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Abstract. We mimick the construction of guard algebras and show how
to extract a Church algebra out of the binary functions on an arbitrary
algebra, containing a Church subalgebra of binary polynomial opera-
tions. We put to good use the weak Boolean product representations of
these Church algebras to obtain weak Boolean product representations
of the original algebras. Although we cannot, in general, say much about
the factors in these products, we identify a number of sufficient condi-
tions for the stalks to be directly indecomposable. As an application,
we prove that every skew Boolean algebra is a weak Boolean product of
directly indecomposable skew Boolean algebras.

Dedicated to Don Pigozzi on the occasion of his eightieth birthday

1. Introduction

According to one of the most celebrated theorems of universal algebra,
proved by Birkhoff at the very dawn of the discipline, every algebra in a
variety has a subdirect representation with subdirectly irreducible factors
that belong to the same variety. This result, whose scope is as wide as
it can be, is not very informative in itself. In some special cases, though,
qualitatively superior representations can be attained by imposing additional
desiderata on the target structure. Boolean products, of course, are the
prime example of this situation.

Recall that a weak Boolean product of a family (Ai)i∈I of algebras is

a subdirect product A ≤
∏
i∈I

Ai, where I can be endowed with a Boolean

space topology such that: (i) the set {i ∈ I : ai = bi} is open for all
a, b ∈ A, and (ii) if a, b ∈ A and N ⊆ I is clopen, then the element c,
defined by ci = ai for i ∈ N and ci = bi for i ∈ I − N , belongs to A.
Also, recall that a weak Boolean product of a family (Ai)i∈I of algebras is
a Boolean product if the set {i ∈ I : ai = bi} is clopen for all a, b ∈ A. The
study of (weak) Boolean products is motivated by Stone’s representation
theorem: every Boolean algebra B is isomorphic to the algebra of clopen
subsets of its Stone space S(B). Since the 1970s, various researchers have
sought to generalise Stone’s result to ever-larger classes of algebras. Pierce
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[24] proved that every commutative ring with unit is representable as a
Boolean product of directly indecomposable rings. Subsequently, Burris
and Werner [6, 7] obtained Boolean product representations for algebras
in discriminator varieties. The technique of Boolean products underwent
remarkable developments over the following years [5, Ch. 4.8], giving rise
to further generalisations of Stone’s theorem by Comer (covering the case
of algebras with Boolean factor congruences: [8]) and by Vaggione (who
emphasised the importance of central elements in (weak) Boolean product-
like constructions: [32]).

Contemporaneous with these developments, researchers in theoretical com-
puter science have extensively pursued the study of the if-then-else construct.
Focussing solely on algebraic developments, Bloom and Tindall [4] and Mek-
ler and Nelson [21], among others, investigated a number of algebraic func-
tions modeling if-then-else constructs, including the ternary discriminator.
With applications to logic in mind, Pigozzi introduced the concept of an
equality-test algebra, and published a number of papers on these structures,
including [25, 26]. In a different direction, in [1] Bergman modelled the if-
then-else construct by considering Boolean algebras acting on sets. If the
Boolean algebra of actions is the 2-element algebra, simply set 1(a, b) = a
and 0(a, b) = b to mimic the if-then-else construct. The approach followed
by the first author and Manzonetto in [17] differs from Bergman’s in that
the if-then-else is treated as a proper algebraic ternary operation q on a
double-pointed algebra A, having the property that for every a, b ∈ A,
q(1, a, b) = a and q(0, a, b) = b. The resulting variety of Church algebras is
one of the fundamental notions in the present work and is investigated in
[17, 18, 28].

Not all (weak) Boolean product representations are in the same league.
At one extreme we have the optimal example of discriminator varieties,
whose members are representable as Boolean products of simple algebras;
yet, the weak Boolean product construction is so flexible that little can
be said about the factors of the product (the stalks of the representation,
as we will call them hereafter) in the general case. The situation improves
if V is a Church variety. Using Vaggione’s concept of central element in a
double-pointed algebra, it is proved in [28] (following the lead of [8] and
[32]) that every algebra A in a Church variety V admits a weak Boolean

product representation f : A →
∏

I∈S
A/θI (S the spectrum of maximal

ideals), and that the stalks A/θI are directly indecomposable whenever the
class of directly indecomposable members of V is a universal class. Outside
the borders of the double-pointed territory, however, universal algebra is of
little avail and we often have to proceed case by case.

