revision of quotes. There have also

been attempts to model these markets and trading strategies numerically. The simplest

case is the literature on zero intelligence models, e.g. [Ladley and Schenk-Hoppé, 2009], in

which traders ignore information about the book and remove strategic considerations all
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together. Whilst these models allow the full market architecture and realistic order sub-

missions, they completely abstract from the central problem we are concerned with here.

Other models such as [Chiarella et al., 2012] and [Chiarella et al., 2009] use exogenously

specified rules for determining the choice between market and limit order submission

and the appropriate price and quantity. These decisions are dependent on the traders

demand and the best quotes in the market. They are restricted, however, by the pre-

specified functional structure - there is no guarantee (or claim) that these strategies are

optimal in this setting. A third avenue of research of particular interest is in the papers

of [Goettler et al., 2005] and [Goettler et al., 2009], which use the numerical technique

of [Pakes and McGuire, 2001] to solve an order book market game for a Markov perfect

equilibrium in which the trading strategies are optimal. Whilst this may appear to solve

the problem these techniques are still numerical demanding. The algorithm attempts

to identify the optimal response in all relevant states in the state space. As the size of

the order book (the number of orders present) increase, however, this state space grows

exponentially. As a result this algorithm is only able to find optimal strategies under a

constrained space - either information must be discarded or this algorithm is restricted

to books with a relatively small number of ticks and with few orders present.

An important insight to this question is made by [Bouchaud et al., 2009]. In this

paper the authors discuss how there may frequently be gaps in the order book - prices

at which no orders are present. Even with these static gaps the book may be considered

to be dynamically complete, i.e. orders will appear and accumulate as they are needed -

they are issued on the fly to provide liquidity. As such, knowledge of many levels of the

order book may not be fully revealing of the state of the world if there are traders present

within the market that will provide liquidity when it is needed. Information beyond the

best quotes may be unreliable. [Manahov et al., 2013] consider a related problem in which

traders with di↵erent levels of cognitive abilities trade within financial markets. In this

case cognitive ability is reflected by greater capacity for complex strategies and reasoning

through larger genetic programs. They find that more intelligent traders enhance price

discovery but damage price stability and liquidity. It is, however, important to emphasise
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that this study is concerned with the cognitive ability of traders and not the information

they have at hand or the size of the strategy space, as we focus on here.

As is the case in many other works, we assume traders are risk neutral profit-maximisers

despite the fact that, as pointed out in [Parlour and Seppi, 2008], agents’ decisions should

in the end be coherent with their portfolio and consumption choices, which typically dis-

play risk-aversion. However, to keep the models numerically manageable, we use reduced-

form trading preferences and assume that trading benefits, modelled through private

values, proxy for the utility stemming from trading. See the first section of the extensive

survey by Parlour and Seppi for a thorough analysis of this issue.

The paper is organised as follows. The next section gives details on the setup of

the market, defines the strategies used by traders and the equilibrium concepts used

in this paper. Section 3 describes the two models of optimal trading in a continuous

double auction, based on the use of linear and Markov perfect equilibrium strategies.

Simulation results are presented in Section 4, which reports aggregate data on the order

book dynamic equilibria together with an illustration of the optimal strategy used by

traders. Some discussion and conclusive remarks end the paper.

2 Setup

We model a standard order book based Continuous Double Auction (CDA) where at each

time step a single trader enters the market. The trader is randomly allocated a type,

buyer or seller with equal probability, and a positive reservation value v 2 V or positive

cost c 2 C for a single unit of the traded asset. We assume that V = C and |V | = k,

i.e., that agents’ values and costs belong to the same set of k discrete positive values.

Additionally, values and costs are uniformly drawn from V and C and are constant over

time: vi 2 V is the i-th buyer’s private valuation of the asset and can be thought as the

maximum price he will rationally pay for the asset. Symmetrically, cj 2 C is the j-th

seller’s private cost for the asset and can be regarded as the minimum price at which he is

rationally willing to sell the asset. We will assume, as done frequently in other works, that

every agent buys or sells a single unit of the asset and, likewise, deal with cancellation
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in a simplified and standard way: at the end of every time step each order stored in the

book is cancelled1 with (a small) exogenous probability Pc > 0 that is independent of

time, state of the book and of the specific agent acting in that period.

