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Abstract 
This  paper  prov ides  a  cont inuous- t ime “R icard ian”  mode l  o f  fores t ry ,  
where ,  in  response  to  an  increase  in  t imber  demand ,  fores t  cu l t iva t ion  i s  
p rogress ive ly  in tens i f i ed  on  the  most  fe r t i l e  l ands  and/or  ex tended  to  l e ss  
fe r t i l e  qua l i t i e s  o f  l ands .  I t  i s  shown tha t ,  a t  a  g iven  leve l  o f  the  ra te  o f  
in te res t ,  a  se t  o f  “break- through t imber  pr ices”  g ives  the  o rd e r  o f  f e r t i l i t y   
( i . e . ,  the  order  in  wh ich  the  d i f fe rent  qua l i t i e s  o f  l and  a re  taken  in to  
cu l t iva t ion)  and  tha t ,  for  each  l and ,  pr ices  of  s tand ing  t rees  a re  pos i t ive  
above  a  “ thresho ld  t imber  pr ice” .  S ince ,  for  each  l and ,  the  break - through 
pr ice  i s  h igher  than  the  thresho ld  pr ice ,  R icardo  i s  shown to  be  r igh t :  a  
h igher  demand for  t imber  cou ld  s imply  ra i se  those  components  of  the  
l and lord  compensa t ion  which  a re  not  ren t .  
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1 Introduction

Ricardo’s Principles contain just a single reference to forestry, as a whole, although
in a well-known and remarkable passage in Chapter II, “On Rent”. There, a rigorous
notion of rent is introduced, and Adam Smith is criticized for using the term in an
inconsistent way:

Adam Smith [...] tells us that the demand for timber, and its consequent
high price, in the more southern countries of Europe, caused a rent to be
paid for forests in Norway, which could before a↵ord no rent. Is it not
however evident, that the person who paid, what he thus calls rent, paid
it in consideration of the valuable commodity which was then standing on
the land, and that he actually repaid himself with a profit, by the sale of
the timber? If, indeed, after the timber was removed, any compensation
were paid to the landlord for the use of the land, for the purpose of
growing timber or any other produce, with a view to future demand, such
compensation might justly be called rent, because it would be paid for the
productive powers of the land; but in the case stated by Adam Smith, the
compensation was paid for the liberty of removing and selling the timber,
and not for the liberty of growing it.

Ricardo (1951, p. 68)

Then Ricardo seems to contemplate two di↵erent possible e↵ects of a higher demand
for timber: the extension of forestry to new lands on a permanent base, which could
lead to the rise of the rents paid on these lands, and a temporary rise of timber pro-
duction due to the extraction of timber from standing trees. In two recent insightful
papers, Kurz and Salvadori (Kurz & Salvadori, 2009, 2011) emphasize the second
e↵ect, arguing that the above passage constitutes the basis of Ricardo’s analysis of
exhaustible resources. Then, following Marshall’s advice to interpret Ricardo “more
generously than he himself interpreted Adam Smith” (Marshall, 1920, p. 813), they
conclude that “royalties are there in Ricardo’s analysis, but they are not easily iden-
tifiable as such” (Kurz & Salvadori, 2009, p. 69), and that although Hotelling rule is
not yet to be found in Ricardo, it is not inconsistent with his analysis. In this paper,
we set up and begin exploring a “Ricardian” model, where abandoning, exhausting or
replanting trees grown on lands of di↵erent quality are economic decisions depending
on the parameters of the model. Therefore, the model we develop should accommo-
date both of the e↵ects that Ricardo envisaged. Since a competitive equilibrium with
sustained timber production involves a rotation period that is determined by means
of the so called “Faustmann formula” (after Faustmann, 1849), which was probably
unknown to Ricardo1, our model is a rational reconstruction of Ricardo’s scant re-
marks on forestry, enriched by the tools of modern theoretical literature on optimal
forest management.
We recall that optimal forest management has developed since the late 1970s following
Samuelson’s review paper (Samuelson, 1976), and mainly focuses on the dynamics
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of forest rotation on a fully occupied plot of land, where new trees are immediately
replanted after old trees are cut (see, e.g. Mitra & Wan, 1985, 1986; Salo & Tahvonen,
2002, 2003; Khan & Piazza, 2012; Fabbri et al., 2015). Immediate replanting and
continuous full occupation of the land are justified by the assumptions that cutting
and replanting costs are null and that the productive life of trees is finite. Hence
such basic model is not suited to handle spatial expansion (or contraction) of forest
cultivation: a higher demand for timber simply results in a higher timber price with
unchanged production.
To extend the model, we assume positive labour production costs as in Samuelson
(1976) and add the Marshallian assumption that the wage rate in terms of the nu-
meraire is given and independent of timber price. Although very specific, this as-
sumption enables a framework in which Marshallian partial equilibrium analysis can
be performed. In return, this seems to be the simplest way to shape spatial devel-
opment without turning the Mitra-Wan model into an explicit multisectoral general
equilibrium model.2

Making timber a renewable resource that cannot be exhausted, the basic Mitra-Wan
model also tends to conceal the fact that optimal forest management implicitly gener-
ates dual variables governed by Hotelling-like rules. As pointed out by Salant (2013)
in a recent attempt to study the equilibrium price path of timber, this fact is hardly
overlooked in settings in which exhaustion is contemplated. Indeed, Salant (2013)
used an extreme framework, where replanting costs are infinite, to stress the fact that
if a forest is not exploited instantaneously then, at equilibrium, a Hotelling-like rule
must hold as the extractor has to be indi↵erent whether to harvest trees immediately
or later. The same kind of phenomena re-emerge in our Ricardian model whenever
cutting is cost minimizing but replanting is not viable at the equilibrium prices. How-
ever, it will turn out that Hotelling-like rules are relevant in general in equilibrium
forest management: indeed, it is competitive arbitrage inducing Hotelling-like asset-
market-clearing conditions for aging assets as trees.
In what follows, we concentrate on long run equilibria, making only cursory reference
to the more challenging problem of the structure of transitional dynamics, as a proper
analytical treatment of our model with non zero production costs, even if limited to
the stationary states, can be hardly carried out without a deep study of the dual
price system. Therefore, the extension of the basic model has, as a (methodological)
side e↵ect, the shift of focus from the quantity side to the price side of the system.
According to Salant (2013), this shift is long overdue in literature both for the study
of the equilibrium price system – still largely unknown – and as a first step towards
the analysis of models in which externalities or other distortions are present3.
In building our Ricardian model, we borrow the continuous-time production struc-
ture of Fabbri et al. (2015), instead of using the original discrete-time Mitra-Wan
formulation. The continuous-time model is mathematically more challenging than
the discrete-time counterpart for two reasons: a) the evolution of state variables is
governed by a partial di↵erential equation, as they represent a continuum of (vintage)
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capital goods: trees of di↵erent ages; b) since cost minimization and competitive ar-
bitrage imply that cutting trees is profitable only at a finite set of ages, distributed
controls concentrating on single points need be allowed. Hence, in order for the model
to be endowed with meaningful price-supported stationary states, intensity levels of
the production processes need to be chosen in a very large space (a space of mea-
sures). However, once the technical di�culties are overcome (see Fabbri et al., 2015),
the clear distinction between stock and flow variables, which is lacking in discrete time
(see Foley, 1975), turns into an advantage in the interpretation of the price system:
the theory of long run production prices and the role of the Hotelling rule become
transparent.
The paper is organized as follows. The continuous-time Ricardian forestry model is
introduced in Section 2. In Section 3, modified golden rules of the system are studied.
The long run timber supply curve is built in Section 4, where also some comparative
static analysis is presented. Section 5 concludes.