In this paper, with an eye to extending the above results to arbitrary
algebras, we mimic the construction of guard algebras [31, 3]. In [3], Bloom,
Esik, and Manes proved a Cayley-type theorem for Boolean algebras, which
says that any Boolean algebra is isomorphic to a Boolean algebra of binary
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functions on a set; such a Boolean algebra of binary functions is called a
guard algebra. Borrowing from this idea, we introduce the notion of a sub-
stitution Church algebra F (A) of binary functions on an arbitrary algebra

A, and show that this algebra always contains a Church subalgebra Â of
binary polynomial operations, which latter may then be used to recover a

weak Boolean product representation f|A : A →
∏

I∈S
A/θI of A (S the

spectrum of maximal ideals). Although we cannot, in general, say much
about the factors in these products, we identify a number of sufficient con-
ditions for the stalks to be directly indecomposable. As an application, we
prove that every skew Boolean algebra is a weak Boolean product of directly
indecomposable skew Boolean algebras.

The topics we cover, and the approach we adopt, throughout the paper
are consonant with Don Pigozzi’s angle on universal algebra. Pigozzi con-
sistenly paid a special attention to the cross-fertilisation potential inherent
not only to the application of universal algebraic methods to theoretical
computer science, but also to the construction of abstract algebraic models
of computational structures, which have oftentimes delivered an unexpected
payoff — the creation of new tools for addressing purely algebraic problems
[26, 27, 19].

The article is structured as follows. In Section 2 we dispatch various
preliminaries on factor congruences, decomposition operations, Church al-
gebras, and guard algebras. In Section 3 we introduce the idea of a substi-
tution Church algebra. Roughly speaking, a substitution Church algebra is
an algebra A of given type ν expanded by a ternary operation qA(a, b, c)
and constants 0 and 1 such that (A, qA, 0, 1) is a Church algebra and, for
each n-ary f ∈ ν, the operation fA respects qA(a, b, c). We also identify
a certain subalgebra A0 ≤ A, called zero-dimensional, that plays an im-
portant role in subsequent developments. In Section 4, we show that any
algebra A of given type ν is isomorphic to the zero-dimensional subreduct
F (A)0 of a substitution Church algebra F (A) of binary functions on A,
obtained by appropriately tweaking the guard algebra construction. We
also prove that the central elements of any subalgebra B ≤ F (A) such
that F (A)0 ⊆ B correspond to decomposition operations enjoying certain
commutation properties; such a subalgebra B is called a functional Church
algebra of value domain A.

In Section 5, we consider the situation in which the functional Church

algebra of value domain A is the algebra Â of binary polynomial operations

on A. We show that the central elements of Â are exactly the operations on
A that are simultaneously polynomial operations on A and decomposition
operations on A. From this observation it follows that, given an arbitrary

algebra A, the map f : Â→
∏

I∈S
Â/θI (S the spectrum of maximal ideals)

yields a weak Boolean product representation of Â, the restriction of which
to the constant polynomials provides a weak Boolean product representation
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f|A : A→
∏

I∈S
A/θI of A. Moreover, we identify sufficient conditions un-

der which this representation has directly indecomposable stalks. In Section
6, we apply these results to a concrete setting: building on previous results
from [9], we show that every skew Boolean algebra [14] is a weak Boolean
product of directly indecomposable skew Boolean algebras.

2. Preliminaries

If A is an algebra and x, y ∈ A, then θ(x, y) denotes the least congruence
on A including the pair (x, y). We denote respectively by ∆,∇ the least
and the greatest congruence of the congruence lattice Con(A).

If f : Ak → A and g1, . . . , gk : An → A are maps, then we denote by
f〈g1, . . . , gk〉 : An → A the function defined as follows:

(1) f〈g1, . . . , gk〉(x1, . . . , xn) = f(g1(x1, . . . , xn), . . . , gk(x1, . . . , xn)).

We recall from [20] that, if f, g : A × A → A are binary maps, then f
and g commute, and we write f Cm g, if the following condition holds for
all xij ∈ A:

(2) f(g(x11, x12), g(x21, x22)) = g(f(x11, x21), f(x12, x22)).

Equation (2) holds for f and g iff f is a homomorphism of (A, g)2 into
(A, g) iff g is a homomorphism of (A, f)2 into (A, f).

2.1. Factor congruences and decomposition operations.

Definition 1. A congruence φ on an algebra A is a factor congruence if
there exists a congruence φ̄ such that φ∩ φ̄ = ∆ and φ ◦ φ̄ = ∇. In this case
we call (φ, φ̄) a pair of complementary factor congruences.

Under the hypotheses of Definition 1, the homomorphism f : A→ A/φ×
A/φ̄ defined by f(x) = (x/φ, x/φ̄) is an isomorphism. Consequently, (φ, φ̄)
is a pair of complementary factor congruences of A if, and only if, A ∼=
A/φ × A/φ̄ under the natural map x 7→ (x/φ, x/φ̄). ∆ and ∇ are the
trivial factor congruences, corresponding to A ∼= A×B, where B is a trivial
algebra; of course, B is isomorphic to A/∇ and A is isomorphic to A/∆.