At any time t the book is a double sequence of outstanding unit orders

St = {0  ...  b3t  b2t  b1t < a1t  a2t  a3t  ...},

where b1t, b2t, ... and a1t, a2t, ... are the lists of buy and sell orders in the books. We often

omit the time index for simplicity. The highest bid b1 and lowest ask a1 are referred as

best bid and best ask, respectively. The distance a1 � b1 is referred to as the spread.

Traders submit a single order when they enter the market. The quantity is fixed at

one unit but the trader must decide the price, computed using a function of the state of

the book and their valuation: without loss of generality we describe the model for the

i-th buyer (the situation for the sellers can be easily recovered, given the symmetry of the

environment). The bidding function (or strategy)

Bit = fi(a1t, b1t, Iit)

provides the limit price Bit (a bid, in this case), given the values of the best quotes

a1t, b1t. The set Iit contains all of the information available to the agent both public and

private. This set may include the state of the book and their private valuation/cost. The

submission of Bit changes the book and results in an immediate trade, a marketable order,

if the bid is greater than or equal to the best ask, i.e., Bit � a1t. In this case, the two

agents involved in the transaction get the associated profits: the buyer earns vi � a1t and

the j-th seller, who issued a1t previously, is paid a1t � cj where cj is his cost. The book is

then updated so that the best ask a1,t+1 in the next tick will be given by a2t. If instead

Bit < a1t, the new order is inserted2 in the book, maintaining its ordering, to be possibly

used in future trades. Any profit occurring after t is accrued in the same way to the

parties with no time-discount. In particular, if b1t < B1t < a1t the order is called price

1
We never cancel the order in the time step in which it is submitted.

2
We always use the standard price-time priority to break ties.
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improving as it raises the current best bid. Bids for which B1t  b1t are less aggressive

as the relative limit price is queued after the best bid and, as a consequence, at least one

trade is needed before execution is possible.

Notice that in this setup an immediate transaction may result from many di↵erent

orders. Indeed, any bid for which B1t � a1t produces a transaction and gives the very same

profit, regardless of B1t. In other words, there are non trivial subsets of bidding functions

that are formally di↵erent and provide di↵erent limit prices but are profit-equivalent. This

is especially true for strategies that often generate marketable orders and has implications

for the interpretation of the numerical results of the following sections.

An equivalent description holds for the generic j-th seller whose limit ask is given by

Cjt = gj(a1t, b1t, Jjt), where Jjt is the information set available (to the seller) at time t.

We skip the details for brevity.

Agents are risk neutral and maximise the expected payo↵ (immediate or delayed),

selecting a strategy to issue orders (bids or asks). Once the rules for the auction regarding

cancellation and quantities, and the description of the agents are given, di↵erent models

are obtained specifying the features of the strategies and the information that is processed.

The i-th buyer will attempt to solve the problem

max
fi2F

E[payit|O�i, vi], (1)

where payit is the random profit resulting from bidding what is prescribed by fi(a1t, b1t, Iit)

at time t, F is the set of admissible bidding function and O�i denotes the (fixed) strategies

used by the other traders. To simplify notation, we omit O�i and vi whenever this is not

harmful. More formally:

payit =

8
>>>>>><

>>>>>>:

vi � a1t if the order is immediately executed: Bit � a1t;

vi � Bit if the order is executed at some time t0 > t: Bit < a1t;

0 if the order is (randomly) cancelled before execution.

The expectation in (1) is taken over all the states of the book that can be faced at
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t and over all the trajectories of states that can materialise for t0 > t, starting from the

initial condition St at time t, under the use of strategies O�i. Unless unrealistically strong

assumptions are made, the previous optimisation problem is analytically intractable due

to the path-dependency of the book and the intricacies of the auction mechanism. Finding

a numerical solution of (1) is still a non trivial task. This, however, may be tackled in

several ways, which will be detailed in what follows.