2 A Ricardian model of forestry

A number N of lands, with N � 1, are available for forest cultivation with the
purpose of extracting a single final good: timber. The lands have a size given by the
coordinates of the positive vector [h1, h2, · · · , hN

], and x

i

(t, s) represents the part of
land i, i 2 I ⌘ {1, 2, ..., N}, covered at time t by trees of a certain age s, with t � 0,
s � 0. At any time t and for any land i, trees of any age s can be harvested and new
saplings can be produced and planted on the land. Let c

i

(t, s) be the intensity of cut
at time t of trees of age s on land i, and y

i

(t) the corresponding rate of production of
new saplings. Given an N -tuple of initial distributions x

i

(0, s), i 2 I, the evolution
of the system is described by the following set of transport equations and boundary
conditions:

⇢
@xi
@t

(t, s) = �@xi
@s

(t, s)� c

i

(t, s) t > 0, s > 0, i 2 I

x

i

(t, 0) = y

i

(t) t � 0, i 2 I

(1)

where the variation of density @xi
@t

(t, s) is due to aging of trees �@xi
@s

(t, s), and to
harvesting �c

i

(t, s). Note that the boundary conditions require that the quantities
of saplings of age zero planted at time t on the di↵erent lands equal the amounts
produced y

i

(t). In addition, we require the strategy couples (c
i

(t, s), y
i

(t)) to be non
negative, that is

c

i

(t, s) � 0, and y

i

(t) � 0, 8t � 0, s � 0, i 2 I, (2)

and the trajectories to satisfy the following pure state constraints:

Z +1

0

x

i

(t, s)ds  h

i

, and x

i

(t, s) � 0 8t � 0, s � 0, i 2 I (3)
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that is, the occupied portion of the land i equals at most the land extension, and the
trees density is nonnegative for all time, ages and lands. Consider now the timber
extraction technology. Let f

i

(s) be the rate of timber production ensuing from a
unitary harvesting (f

i

(s) is the productivity of a tree of age s on land i) and let
l

i

(s), l
i

(s) > 0, be the corresponding unitary cutting cost. Summing up the amounts
f

i

(s)c
i

(t, s)ds of timber extracted from trees of ages s on lands i at time t, we obtain
the total timber q(t) harvested at time t

q(t) ⌘
NX

i=1

q

i

(t) ⌘
NX

i=1

Z 1

0

c

i

(t, s)f
i

(s)ds. (4)

Similarly, total harvesting costs at time t are given by

NX

i=1

Z 1

0

c

i

(t, s)l
i

(s)ds. (5)
 

 

 

  

 

 

 

 

O 
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Figure 1: Productivity function.

Note that costs and productivities are assumed
independent from the harvesting rates only for the
sake of simplicity. Two additional less innocuous
assumptions are instead the following:

(HC1) l

i

(s) ⌘ l̄

i

(unit cutting costs are age-
independent);

(HC2) f

i

concave, f

i

� 0, f

i

(0) = 0, and there
exists s̄

i

> 0 such that f
i

(s) = f

i

(s̄
i

) = f

a

i

>

0 for each s � s̄

i

> 0, and f

i

(s) < f

a

i

for
s 2 [0, s̄

i

) (in particular, trees not younger
than s̄

i

are equally productive).

Note that this implies that f

i

(s) is strictly increasing in [0, s̄
i

). For the sake of
simplicity, we also assume that each f

i

is strictly concave in [0, s̄
i

] and di↵erentiable
in (0,+1).4

One of the main implications of (HC1) and (HC2) is that, in each land i, trees not
younger than s̄

i

can be aggregated into a single state variable a

i

(t) whose evolution
is given by the ordinary di↵erential equation

ȧ

i

(t) = x

i

(t, s̄
i

)� c

a

i

(t), i 2 I, t > 0. (6)

where

a

i

(t) =

Z +1

s̄i

x

i

(t, s)ds, and c

a

i

(t) =

Z +1

s̄i

c

i

(t, s)ds. (7)

Clearly, if x
i

(t, s̄
i

) = 0 for t � 0, then the wood in old trees on a given land i can be
interpreted as the stock of an exhaustible resource in a specific deposit. To complete
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the description of the technology, we assume linear saplings production costs and
write b

i

, b
i

> 0, for the average (and marginal) cost in producing a sapling suitable
to be planted on land i. We further assume that planting costs are null sensu stricto.
Total planting costs at time t are then

NX

i=1

y

i

(t)b
i

. (8)

Moreover we assume the demand of timber at price p

q

(t), is given by the demand
function D(p

q

(t)), which is taken to be continuous and non-increasing for all p
q

(t) >
0,5 and that the interest rate r, r > 0, is exogenously given and constant.6 Since there
are constant returns to scale and production is studied under competitive conditions,
without loss of generality we may consider a single producer owning all means of
production specific of the timber sector and whom, taking the price path of timber
as given, maximizes the discounted value of cash flows generated by selling the good
and buying the non-specific factors of production. Using (7) both in the objective
and in equations (1)–(5), we thus get the following control problem:

Max

Z +1

0

e

�rt

(
p

q

(t)q(t)�
NX

i=1


y

i

(t)b
i

+ l̄

i

✓Z
s̄i

0

c

i

(t, s)ds+ c

a

i

(t)

◆�)
dt (9)

8
>>>>>>>>>>>>>><

>>>>>>>>>>>>>>:

@xi
@t

(t, s) + @xi
@s

(t, s) = �c

i

(t, s) i 2 I, s 2 [0, s̄
i

],
ȧ

i

(t) = x

i

(t, s̄
i

)� c

a

i

(t) i 2 I,

x

i

(t, 0) = y

i

(t) i 2 I,R
s̄i

0 x

i

(t, s)ds+ a

i

(t)  h

i

i 2 I,

c

i

(t, s) � 0 i 2 I, s 2 [0, s̄
i

],
x

i

(t, s) � 0 i 2 I, s 2 [0, s̄
i

],
c

a

i

(t) � 0 i 2 I,

a

i

(t) � 0 i 2 I,

y

i

(t, s) � 0 i 2 I,

q(t) =
P

N

i=1 (
R

s̄i

0 c

i

(t, s)f
i

(s)ds+ c

a

i

(t)fa

i

),

(10)

where the initial conditions x
i

(0, s), s 2 [0, s̄
i

], and a

i

(0) for all i 2 I, and the function
p

q

(t) are given exogenously. We then define a competitive equilibrium as a price path
p

q

(t) and a solution of the above control problem such that

q(t) = D(p
q

(t)). (11)

In the next sections, the focus will be the stationary solutions of problem (9)-(10)
associated with any given stationary timber price path p

q

(t) = p

⇤
q

� 0. We will
then use this analysis to characterize the long-run timber supply curve and hence to
study the stationary competitive equilibria of the model. Various general remarks
are here due. First, note that, except for the properties of the productivity function,
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the basic Mitra-Wan model in continuous-time in Fabbri et al. (2015) is recovered
for b

i

= 0, l
i

(s) = 0, and for N = 1.7 8 However, adding di↵erent lands in a single
final good model (as the one in Fabbri et al. (2015)) would not change much the
structure of the stationary states. Since candidates for stationary equilibria are the
strategy-trajectory components of the modified golden rules and, as for the Ramsey-
Cass-Koopmans aggregate model, generically only a unique strategy-trajectory couple
can belong to a modified golden rule of the model, the quantity of timber produced
in a stationary equilibrium turns out to be independent from the demand of timber
(see Mitra & Wan, 1985; Fabbri et al., 2015).9 In this respect, what makes the
extended model a two-final goods system is the introduction of the alternative nu-
meraire good, while the two final goods sectors are interdependent because there are
positive production costs on all lands.
Second, an infinite dimensional version of the second welfare theorem would be needed
to link the solutions of problem (9)-(10) to competitive equilibria. However, a suitable
maximum principle for our problem is technically challenging and at the moment
the literature has not yet developed it, although a version of the second welfare
theorem restricted to the stationary solutions has been provided by Fabbri et al.
(2015) in continuous-time. In fact, we will show that a similar results holds for
the extended model here discussed. Moreover, since the dual variables supporting a
stationary solution of (9)-(10) are themselves stationary, they can be straightforwardly
interpreted as the long run production prices that would prevail at the rate of interest
r.
Finally, a few preliminary observations on the types of steady states that can solve
system (10):
a) a stationary distribution x

i

⇤(, s) solving the state equation (1) is a non increasing
function of s, when replanting trees either on a part or on the whole land i

⇤. An
example is provided next.

Example 2.1 Suppose h

i

⇤ = 2, s̄
i

⇤ = 3, c
i

⇤(, s) = 1
2 for s 2 [0, 2) and c

i

⇤(, s) = 0
for s 2 [2, 3], a

i

⇤ = 1
2 (of course, c

a

i

⇤ = 0), and x

i

⇤(, 0) = y

i

⇤ = 1. Since alsoR
s̄i⇤

0 c

i

⇤(, s)ds = 1, that means that the above data are consistent with a stationary
x

i

⇤(, s). Then integration of the state equation (1) gives the explicit form of the
stationary distribution: x

i

⇤(, s) = max(0; 1 � 1
2s). Because in this steady state we

have
R

s̄i⇤

0 x

i

⇤(, s)ds = 1, half of the land is continuously occupied by an “uneven”
cultivated forest. Of what is left, half is abandoned forestland, where old trees stand
(i. e. a

i

⇤ = 1
2), and half is bare land. ⇤

b) if a steady state x
i

⇤(, s) is optimal, with a positive aggregate steady state a
i

⇤ , then
necessarily x

i

⇤(, s) = 0 (for instance, the steady state in the previous example cannot
be optimal). A formal proof of this result is given in the next section. Indeed, if
it is optimal to incur cutting and replanting costs to sustain a stationary forest on
part of a land, then it cannot be optimal leaving unextracted timber for which only
cutting costs are due. Of course, if the timber extraction costs on land i

⇤ are very
high in comparison to timber price, then abandoned forestland is to be expected.
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Under these circumstances, the steady state value of the aggregate state variable a

i

⇤

will belong to the interval [0, h
i

⇤ ], while what is left, h
i

⇤ � a

i

⇤ , will be bare land. But
if timber extraction is optimal on land i

⇤, then a

i

⇤ = 0, and in this case, depending
on the demand for timber and on replanting costs, x

i

⇤(, s) will be either positive or
zero.
However, even if we had set a

i

⇤ = 0 in the stationary state of the above example,
the resulting stationary state could not have been optimal for a subtle reason: since
cutting activities are spread across a whole interval of ages, x

i

⇤(, s) is a strictly de-
creasing function for s 2 [0, 2]. On the contrary, it turns out that optimal stationary
cutting controls, if positive, are concentrated on a single age. This is the theme of
the next section.

3 Modified golden rules

In this section, we concentrate on the modified golden rules of the system. Given
a stationary price of timber p

⇤
q

, we formally define a modified golden rule as
an N-tuples of couples [(c̄

i

(, s), c̄a
i

, ȳ

i

, x̄

i

(, s), ā
i

), (p̄
i

(, s), p̄a
i

, p̄

y

i

, R̄

i

)], 8i 2 I, where
(c̄

i

(, s), c̄a
i

, ȳ

i

, x̄

i

(, s), ā
i

), s 2 [0, s̄
i

], 8i 2 I, is a stationary N-tuples of strategy-
trajectory couples that solve the state equations and satisfy the constraints in
(10), and where the stationary N-tuples of prices for the di↵erent vintages of trees
(p̄

i

(, s), p̄a
i

), s 2 [0, s̄
i

], 8i 2 I, the stationary N-tuples of sapling prices p̄y
i

, 8i 2 I, and
the stationary N-tuples of rent rates R̄

i

, 8i 2 I, are such that, at the given prices: (A)
profits are maximized, (B) the markets for lands’ services clear, (C) the asset-market-
clearing conditions that hold under competitive arbitrage are satisfied. The focus is
on modified golden rules because it turns out that their strategy-trajectory compo-
nents are optimal solutions of problem (9)–(10) and, conversely, that any optimal
stationary solution of problem (9)–(10) can be endowed with a stationary supporting
price function.10