We denote by FC(A) the set of factor congruences of an algebra A. We
recall that factor congruences in a generic algebra do not satisfy any partic-
ular condition. For example, the set of factor congruences is not in general
a sublattice of the lattice of all congruences.

An algebra A is directly indecomposable if FC(A) = {∆,∇}. Clearly,
every subdirectly irreducible algebra is directly indecomposable, while the
converse need not hold.

Factor congruences can be characterised in terms of certain algebra ho-
momorphisms called decomposition operations (see [20, Def. 4.32] for more
details).

Definition 2. Let A be an algebra of type ν. A decomposition operation
on A is a function f : A×A→ A satisfying the following conditions:
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D1: f(x, x) = x;
D2: f(f(x11, x12), f(x21, x22)) = f(x11, x22);
D3: f is an algebra homomorphism from A×A into A.

We denote by DE(A) the set of all decomposition operations on A.
There exists a bijective correspondence between pairs of complementary

factor congruences and decomposition operations, and thus, between decom-
position operations and factorisations of the form A ∼= B×C.

Proposition 3. ([20, Thm. 4.33]) Let A be an algebra of type ν. Given a
decomposition operation f on A, the binary relations θf and θ̄f defined by:

x θf y iff f(x, y) = x,
x θ̄f y iff f(x, y) = y,

form a pair of complementary factor congruences. Conversely, given a pair
(φ, φ̄) of complementary factor congruences, the function f defined by:

(3) f(x, y) = u iff yφuφ̄x,

determines a decomposition operation on A such that φ = θf and φ̄ = θ̄f .

Notice that if (φ, φ̄) is a pair of complementary factor congruences, then
for all x and y there is exactly one element u such that yφuφ̄x.

An algebra A has Boolean factor congruences (BFC, for short) if the
factor congruences of A form a distributive sublattice of the congruence
lattice Con(A) of A. A class of algebras has BFC if each algebra in the
class has BFC.

A congruence φ is said to be:

• balanced, if φ = (φ∨ θ)∩ (φ∨ θ̄) for all pairs (θ, θ̄) of complementary
factor congruences.
• bi-balanced if φ is a balanced factor congruence which admits a bal-

anced factor complement.

We have that:

Lemma 4. ([30, Theorems 1 and 2]) (i) A congruence φ is balanced if and
only if φ ◦ θ = θ ◦ φ and (φ ∨ θ) ∩ θ̄ ⊆ φ for every factor congruence θ.
(ii) The set B(A) of all bi-balanced factor congruences is the universe of a
permutable Boolean sublattice of Con(A), which we also denote by B(A).

2.2. Church Algebras. The key observation motivating the introduction
of Church algebras [17] is that many algebras arising in completely different
fields of mathematics — including Heyting algebras, rings with unit, or
combinatory algebras — have a term operation q satisfying the fundamental
properties of the if-then-else connective:

q(1, x, y) ≈ x and q(0, x, y) ≈ y.

As simple as they may appear, these properties are enough to yield rather
strong results. This motivates the next definition.
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Definition 5. An algebra A of type ν is a Church algebra if there are term
definable elements 0A, 1A ∈ A and a term operation qA such that, for all
a, b ∈ A

qA(1A, a, b) = a and qA(0A, a, b) = b.

A variety V of type ν is a Church variety if every member of V is a Church
algebra with respect to the same term q(x, y, z) and the same constants 0, 1.

Examples of Church algebras include FLew-algebras (commutative, in-
tegral and double-pointed residuated lattices, for which see [10]) and, in
particular, Heyting algebras and thus also Boolean algebras; ortholattices;
rings with unit; combinatory algebras.

Expanding on an idea due to Vaggione [32], we also define:

Definition 6. An element e of a Church algebra A is called central if the
pair (θ(e, 0), θ(e, 1)) is a pair of complementary factor congruences on A. A
central element e is nontrivial if e /∈ {0, 1}. By Ce(A) we denote the centre
of A, i.e., the set of central elements of the algebra A.

Proposition 7. [28, Prop. 3.6] An element e of a Church algebra A of type
ν is central if and only if it satisfies the following conditions for all a, aij , b, c
in A:

A1: q(e, a, a) = a.
A2: q(e, q(e, a11, a12), q(e, a21, a22)) = q(e, a11, a22).
A3: q(e, σ(b), σ(c)) = σ(q(e, b1, c1), . . . , q(e, bn, cn)), for every σ ∈ ν of

arity n.
A4: q(a, 1, 0) = a.

It is proved in [28, Thm. 3.7] that Church algebras have BFC and that,
by defining

(4) x ∧ y = q(x, y, 0); x ∨ y = q(x, 1, y); x′ = q(x, 0, 1),

we get:

Theorem 8. Let A be a Church algebra. Then c[A] = (Ce(A),∨,∧,′ , 0, 1)
is a Boolean algebra which is isomorphic to the Boolean algebra of factor
congruences of A.