We will assume hereafter that all agents of the same type use the same strategy and

are interested in the equilibrium situation in which no agent has the incentive to change

strategy given what other agents do. In detail, we aim at approximately computing a set

of bidding (asking) functions

O⇤ = {f ⇤
1 , ..., f

⇤
k , g

⇤
1, ..., g

⇤
k}

such that for any buyer i = 1, ..., k, say, we have

E[payit|f ⇤
i , O

⇤
�i] � E[payit|fi, O⇤

�i], 8fi 2 F , fi 6= f ⇤
i , (2)

where O⇤
�i are the strategies optimally played by all the other agents/types. The intuition

behind (2) is well known and requires an equilibrium to be a set of policies in which no

agent has the incentive to deviate if the other traders stick to their optimal strategy.

3 The models

In this section, we describe two models of traders’ behaviour in a CDA. Several features of

the auction (most notably, due to the ’double’ path dependency, uncertain execution and

random cancellation) and the strategic interplay of di↵erent types make optimal decisions

hard to select or even approximate.

The first model is arguably mimicking a minimal and memory less level of strategic

reasoning. Traders submit their orders only based on the best quotes at the time of

entering the market. Limit prices are simple weighted averages of a1 and b1 (plus a
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constant). On the top of the best quotes, the information set available to any trader is

the empty set. A similar model was used in [Pellizzari, 2011].

The second model, see [Pakes and McGuire, 2001, Goettler et al., 2005, Goettler et al., 2009],

allows traders to make use of further information - the first l quotes on either side of the

book. The expected payo↵s of all possible orders in each state of the book are explicitly

computed by estimating the execution probability of each order submission (clearly, for

marketable orders the execution probability is taken to be 1). As such the profit max-

imising order may be selected and, e↵ectively, the price setting function may therefore be

of arbitrary shape and complexity.

A more detailed description is given in the next subsections.

3.1 Linear strategies

We assume that the bid/ask to be submitted by traders at time t is given by

Bit = fi(a1t, b1t, Ii) = min(B,↵ia1t + �ib1t + �i), (3)

for buyers and

Ajt = gj(a1t, b1t, Jj) = max(A, �ia1t + �ib1t + ⌘i), (4)

for sellers, where ↵i, �i, �i, �j,�j, ⌘j are real constant to be determined and Ii = Jj =

;, 8i, j. Essentially, all traders compute the limit price to submit by o↵setting a linear

combination of the best ask and the best bid. Slightly abusing terminology, we refer

to these bidding functions as linear strategies in the following and notice that f can be

thought of as a function of the coe�cients ↵, �, � as well as a function of the best bid and

ask. We enforce a minimal level of rationality and assume that no buyer bids more than

some (large) constant price B and no seller’s ask is satisfied with less than some (small)

constant amount A but we do not otherwise constraint agents and they are free to pick

any linear strategy even though, say, the resulting bid may exceed the private valuation

of the asset and, hence, successful execution would cause a net loss. It is also clear from

(3, 4) that bids and asks are continuous real values: this is to be contrasted with values
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and costs that are discrete.

Using the previous linear formulation, we can describe the strategies of all traders

as vectors in R

3 so that the bidding function (3) for the i-th type is determined by

xi = (↵i, �i, �i). Analogously, the asking function for the j-th seller can be thought of as

yj = (�i,�i, ⌘i). Given a set of strategies for traders other than the i-th one:

O�i = {x1, ...,xi�1,xi+1, ...,xk,y1, ...,yk},

he will attempt to maximise the profits solving the problem

max
xi2R3

E[payi|xi, O�i].

A trading equilibrium is a set of triplets (strategies)

O⇤ = {x⇤
i ,y

⇤
j , i, j = 1, ..., k}

such that

x

⇤
i = arg max

x2R3
E[payi|xi, O

⇤
�i],

for all buyers indexed by i = 1, ..., k and with an analogous property holding for all sellers,

j = 1, ..., k.