Consider now the implications of the above conditions (A), (B) and (C). First, observe
that profit maximizarion and constant returns to scale imply null maximum profits
both in cutting trees and in saplings production. Hence, the following inequalities
must hold for all i 2 I:

f

i

(s)p⇤
q

 p̄

i

(, s) + l̄

i

, c̄

i

(, s)f
i

(s)p⇤
q

= c̄

i

(, s)(p̄
i

(, s) + l̄

i

), s 2 [0, s̄
i

] (12)

f

a

i

p

⇤
q

 p̄

a

i

+ l̄

i

, c̄

a

i

f

a

i

p

⇤
q

= c̄

a

i

(p̄a
i

+ l̄

i

), c̄

a

i

� 0, (13)

p̄

y

i

 b

i

, ȳ

i

p̄

y

i

= ȳ

i

b

i

, ȳ

i

� 0, (14)

c̄

i

(, s) � 0, s 2 [0, s̄
i

]; (15)

where, in particular, the meaning of conditions (12) (13) and (15) is that no cutting
process generates extra profits and that only processes with zero losses can be acti-
vated, whereas conditions (13) and (14) imply that sapling production can occur only
if costs are covered.
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Second, since lands are supplied inelastically, requirement (B) is satisfied if and only
if the following conditions hold for all i 2 I:

Z
s̄i

0

x̄

i

(, s)ds+ ā

i

 h

i

(16)

R̄

i

[

Z
s̄i

0

x̄

i

(, s)ds+ ā

i

] = R̄

i

h

i

(17)

R̄

i

� 0. (18)

Finally, we note that standing trees are exhaustible resources, so the asset-market-
clearing conditions must be instances of the Hotelling rule, even if, di↵erently from
the standard case, two specific facts a↵ect the precise structure of the price equations:
(1) a rent rate is due to hold a tree of any age in situ, (2) young trees are subject to
aging. Fact (1) implies that for each i the price of mature trees evolves according to

ṗ

a

i

(t)  rp

a

i

(t) +R

i

(t), a

i

(t)ṗa
i

(t) = a

i

(t)[rpa
i

(t) +R

i

(t)]. (19)

Hence, for the price of old trees on land i to be stationary at least one of the following
systems must hold:11

0 = rp̄

a

i

+ R̄

i

, ā

i

� 0, (20)

or
0  rp̄

a

i

+ R̄

i

, ā

i

= 0. (21)

On the other hand, fact (2) implies that if prices of young trees on di↵erent lands are
stationary, then Hotelling rule holds across ages.12 Hence, for all i 2 I we have the
following conditions:

dp̄

i

ds

(, s)  rp̄

i

(, s) + R̄

i

s 2 [0, s̄
i

] (22)

x̄

i

(, s)
dp̄

i

ds

(, s) = x̄

i

(, s)[rp̄
i

(, s) + R̄

i

] s 2 [0, s̄
i

] (23)

x̄

i

(, s) � 0 s 2 [0, s̄
i

]. (24)

Competitive arbitrage has a further implication: the price of a tree cannot jump up
at junction points (otherwise there would be a rush to buy the asset just before it
appreciates), while jumsp down can occur only if no agent holds the asset (otherwise
there would be a rush to sell the depreciating tree). This implies

p̄

i

(, 0)  p̄

y

i

, x̄

i

(, 0)p̄
i

(, 0) = x̄

i

(, 0)p̄y
i

, (25)

and
p̄

i

(, s̄) � p̄

a

i

, x̄

i

(, s̄)p̄
i

(, s̄) = x̄

i

(, s̄)p̄a
i

, (26)

for all i 2 I. We now identify the modified golden rules of our Ricardian model.
Since the system comprising the stationary versions of (10) and of the supporting
price conditions (12)–(26) can be split into N independent systems, each referring to
a single land, we state the results for a generic land i.We start from what anticipated
in section 2.
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Proposition 3.1 Assume (x̄
i

(, s), ā
i

) belong to a modified golden rule. Then:

(i) f

a

i

p

⇤
q

> l̄

i

=) ā

i

= 0.

(ii) f

a

i

p

⇤
q

 l̄

i

=) x̄

i

(, s) = 0 8s 2 [0, s̄
i

].

Moreover, if fa

i

p

⇤
q

 l̄

i

, then the strategy-trajectory couple c̄

i

(, s) = 0 8s 2 [0, s̄
i

],
c̄

a

i

= ȳ

i

= 0, x̄

i

(, s) = 0 8s 2 [0, s̄
i

], ā

i

2 [0, h
i

], and the price system p̄

i

(, s) =
0 8s 2 [0, s̄

i

], p̄y
i

= p̄

a

i

= R̄

i

= 0 constitute a modified golden rule.

Proof. For (i), note that fa

i

p

⇤
q

> l̄

i

and inequality (13) imply p̄

a

i

> 0, so (20) cannot
hold and (21) holds instead. To prove (ii), assume by contradiction that f

a

i

p

⇤
q

 l̄

i

and there exists an age s such that x̄

i

(, s) > 0. Since there is planting, i.e. ȳ

i

> 0,
then (14), and (25) imply p̄

i

(, 0) = b

i

. Moreover, since stationary paths are non
increasing, there exists a maximum age ŝ of standing trees on [0, s̄

i

], more precisely,
ŝ ⌘ sup{s 2 [0, s̄

i

] : x̄

i

(, s) > 0}. Then (22) holds with equality up to age ŝ, implying

p̄

i

(, s) = b

i

e

rs +
R̄

i

r

(ers � 1), s 2 [0, ŝ] (27)

so that p̄
i

(, s) > 0 for all s 2 [0, ŝ]. Now, the productivity function is increasing from
zero to maturity age, so that

f

i

(s)p⇤
q

 f

a

i

p

⇤
q

< p̄

i

(, s) + l̄

i

8s 2 [0, s̄
i

].

From (12) one derives that no standing tree can be cut, implying ȧ

i

(t) > 0, and
hence a contradiction. Direct substitution of the candidate modified golden rule into
inequalities (12)–(18), (20) and (26), with @xi

@t

(t, s) = 0 and ȧ

i

(t) = 0 into system
(10), gives the last claim.