Numerically, the set of equilibrium strategies can be approximated by repeatedly solv-

ing the optimisation problem for each type, assuming all the other agents stick to their

strategies, and running the algorithm over all types until “convergence is reached”. The

details of the method are outlined in [Pellizzari, 2011] and are based on Evolution Strate-

gies. This optimisation technique, thoroughly surveyed in [Beyer and Schwefel, 2002],

evolves the parameters of the population through a number of generations in which

the tentative bidding functions are mutated, evaluated, deterministically ranked and dis-

carded based on a fitness measure, before giving birth to the next generation. It is of

particular interest here that a meta-parameter related to the strength of innovation is

endogenously evolved together with the unknown parameters and can be used to gauge
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whether convergence has been successfully reached.

3.2 Markov Perfect Equilibrium Strategies

The second model embodies a di↵erent approach in which beliefs of the probabilities of

order execution are explicitly calculated. An equilibrium in this framework is a set of

probabilities of execution for any limit order in any state of the book. Moreover, we

require such an assignment P of probabilities to be consistent, meaning that if agents

trade based on the beliefs P , the realised probability of execution is indeed P , so that

there is no discrepancy between beliefs and reality.

We assume that the bidding function fi takes values in V and that the l � 1 best

quotes are known on each side of the market3. We refer to l as to the information level

of the trader, with l = 1 being the situation in which no quotes other than the best bid

and ask are known. More formally, the i-th buyer’s bidding function is

fi : V
2l �! V, (b1, ..., bl, a1, ..., al) 7! Bit,

where the bid Bit maximises

P (Bit|St)payit,

and P (Bit|Sit) is the (perceived) probability that the order will be executed in state St

either immediately or after some time. In equilibrium traders decide their bid based on

the belief P : V 2l+1 ! [0, 1] representing the probability that an order Bit 2 V issued in

state St 2 V 2l at time t will be executed (before exogenous cancellation).

The probabilities are iteratively found as outlined in [Pakes and McGuire, 2001], aim-

ing at producing Pn ! P for large n: for any bid b 2 V and a state S, at the start of the

simulation we set 8b, S, P0(b, S) = 1 and mb,S
0 = 1.

It is important that the initial probability P is optimistic to facilitate the exploration

of the parameter space. The counter m records the number of times a state has been

3
We also consider a special case where l = 0. In this case prices are selected at random uniformly

from the distribution (0, vi) for buyers and (cj , A) for sellers. This constitutes a Zero Intelligence (ZI)

strategy as defined by [Gode and Sunder, 1993]
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visited - here initialised to 1. The trader who arrives at the market in each period selects

the optimal order based on the current estimates of probabilities. Each probability is

updated each time step as follows. For a state in which an order executes:

Pt+1(b, S) =
mb,S

t

mb,S
t +1

Pt(b, S) +
1

mb,S
t +1

, mb,S
t+1 = mb,S

t + 1.

For a state in which the order is cancelled: Pt+1(b, S) =
mb,S

t

mb,S
t +1

Pt(b, S), mb,S
t+1 = mb,S

t .

For states in which an order is neither cancelled nor executed: Pt+1(b, S) = Pt(b, S),

mb,S
t+1 = mb,S

t .

A number of algorithmic devices are used to improve speed and avoid premature

convergence.4

After running the model for T time steps we test for convergence in probabilities. The

model is run for a further X time steps during which the updating procedure described

above is not applied and probabilities are held constant. Through out this period the

number of times orders are submitted in each state and the number of times those orders

are executed are both recorded. At the end of the period for any state in which more

than 100 orders are submitted the realised probability of order execution is compared

with P (b, S), namely the probability of execution estimated by the numerical algorithm.

The average mean squared error over all such states is calculated. If this value is less than

0.001 the model is said to be converged, i.e., the equilibrium has been identified. If this

is not the case the model is run for a further T time steps with probability updating and

the model retested. This is repeated until the model is converged. Once this is achieved

statistics are collected from the model.