Remark 3.2 Interpreting p

⇤
q

as the choke o↵ price at which timber demand is
nil, Proposition 3.1 (i) is the standard result in theory of exhaustible resources that
exhaustion of a deposit is optimal if the choke o↵ price is higher than the extraction
cost. ⇤
It remains to be determined if forest cultivation takes place in the modified golden
rules when f

a

i

p

⇤
q

> l̄

i

, and to find which technique is chosen if this occurs. If it does,
proceeding as in the proof of Proposition 3.1 (ii), one derives p̄

i

(, s) given by (27).
That, substituted into the no-extra profits condition (12) and rearranging terms,
provides

f

i

(s)p⇤
q

� b

i

e

rs � l̄

i

e

rs � 1
 R̄

i

r

s 2 [0, s̄
i

). (28)

Note also that, using (13) and (26), this last condition can be extended to the closed
interval [0, s̄

i

]. So in the end, if forest cultivation takes place in a modified golden
rule, (28) need to be verified everywhere, and it has to hold with equality for at least
an age ŝ in the interval [0, s̄

i

]. Of course, whenever timber price is too low, a negative

10



rent would be required to verify this condition, implying that forest cultivation is not
profitable at that price.
This line of argument leads to the basic problem of the choice of technique, that
is, finding the ages at which the land value R̄

i

/r attains a minimum in the set of
values that satisfy (28) or, equivalently, the ages that solve the Faustmann problem
of maximizing “the present discounted value of all net cash receipts [...] calculated
over the infinite chain of cycles of planting on the given acre of land from now until
Kingdom Come” (Samuelson, 1976, p. 122), namely

V

F

i

(s) =
1X

n=1

e

�rns[f
i

(s)p⇤
q

� b

i

e

rs � l̄

i

] =
f

i

(s)p⇤
q

� b

i

e

rs � l̄

i

e

rs � 1
. (29)

This requirement, emerging in di↵erent forms in all forestry management problems
where replanting is possible, is used also here to characterize modified golden rules
for timber prices greater than l̄

i

/f

a

i

.
To begin with, since V

F

i

(s) is continuous in the interval s 2 [�, s̄
i

] for all 0 < �  s̄

i

,
and V

F

i

(s) ! �1 for s ! 0+, the Faustmann problem has a solution for each
p

⇤
q

� 0. Moreover, the maximum value as a function of the timber price M

F

i

(p⇤
q

) is
negative for low values of the price p

⇤
q

, increasing with p

⇤
q

, and eventually positive
when p

⇤
q

is su�ciently high. Therefore, we can define the “break-through” price p̂

⇤
qi

as the minimum timber price for which the maximum of the Faustmann function is
non-negative.
Now note that p̂⇤

qi

is strictly greater than l̄

i

/f

a

i

: for timber price levels that are only
slightly higher than l̄

i

/f

a

i

, even if cutting costs can be covered by waiting for new
planted trees to reach maturity, forest cultivation still results in losses, due to strictly
positive planting costs. Hence, for all p⇤

q

2 (l̄
i

/f

a

i

, p̂

⇤
qi

)

max
s2[0,s̄i]

[f
i

(s)p⇤
q

� b

i

e

rs � l̄

i

] < 0,

and it is easy to see that there exists m
i

(p⇤
q

), with 0 < m

i

(p⇤
q

) < b

i

, such that

max
s2[0,s̄i]

[f
i

(s)p⇤
q

�m

i

(p⇤
q

)ers � l̄

i

] = 0.

With this facts established, we are ready to characterize modified golden rules for
p

⇤
q

2 (l̄
i

/f

a

i

, p̂

⇤
qi

).

Proposition 3.3 Assume p

⇤
q

2 ( l̄i
f

a
i
, p̂

⇤
qi

), and that (x̄
i

(, s), ā
i

) belong to a modified

golden rule. Then:

(i) x̄

i

(, s) = 0, 8s 2 [0, s̄
i

], and R̄

i

= 0.

(ii) The strategy-trajectory couple c̄
i

(, s) = 0, for all s 2 [0, s̄
i

], c̄a
i

= ȳ

i

= 0, x̄
i

(, s) =
0, for all s 2 [0, s̄

i

], ā
i

= 0, and the price system p̄

i

(, s) = m

i

(p⇤
q

)ers, for all
s 2 [0, s̄

i

], p̄y
i

= m

i

(p⇤
q

), p̄a
i

= m

i

(p⇤
q

)ers̄i, R̄
i

= 0 constitute a modified golden
rule.
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Proof. To prove (i), one may replicate the argument used to establish Proposition
(3.1) (ii). Assume by contradiction x̄

i

(, s) > 0 at an age s in [0, s̄
i

], then both planting
and cutting at some age have to occur. Hence there exists š 2 [0, s̄

i

] such that (28)
holds as an equality at s = š. Since by assumption V

F

i

(š) < 0, this contradicts the
non-negativity of the rent rate. Hence x̄

i

(, s) = 0, for all s 2 [0, s̄
i

]. Moreover, since
p

⇤
q

> l̄

i

implies ā
i

= 0, it is immediate from (16) and (17) that R̄
i

= 0.
To prove (ii), note that the strategy-trajectory couple in the candidate modified
golden rule is a stationary solution of system (10) and that inequalities (12)–(18) and
(21) are verified by the candidate price system. Finally, note that for our candidate
modified golden rule inequalities (22), (25) and (26) hold as equalities.
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Figure 2: Uniqueness of sF
i

(p⇤
q

).

The next two propositions show that forest cul-
tivation becomes profitable for p

⇤
q

� p̂

⇤
qi

and de-
scribe modified golden rules when p

⇤
q

= p̂

⇤
qi

and
when p

⇤
q

> p̂

⇤
qi

, respectively. But first, consider
the Faustmann problem for p⇤

q

� p̂

⇤
qi

. A key fact
is that the maximizer sF

i

(p⇤
q

) is unique.13 This is
quite apparent from Figure 2, where we drawed
the graph of the function

g

i

(s) :=
M

F

i

(p⇤
q

)(ers � 1) + b

i

e

rs + l̄

i

p

⇤
q

(30)

along with the graph of the productivity function
f

i

(s). Since M

F

i

(p⇤
q

) � 0, g

i

(s) is a strictly convex increasing function, and this,
together with the concavity of f

i

(s), implies uniqueness of the age that maximizes the
Faustmann function (29). The implication of this fact is, as we will show, that forest
cultivation in modified golden rules is characterized by a uniform density function on
the cultivated land, with cutting concentrated at the Faustmann age. Formally, we
will consider the uniform density functions given by

x

Ui
✓i
(, s) :=

✓

i

h

i

s

F

i

(p⇤
q

)
�[0,sFi (p⇤q)](s), (31)

where ✓
i

2 [0, 1] is the share of land i that is cultivated, in which all ages in the range
[0, sF

i

(p⇤
q

)] are uniformly distributed and equal to ✓ihi

s

F
i (p⇤q)

, while those in the range

[sF
i

(p⇤
q

), s̄
i

] are null, and the cutting intensity vectors given by

c

Di
✓i
(, s) ⌘ ✓

i

h

i

s

F

i

(p⇤
q

)
�

s

F
i (p⇤q)

, (32)

where �

s

F
i (p⇤q)

is the Dirac Delta at point s

F

i

(p⇤
q

), that is, the action undertaken by

c

Di
✓i
(, s) is cutting exactly the trees reaching age s

F

i

(p⇤
q

). Note that if ✓
i

> 0, then

c

Di
✓i
(, s) is not a function of s but a positive measure.
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Proposition 3.4 Assume p

⇤
q

= p̂

⇤
qi

. Then:

(i) R̄

i

= 0 for any modified golden rule. In addition, a strategy-trajectory couple
belongs to a modified golden rule only if it has the following form: c̄

a

i

= ā

i

= 0,
x̄

i

(, s) = x

Ui
✓i
(, s), c̄

i

(, s) = c

Di
✓i
(, s) and ȳ

i

= ✓ihi

s

F
i (p̂⇤qi)

, for any choice of ✓
i

2 [0, 1].

Moreover, if ✓
i

> 0, then p̄

y

i

= b

i

, p̄
i

(, s) = b

i

e

rs, for all s 2 [0, sF
i

(p̂⇤
qi

)].

(ii) The strategy-trajectory couple x̄
i

(, s) = x

Ui
✓i
(, s), c̄

i

(, s) = c

Di
✓i
(, s) and ȳ

i

= ✓ihi

s

F
i (p⇤q)

,

any ✓
i

2 [0, 1], c̄a
i

= ā

i

= 0, and the price system p̄

i

(, s) = b

i

e

rs, for all s 2 [0, s̄
i

],
p̄

y

i

= b

i

, p̄a
i

= b

i

e

rs̄i, R̄
i

= 0 constitutes a modified golden rule.

Proof. To prove (i), consider any modified golden rule. It is immediate from p̂

⇤
qi

> l̄

i

that c̄a
i

= 0 and ā

i

= 0 hold. Then, if no planting occurs, R̄
i

= 0, as in Proposition
3.3. On the other hand, if x̄

i

(, s) > 0 for at least an age s in [0, s̄
i

], then there exists
š 2 [0, s̄

i

] such that (28) holds as an equality at s = š and, since V

F

i

(s) < 0 for all
s 2 [0, s̄

i

] \ {sF
i

(p̂⇤
qi

)} while V F

i

(sF
i

(p̂⇤
qi

)) = 0, this implies that š = s

F

i

(p̂⇤
qi

) and R̄

i

= 0.
When ✓

i

> 0, p̄y
i

= b

i

follows from (14), and p̄

i

(, s) = b

i

e

rs, for all s 2 [0, sF
i

(p̂⇤
qi

)] from
the fact that on this set of ages (22) holds as an equality. Finally, (ii) is verified by
direct substitution.

The following Proposition shows that the multiplicity of modified golden rules arising
for p⇤

q

= p̂

⇤
qi

disappears for higher levels of timber price.

Proposition 3.5 Assume p

⇤
q

> p̂

⇤
qi

. Then:

(i) For any modified golden rule, R̄
i

= rM

F

i

(p⇤
q

), x̄
i

(, s) = x

Ui
1 (, s), c̄

i

(, s) = c

Di
1 (, s),

ȳ

i

= hi

s

F
i (p⇤q)

, p̄y
i

= b

i

, and p̄

i

(, s) = b

i

e

rs +M

F

i

(p⇤
q

)(ers � 1), for all s 2 [0, sF
i

(p⇤
q

)].

(ii) The strategy-trajectory couple x̄

i

(, s) = x

Ui
1 (, s), c̄

i

(, s) = c

Di
1 (, s), ȳ

i

= hi

s

F
i (p⇤q)

,

c̄

a

i

= ā

i

= 0, and the price system p
i

(, s) = b

i

e

rs + M

F

i

(p⇤
q

)(ers � 1), for all
s 2 [0, s̄

i

], p̄y
i

= b

i

, p̄a
i

= b

i

e

rs̄i +M

F

i

(p⇤
q

)(ers̄ � 1), R̄
i

= rM

F

i

(p⇤
q

) constitutes a
modified golden rule.

Proof. After noting that R̄

i

< rM

F

i

(p⇤
q

) is inconsistent with the no extra profits
condition (12) and that forest cultivation results in losses whenever R̄

i

> rM

F

i

(p⇤
q

),
we can proceed as in the proof of Proposition 3.4, taking into account that R̄

i

> 0
implies that (16) holds with equality.

Having characterized modified golden rules for the di↵erent values of the timber price,
we have also implicitly derived the “long run timber supply correspondence”, defined
by equation (4) when cutting intensity levels belong to modified golden rules. We can
now turn our attention to the properties of the long run timber supply curve and to
the analysis of the competitive stationary equilibrium of our forestry model.
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4 Long run supply curves and comparative statics

e↵ects of an increase in timber demand

As ordinary supply functions (or correspondences) are the sum of individual firms
supply functions, our aggregate timber supply correspondence is simply the horizontal
summation of the single lands supply correspondences. Thus our first task is the
construction of land i timber supply:

• For 0  p

⇤
q

< p̂

⇤
qi

, timber supply on land i is constant at zero. Indeed Proposition
3.1 (i) implies c̄

a

i

f

a

i

= 0 for all p⇤
q

� 0, and (ii) of the same proposition and

Proposition 3.3 (i) imply
R

s̄i

0 c̄

i

(, s)f
i

(s)ds = 0;

• However, when p

⇤
q

> l̄

i

/f

a

i

something economically relevant happens under the
surface of the constant supply function. Since now it is worth extracting timber
they contain, the price of old trees is not anymore zero. Old trees have become
a valuable resource, destined to be exhausted.

• When p

⇤
q

= p̂

⇤
qi

, the supply curve has a flat. This follows from Proposition 3.4
(i) and the definition of the Dirac delta, that is �

s

F
i (p̂⇤qi)

f

i

(s) = f

i

(sF
i

(p̂⇤
qi

)), so
that Z

s̄i

0

c

Di
✓i
(, s)f

i

(s)ds = ✓

i

h

i

f

i

(sF
i

(p̂⇤
qi

))

s

F

i

(p̂⇤
qi

)
, for any ✓

i

2 [0, 1].

The amount of timber supplied is any quantity in the interval
[0, h

i

f

i

(sF
i

(p̂⇤
qi

))/sF
i

(p̂⇤
qi

)].