3.3 Further comments

The two models reviewed in the previous section have some similarities but are also

di↵erent in important aspects. Agents in both frameworks share a common set of discrete

values/costs and attempt to maximise the gain from trade in a risk-neutral fashion. In the

4
Every 100,000 time steps we set mb,S

t = 1, 8b, S. Moreover, with probability pR rather than sub-

mitting the utility maximising order a trader instead submits a randomly chosen order in the current

configuration. The e↵ect of this is to help prevent local equilibrium. In particular due to poor early

performance certain actions may no longer be chosen, however, as strategies are refined over time these

orders may be once again acceptable. The random selection of these orders allows them to be reintroduced

to the strategy.
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Markov Perfect Equilibrium model, traders must pick a bid/ask among k possible prices

(ticks), explicitly computing the expected profit of each option available. The bidding

function takes discrete values but is not restricted in any other way and, in particular,

has the potential to reveal that optimal trading may be characterised by some form of

non-linearity.

In contrast, agents using linear strategies can submit orders at any price and this

model is not endowed, as was the case for the Markov Perfect Equilibrium market, with

a natural tick-size. Hence, in the linear strategy equilibrium, the best quotes can be

arbitrarily close at times and this can possibly increase the liquidity and e�ciency of the

trading process. The strategy of each type of buyer/seller is relatively simple and depends

only on three coe�cients, whereas a full set of probabilities must be known to take any

trading decision in the other model. Importantly, the form of the bidding functions in the

linear strategies market is rather restrictive and the possibility to devise or approximate

any nonlinear trading scheme is ruled out. The following section presents the results of

a set of numerical simulations and discusses the extent to which the di↵erences between

the two models have an e↵ect on the book dynamics and traders’ actions or profits.

In both models traders are risk neutral. If the traders were risk averse they would trade

to minimise the risk of non-execution by placing fewer limit orders and more market orders.

This may not necessarily result in a wider spread as, being risk averse, traders would place

their orders less far back in the book. Hence, while the proportion of equilibrium orders

may be di↵erent, the e↵ects of information levels demonstrated in this paper are not likely

to change.

4 Results

This section compares the book dynamics prevailing in equilibrium in the two strategic

models. For comparison, we also provide results obtained in a market populated by

non-strategic Zero Intelligence (ZI) traders.

Numerical results for the linear strategy model are based on 20 independent simula-

tions and averages or other statistics are computed using an ensemble of 106,400 states
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Variable Description Value
V Buyer valuations {0.05, 0.10, ..., 0.90, 0.95}
C Seller Valuations {0.05, 0.10, ..., 0.90, 0.95}
Pc Probability of cancellation 0.01
B Maximum Bid 1.0
A Minimum Ask 0.0
PR Probability to issue a random order 0.01
X Convergence assessment period 1,000,000
T Optimisation period 1,000,000,000

Table 1: Values and description of the parameters used in the numerical simulations.

of the book.5 For the Markov perfect equilibrium model results are calculated over 20

repetitions for each information level and are averaged over 1,000,000 states of the order

book.

Model ZI l = 1 l = 2 l = 3 Linear
Best bid 0.424 0.466 0.465 0.464 0.472
Best ask 0.576 0.534 0.534 0.536 0.524
Spread 0.152 0.068 0.069 0.071 0.051

Quantity at best bid 1.76 2.39 2.40 2.32 -
Quantity at best ask 1.76 2.42 2.44 2.40 -

Table 2: Summary statistics of the book under the four di↵erent information levels.

Table 2 shows the average state of the book under di↵erent models: together with

ZI traders (l = 0), we have considered three di↵erent information levels l and the use of

linear strategies.

The market populated by ZI traders is substantially di↵erent from any strategic mar-

ket, with much wider best quotes on average and an inflated spread. Clearly, the lack

of strategic considerations in this case results in too many orders being randomly placed

behind the best quotes and with a low probability of ending in a trade. Conversely, any

market populated by strategic traders shows a much narrower spread, close to the gap

between adjacent traders’ values or costs. There is virtually no di↵erence for di↵erent

levels l of information and little practical discrepancy between the set of the Markov

equilibria and the linear strategies equilibrium. The average equilibrium spread using

5
States are obtained from 20 independent simulations of 7 days of trading. We approximate a contin-

uous flow of traders using a large population of 760 agents, 380 buyers and 380 sellers: hence, statistics

are based on 106, 400 = 20⇥ 7⇥ 760 states.
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linear strategies 0.051 compared to about 0.070 for the other models (regardless of l) but

it must be noticed that in the latter cases the spread cannot be less than 0.05, as o↵ers on

opposite sides are discrete and cannot overlap.6 As such the presence of a minimum price

increment (tick) in the Markov model has only a small e↵ect on the equilibrium market

behaviour.7

To understand why the information level has little e↵ect on behaviour it is beneficial

to consider the problem faced by traders. In the model, in equilibrium, the traders’

estimates of the probabilities of orders executing are always correct. For a given state X

in information level l this probability is the average, weighted by frequency of occurrence,

of all states that in information level l + 1 would map to state X. For instance, consider

the state X for l = 1 of {B1 = 0.4, A1 = 0.6} (i.e., the best bid is 0.4 and the best

ask 0.6). There are a large number of states in l = 2 which map to this, including

{B1 = 0.4, A1 = 0.6, B2 = 0.3, A2 = 0.7}, {B1 = 0.4, A1 = 0.6, B2 = 0.3, A2 = 0.8},

{B1 = 0.4, A1 = 0.6, B2 = 0.3, A2 = 0.9} etc. All of these states in l = 2 would be

represented by X in l = 1. The greater number of states allows traders to specify their

strategy more finely but they do not measure the probability of execution over the set any

more accurately. As such, there may be some states where traders are more aggressive at

l = 2 than they would be in X at l = 1 and, similarly, some where they are less aggressive.

The chosen action at level l = 1 may therefore be viewed as the payo↵ maximising action

averaged over all possible “equivalent” states at l = 2. This explains why the information

level has little influence on the aggregate behaviour being actions averaged across all

states.

A snapshot of the best quotes realised with linear strategies is depicted in Figure 1.

The graph shows that there is considerable variability in the trading session as well as

frequent periods in which the spread falls to minute levels (periods when the two lines

6
The quantities at the best quotes for the linear model are not given as with continuous pricing there

is never more than one order at this price.

7
The e↵ect of the width of the price grid - the number of ticks in the market - was also considered.

Doubling the number of ticks in the price grid led to an increase in the spread of 50% whilst the quantities

at the best quotes were found to be 50% greater under the smaller set of prices. Importantly, however,

a larger price grid was found to have no e↵ect on the behaviour of the model across information levels,

i.e. for all information levels the spread and quantities available were the same.
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Figure 1: Example of time evolution of best bid and ask in equilibrium using linear strategies.

Best bid is given as a dashed line whilst the best ask is the solid line. Each time step corresponds

to a single trader entering the market.

nearly intersect). This demonstrates why the average spread in the presence of linear

strategies is smaller than in the Markov perfect equilibria.

Table 3 shows the distribution of spreads for all the markets. Again the statistics

for the four markets with strategic traders are very similar. In all cases over half of the

time the best bid and ask are within one tick of the equilibrium price. In 90% or more

of the cases the spread is within two ticks and in nearly all cases the spread is within

three ticks. In contrast, the ZI market shows much more variability in the spread. In

only 14% of observations is the spread within one tick of the mid price indicating that the

market is much more volatile and less e�cient. This indicates that for markets populated

by strategic traders the price is relatively stable and, importantly, there are only a small

number of market situations which traders are faced with. As such the degree of strategic

sophistication traders’ require may be low.

Table 4 shows the relative shares of the type of orders submitted in di↵erent markets.

Again, the ZI results di↵er markedly from the ones of the strategic models: marketable
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0.45-0.55 0.40-0.60 0.35-0.65
0.45-0.55 0.14 0.28 0.39

ZI 0.40-0.60 0.28 0.49 0.65
0.35-0.65 0.39 0.65 0.85
0.45-0.55 0.61 0.79 0.80

l = 1 0.40-0.60 0.78 0.97 0.98
0.35-0.65 0.80 0.98 1.00
0.45-0.55 0.62 0.79 0.81

l = 2 0.40-0.60 0.78 0.95 0.97
0.35-0.65 0.81 0.97 0.99
0.45-0.55 0.62 0.78 0.81

l = 3 0.40-0.60 0.77 0.94 0.96
0.35-0.65 0.80 0.96 0.99
0.45-0.55 0.50 0.69 0.74

Linear 0.40-0.60 0.68 0.89 0.95
0.35-0.65 0.72 0.94 0.99

Table 3: Distribution of ranges of bid and ask spreads for traders using ZI, Markov (l = 1, 2, 3)
and linear strategic. Rows correspond to bid price and columns to ask prices.