• Finally, for p⇤
q

> p̂

⇤
qi

we can use Proposition (i) 3.5 to get

Z
s̄i

0

c

Di
1 (, s)f

i

(s)ds =
h

i

f

i

(sF
i

(p⇤
q

))

s

F

i

(p⇤
q

)
,

and hence to establish that the supply correspondence is univalued. In addition,
the supply function is increasing at all p⇤

q

> p̂

⇤
qi

. To prove that, we show that
the Faustmann critical age s

F

i

(p⇤
q

) is decreasing at any price greater than p̂

⇤
qi

.

Proposition 4.1 Assume p

⇤
q

� p̂

⇤
qi

. Then s

F

i

(p⇤
q

) is a continuous decreasing func-
tion. As a consequence, land i supply function h

i

f

i

(sF
i

(p⇤
q

))/sF
i

(p⇤
q

) is continuous and
increasing for all p⇤

q

> p̂

⇤
qi

.

Proof. Let p

⇤
q

be any price that satisfies the hypothesis p

⇤
q

� p̂

⇤
qi

and let �p

⇤
q

> 0.
Recall the definition of g

i

(s) in (30), and define

k

i

(s) :=
M

F

i

(p⇤
q

+�p

⇤
q

)(ers � 1) + b

i

e

rs + l̄

i

p

⇤
q

+�p

⇤
q

, ↵ :=
(p⇤

q

+�p

⇤
q

)(MF

i

(p⇤
q

) + b

i

)

p

⇤
q

(MF

i

(p⇤
q

+�p

⇤
q

) + b

i

)
.

14



Note that the following hold: g

i

(0) > k

i

(0), and g

0
i

(s) = ↵k

0
i

(s). Now, since ↵ � 1
would lead to the contradiction k

i

(sF
i

(p⇤
q

)) < g

i

(sF
i

(p⇤
q

)) = f

i

(sF
i

(p⇤
q

), ↵ < 1. Hence,
at s

F

i

(p⇤
q

+ �p

⇤
q

) the following hold true: k

0
i

(sF
i

(p⇤
q

+ �p

⇤
q

)) = f

0
i

(sF
i

(p⇤
q

+ �p

⇤
q

)) >

g

0
i

(sF
i

(p⇤
q

+ �p

⇤
q

)). Since we have f

0
i

(sF
i

(p⇤
q

)) = g

0
i

(sF
i

(p⇤
q

)) and since f

i

(s) � g

i

(s) is a
strictly concave function, the last inequality implies sF

i

(p⇤
q

+�p

⇤
q

) < s

F

i

(p⇤
q

). Finally,
uniqueness of the maximizer of the Faustmann function implies that sF

i

(p⇤
q

+�p

⇤
q

) !
s

F

i

(p⇤
q

) for �p

⇤
q

! 0, and hence the continuity of the function s

F

i

(p⇤
q

). the last fact is
a direct consequence of (HC2), since h

i

f

i

(s)/s is decreasing in s.
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Figure 3: Supply curve.

This completes the construction of the supply corre-
spondence on land i for all p⇤

q

� 0. We have depicted a
typical supply curve in Figure 3.
Now we can construct the aggregate timber supply
correspondence that, as already noted, is simply the
horizontal sum of the N individual correspondences.
If, to avoid singular cases, we assume p̂

⇤
qi

6= p̂

⇤
qj

and
(l̄

i

/f

a

i

) 6= (l̄
j

/f

a

j

), for all i, j 2 I, i 6= j, then the aggre-
gate supply curve contains exactly N flats in correspon-
dence of the break through prices p̂⇤

qi

and N threshold
prices l̄

i

/f

a

i

that trigger extraction of the timber con-
tained in old trees.
The construction of the curve is illustrated in Figure 4
for the case N = 2.
Note that through this process lands are ranked both
in terms of their threshold prices l̄

i

/f

a

i

and in terms of
their break through prices p̂⇤

qi

. The order in terms of break through prices, which is
called the order of fertility (see Kurz & Salvadori, 1995, p. 287), is one of the building
blocks of the Ricardian theory of extensive rent, and gives the order in which the lands
are taken into cultivation when the demand for timber increases. Timber production
begins when the price of timber equals the minimum p̂

⇤
qi

, that is the break through
price of the most fertile land (p̂⇤

q1 in the example in Figure 4). Since at this price
any share of the most fertile land can be cultivated, the supply curve has a flat.
Before passing to the second most fertile land (that in the example in Figure 4 occurs
when the price p̂

⇤
q2 reached), forest cultivation on the first land is intensified (recall

that the Faustmann age of the cost minimizing technique is a decreasing function of
the price of timber), with the e↵ect that timber supply increases and a Faustmann
intensive rent is paid on the most fertile land (see Sra↵a, 1925, p. 334 ss., for a similar
construction).
When the break through price of the second most fertile land is reached (p̂⇤

q2

in Figure 4), there is a second flat on the supply curve. If not fully culti-
vated, the second most fertile land is now the Ricardian marginal land on which
no rent is paid, so that the rent paid on the most fertile land is now the
usual Ricardian extensive rent that eliminates the extra profits that the use of
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the cost-minimizing technique on the most fertile land would otherwise gener-
ate. For higher levels of the timber price, cultivation is intensified on both the
first two most fertile lands until the break through price of the third most fer-
tile land is reached, where there is a new flat in the supply curve. And so on.
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Figure 4: Aggregate supply.

On the other hand, and quite naturally, the or-
der in terms of threshold prices, which we call the
order of extraction,14 does not a↵ect the shape
of the long run aggregate supply correspondence,
although it determines the structure of the state
variable in the modified golden rules that are be-
hind the supply curve. We will say that there is an
order of the lands if each land occupies the same
position in the two orders described above. An
order of lands will be called strong if, in addition,
p̂

⇤
qi

< l̄

j

/f

a

j

for each land j that follows land i in
the order of lands (for example, that depicted in
Figure 4 is a strong order of lands).
Once the properties of the supply correspondence have been established, the compar-
ative statics e↵ects of an increased demand for timber are fairly obvious: if at the
initial equilibrium the marginal land exists, then a higher demand could simply lead
to an increase of the timber produced on that marginal land, without any increase
in timber price and in rents of the intra-marginal lands. If on the contrary the lands
in use are fully occupied, then a rise in the price of timber and in the rents of the
fully occupied lands necessarily occurs. As suggested by Ricardo, in both cases a suf-
ficiently high demand for timber causes a “rent to be paid for forests [...], which could
before a↵ord no rent”, as future demand cannot be met without fully cultivating some
of previously unoccupied or partially cultivated lands.
The other part of Ricardo’s argument – that not all of what “is annually paid by a
farmer to his landlord” can be considered rent, and that a higher demand for timber
could simply raise those components of the compensation paid by the farmer that are
not rent – has the clearest counterpart in our model when there is a strong order of
lands. Figure 5 illustrates the point. Let the initial demand curve be the one labeled
A in the figure. Then, since in equilibrium the timber price is lower than l̄2/f

a

2 , all
trees standing on land 2 have no value. If an increase in demand shifts the curve to
B3, then both the prices of standing trees and the rent on land 2 become positive,
but if instead the increase is such that the demand curve is either B1 or B2, then no
rent will be paid on land 2, although in both cases the owners of land 2 will receive
a compensation whenever they sell the now valuable assets standing on their land.
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Figure 5: E↵ects of an increasing timber price.