Model ZI l = 1 l = 2 l = 3 Linear
Market Orders 0.113 0.233 0.233 0.233 0.257

Price Improving Limit Orders 0.073 0.108 0.104 0.109 0.181
Limit Orders at Best Quote 0.045 0.162 0.167 0.161 -

Limit Orders Behind Best Quote 0.769 0.497 0.496 0.498 0.563

Table 4: Distribution of types of orders under the four di↵erent information levels along with

number of cancellations and trades.

orders are halved with respect to the other markets, few orders are aggressively improving

the extant quotes and, as a consequence, most of orders are placed behind the best quotes.

These results broadly match those highlighted by [Ladley and Schenk-Hoppé, 2009] who

found that the ZI model produced too few orders market orders and limit orders at the

best quotes and too many behind the best quotes relative to empirical data. In reality,

as well as in this model, strategic behaviour leads to fewer limit orders being wasted -

being placed behind the best quotes with little chance of execution. Sophisticated traders

choose not to submit these orders and submit price improving orders instead.

The market with linear strategies is slightly more e�cient than the Markov markets,

as seen in the fractions of market(able) orders, 25.7%, as compared to 23.3%. This implies

that the traded volume is almost 5% bigger in the market with linear strategies than in the
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Markov ones due to the smaller spread available in the first market. As before, orders at

the best quote are meaningless in the linear model. We therefore, provide in the table only

the share, 56.3%, of non-improving orders for the model with linear strategies. Despite

some di↵erences, all the strategic markets are rather similar as shown by a more accurate

comparison, say, between the linear model and the one in which l = 3. The share 16.1% of

“at the best quote” orders for the Markov model can be split in equal parts and tallied in

the “improving” and “behind the quotes” orders, respectively, assuming that with equal

probability an order at the best quote falls in either of the neighbouring category. In

such a way the fifth column of Table 4 would have 18.9% of improving and 57.8% of

“behind the best quote” orders, which should be compared to 18.1% and 56.3% of the

sixth column, relative to the linear strategy equilibrium.

It is of interest to also look at the behaviour of the traders in equilibrium, particularly

when they use linear strategies that are relatively simple. Recall that the models contem-

plate heterogeneous agents with di↵erent values and costs: while some may be strongly

intra-marginal, feeling an intense pressure to finalise a trade to get profits, others - the

extra-marginal ones - will basically have no chance to trade in equilibrium, being out-

standing quotes at levels that do not make possible execution at a profit compared to

reservation values. Moreover, as hinted in Section 2, even though di↵erent strategies are

evolved in distinct simulations, they are however almost perfectly profit-equivalent.

A way to represent what agents do is to show what they bid/ask facing some frequently

visited states of the book. We take the two symmetrical configurations in which the best

quotes are 0.55, 0.50 and 0.50, 0.45, respectively. Figures 2 and 3 depict the median of the

limit orders posted by intra-marginal sellers and buyers across all the simulations. When

the best quotes are 0.50 and 0.45 (dashed in Figure 2), there is fierce competition among

sellers who pushed the ask downwards to reach the equilibrium price. On the one hand,

the strongest sellers, with costs equal to 0.05 or 0.10, issue marketable orders hitting the

best bid and cashing 0.45 for one unit of the asset (see the black stars in the picture): they

get less than the equilibrium price but trade is immediate and large profits are secured

anyway. On the other hand, sellers whose cost exceeds 0.10 prefer to post limit orders
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Figure 2: Trading behaviour of intra-marginal buyers and sellers facing best quotes 0.50 and

0.45. Black (red) stars denote market orders submitted by sellers (buyers) and black (red) solid

lines show the median ask (bid) when limit orders are posted. The horizontal axis shows the

costs for sellers and 1 less the values for buyers.

that are not immediately executed, see the black solid line: in particular, we observe that

the median order is improving when c = 0.15, ..., 0.35 and behind the best quote when

c = 0.40, 0.45, 0.50.