5 Concluding remarks

We have provided a rational basis for Ricardo’s tenet that the compensations received
by the owners of marginal forestlands in Norway following the raise of timber demand
(and hence of timber price) in more southern countries of Europe were not rents. To do
that, relying on the insights in Kurz & Salvadori (2009, 2011) and on the continuous-
time forestry management theory developed in Fabbri et al. (2015), we have built
a “Ricardian” forestry model whose comparative statics properties, we think, well
mimics Ricardo’s claims.
Beyond its use as an interpretive tool, our model improves that contained in Fabbri
et al. (2015) by introducing, although in a simplified way, a second sector in the
continuous-time Mitra-Wan forestry framework. Starting from this basis, it should
be no hard task to develop alternative two-sector models with, for example, a second
agricultural sector or an energy sector that uses both fossil fuels and renewable energy
technologies. With these modifications, the model can be adapted to the analysis of
important contemporary economic issues as, for example, the following ones (e.g.
Piazza & Roy, 2015). Is it truly inevitable that forestry or trees conservation will be
adversely a↵ected by rising food demand or the introduction of policies encouraging
the use of biofuels?

Notes

1However, a recent study has shown that the formula was already known in England at the end
of 17th century and that its discovery is linked to the institutional developments that changed the
English financial markets after the 1690s; see Viitala (2013).

2Using a Sra�an terminology, we are treating timber as a non-basic commodity.
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3Stokey and Lucas, 1989, early advocated the direct study of the equilibrium price system, to
supplement what they called “the indirect approach”.

4Besides Ricardian extensive rents, an intensive rent arises in the model because a higher timber
price leads to a shorter rotation period, with higher timber production and higher rent, on fully
occupied lands. We call this type of intensive rent the Faustmann rent.

5Note that a perfectly elastic timber demand curve would not satisfy the requirements in the
text, as it would be multivalued. We avoid this “linear” case because it complicates the comparative
statics. It should be noted that, in the continuous-time version of the basic Mitra-Wan model, the
closed form of the dynamics of competitive equilibrium is known only the linear case (see Fabbri
et al., 2015).

6Although the case r = 0 is important in forestry literature (price-supported steady states of the
original undiscounted Mitra-Wan model fulfill the foresters’ goal of maximum sustained yield), its
analysis would require the introduction of specific optimality criteria. However, on a first inspection,
it seems some of the results in Fabbri et al. (2015) may extend to the model discussed in this paper.

7In Fabbri et al. (2015), f(s) is not required to be concave, has support contained in (0, s̄), with
0 < s̄ < 1, meaning that trees older than s̄ are considered unproductive and that some time after
planting is needed before a tree becomes productive. Moreover, since cutting/replanting costs are
null, Fabbri et al. (2015) assume consistently that the aggregate variables a(t) and ca(t) are zero at
any time.

8Fabbri et al. (2015) consider an optimal growth model with the Ramsey-like objectiveR +1
0 e�⇢tu

�
qD(t)

�
dt, where ⇢ � 0 is the rate of discount and u(qD(t)) is the instantaneous utility

function. To compare the two models, it is su�cient to re-interpreted the rate of interest as the rate
of discount and the demand function qD(t) = D(pq(t)) as the inverse of the function pq = u0(qD(t)).

9Following the terminology of optimal growth theory, we call modified golden rule any station-
ary strategy-trajectory couple satisfying (10) and supported by a stationary price path. A formal
definition is given in section 3.

10The proofs of these results, that are not given here, can be obtained by adapting Theorem 4.5
in Fabbri et al. (2015).

11In principle, negative prices are possible in this model. For example, suppose that on land i
the cost of removal of the trees is very high, so that fa

i p
⇤
q � l̄i < 0, and ai(0) = hi. In this case, a

stationary state in which āi = hi can be sustained by negative prices of mature trees and positive
rent rates that satisfy fa

i p
⇤
q � l̄i  p̄ai and 0 = rp̄ai + R̄i. Note that in this kind of equilibria, even

if the rent rate is positive, what is “annually paid by a farmer to his landlord” equals zero because
a positive rent exactly compensates for the interests the landlord pays on the value of the “bad”
standing on his land. However this case is not particularly relevant as, besides a stationary solution
with negative price of the old trees, there exists also the more natural non-negative solution R̄i = 0,
p̄ai = 0. Had been the land short in supplying timber to production, then a more interesting case
of negative price for mature trees would have occurred: a high removal cost on mature forestland
and a positive rent rate would result in an unavoidable negative price for old trees. However, our
assumptions (HC1)-(HC2) preclude this possibility, implying that the rent on land i can be positive
only if fa

i p
⇤
q � l̄i > 0.

12A simple argument that explains the statement in the text runs as follows. Buying at time t a
tree of age s on land i, holding it in situ till time t+�t, and then selling it generates a net revenue
at time t+�t of pi(t+�t, s+�t)� pi(t, s)� R̄i�t. Under competitive arbitrage, this sum equates
the foregone interest on the sum used to buy the asset, rpi(t, s)�t. Hence:

[pi(t+�t, s+�t)� pi(t, s+�t)] + [pi(t, s+�t)� pi(t, s)]

�t
= rpi(t, s) + R̄i.

With stationary prices, letting �t ! 0+ one gets the Hotelling-like condition in the text.
13Uniqueness can be proved for all p⇤q � 0, however irrelevant when p⇤q < p̂⇤qi.
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14Although our analysis is static, we abuse the term order of extraction to underline the fact that
if planting costs were infinite and all standing trees were old, then our model would be reduced to
a standard exhaustible resource model with multiple deposits. Provided the demand choke o↵ price
is greater that the maximum of the l̄i/fa

i , i 2 I, the order in term of threshold prices in this model
would correspond to the order of extraction of the N deposits of timber (see Herfindahl, 1967).
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