Buyers in Figure 2 find an attractive (low) ask and the ones whose value is larger or

equal to 0.65 content themselves with a marketable order, see the red stars representing

bids hitting the quote 0.50 and notice that the horizontal axis shows 1 � v for buyers.

Agents with values v = 0.60, 0.55, 0.50 prefer to improve the outstanding best bid in order

to gain priority, see the red solid line.

Figure 3 almost perfectly matches Figure 2, after swapping the roles of buyers and

sellers. Even when the depicted behaviour is distinct, this results in minute di↵erences

in profits and even more so if one takes into account that the figures represent median

behaviours. Take, for instance, the seller whose cost is 0.35 in Figure 3: he will decrease

the ask to 0.502, virtually zeroing the spread and securing for himself an expected profit

that is very similar to the one immediately cashed by the symmetric buyer whose value

is 0.65 in Figure 2.
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Figure 3: Trading behaviour of intra-marginal buyers and sellers facing best quotes 0.55 and

0.40. Black (red) stars denote market orders submitted by sellers (buyers) and black (red) solid

lines show the median ask (bid) when limit orders are posted. The horizontal axis shows the

costs for sellers and 1 less the values for buyers.

Overall, the pictures represents a rather sensible and, ex post, intuitive behaviour

on the part of traders: strongly intra-marginal agents typically trade immediately using

marketable orders, either because there is fierce competition on their side or because the

quote on the opposite side is (already) captivating. The weakly intra-marginal traders

improve the best quote to gain priority or patiently queue their orders in the hope that

future, less unbalanced, states of the book will make their o↵ers competitive.

5 Conclusion

In this paper we have used two models of order book markets to investigate the importance

of information and strategic sophistication. The results provide insights into the e↵ect

and importance of information on optimal trading in order book based continuous double

auctions. The statistical measures of market and trader behaviour di↵ered little across

levels of information. These statistics, however, were very di↵erent from those obtained

19



under the zero-intelligence model where lack of knowledge and the resulting random be-

haviour results in sub-optimal trading. We may therefore conclude that the crucial piece

of information for traders in constructing their optimal strategy is knowledge of the best

quotes. Further knowledge about the book conveys no value in this context: intuitively,

this may be related to the dynamic nature of the book, where orders are likely to be added

close to the best quotes as and if they are needed. As [Bouchaud et al., 2009] argue, the

book may be dynamically complete even when quotes far from the best ones add little

information or don’t convey useful trading signals.

Key to the e↵ect above is the finding that in equilibrium only a relatively small number

of order book states occur as shown by the large percentage of observation in which the

spread occupies a relatively narrow band around the equilibrium price. As such the

possible situations that traders must develop optimal responses for are small in number.

Traders strategies may therefore be relatively simple and easily learnt. Moreover, the

similarity between the optimal Markov strategies and the linear approximation indicates

that optimal trading may be approximated by a simple functional form further easing the

cognitive burden placed on traders.

The work presented in this paper could be extended to consider more complex market

settings. In this paper we have considered a relatively simple market - a fixed equilibrium

price, unit quantities and exogenous cancellation. All three of these aspects could be

made more sophisticated. A moving equilibrium price would exacerbate the risk for

limit order submitters - increasing the chance of non-execution or picking o↵ if the price

moved away from or towards the order. Non-unit orders could increase the impact of a

trader on the book as they would potentially be able to remove liquidity at multiple price

ticks. Endogenous cancellation and resubmission of orders would allow traders to adapt

their order placement to the changing state of the market. All three of these changes

would possibly increase the value of information beyond the first tick. It was surprising

in the current setting that only the first level of information was valuable. Identifying

the requirements for this to be the case more generally, however, would be a potentially

valuable advance.
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