It clearly follows that a Church algebra is directly indecomposable iff
Ce(A) = {0, 1}.

Corollary 9. Let A be a Church algebra. For every decomposition operation
f on A, there exists a central element e such that f(x, y) = q(e, y, x), θf =
θ(e, 0) and θ̄f = θ(e, 1).

Theorem 8, together with theorems by Comer [8] and Vaggione [32], im-
plies:
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Theorem 10. [28, Thm. 3.8] Let A be a Church algebra, S be the Boolean

space of maximal ideals of c[A] and f : A→
∏
I∈S

A/θI be the map defined by

f(a) = (a/θI : I ∈ S),

where θI =
∨
e∈I
θ(0, e). Then:

(1) f gives a weak Boolean representation of A;
(2) f provides a Boolean representation of A iff, for all a 6= b ∈ A,

there exists a least central element e such that q(e, a, b) = a (i.e.,
(a, b) ∈ θ(0, e)).

In general, not much can be said about the factors in this representation
for a generic Church variety V. However, these factors are guaranteed to be
directly indecomposable provided that the directly indecomposable members
of V form a universal class. In fact, following [32], it is shown in [28, Thm.
3.9] that:

Theorem 11. Let V be a Church variety of type ν. Then, the following
conditions are equivalent:

(1) For all A ∈ V, the stalks A/θI (I ∈ S a maximal ideal) are directly
indecomposable.

(2) The class Vdi of directly indecomposable members of V is a universal
class.

2.3. Guard algebras. Let A be an algebra of a fixed type ν. We add to ν
a symbol ca of arity 0 for each a ∈ A, and call the new type νA. The binary
terms of type νA are called the binary polynomials of A. If p = p(x, y) is a
polynomial, we call polynomial operation the interpretation pA : A×A→ A
of p in the algebra A. Moreover, oftentimes we use the same symbol a for
an element a ∈ A and its realisation in the type νA. The set of all binary
polynomial operations on A is noted as P 2(A).

In 1965, K. Urbanik [31] defined an algebra of polynomial operations along
the following lines. Given an algebra A of type ν, he set:

BA = (P 2(A),∨,∧,′ , 0, 1),

where:

• (p1 ∨ p2)(x, y) = p1(x, p2(x, y));
• (p1 ∧ p2)(x, y) = p1(p2(x, y), y);
• p′(x, y) = p(y, x);
• 1(x, y) = x and 0(x, y) = y.

We reproduce hereafter the main result in his paper:

Theorem 12. If A is an idempotent algebra that has an essentially binary
operation and no essentially n-ary polynomial operation for some n ≥ 3,
then BA is a finite Boolean algebra.
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Later on, Urbanik’s ideas were developed along several different direc-
tions. On the one hand, instead of focussing on polynomial operations on
an algebra A, some authors have considered more general sets of binary
functions on A (or even on an unstructured set X) satisfying appropriate
closure conditions. On the other hand, there have been attempts to replace
the rather unwieldy assumptions of Theorem 12 by equational conditions
that A must satisfy for the result to hold true. Finally, it has been investi-
gated whether every Boolean algebra is so representable. Bloom et al. [3]
proved the following result.

Theorem 13. (1) Let X be a set, and let Y be any set of binary func-
tions on X (i.e., functions from X ×X into X) that is closed under
the operations ∨,∧,′ , 0, 1, defined as above. Then the algebra

B′
X = (Y,∨,∧,′ , 0, 1)

is a Boolean algebra if all functions in Y satisfy conditions (D1) and
(D2) in Definition 2 and commute with each other. Such Boolean
algebras of binary functions on X are called guard algebras on X.

(2) Every Boolean algebra A is isomorphic to a guard algebra on an
appropriate set X.

The denomination “guard algebra” is clearly inspired by guard conditions
in computer science, see e.g. [16] — in fact, the target algebra in part
(2) of Theorem 13 is an algebra on the set of all polynomial “if-then-else”
operations q(a, -, -), where a ∈ A and q is the Church term for Boolean
algebras. Observe that part (1) of the same theorem implies that the guard
algebra of all polynomial decomposition functions on an algebra A is a
Boolean algebra. For other results along these lines, see e.g. [23] or [22].

3. Substitution Church algebras

As important as they are, the results of Section 2.3 are still somewhat
unsatisfactory in that, given some algebra, one obtains a Boolean algebra
of polynomial operations in the above-described manner only under rather
restrictive conditions. We intend to generalise this approach in such a way as
to construct Church algebras of functions out of arbitrary algebras. Since the
resulting Church algebras will enjoy special properties, we need an abstract
concept to accommodate them, which it is the aim of the present section to
provide.

Let ν be a type of algebra and let ν ′ = ν ∪ {q, 0, 1} be the expansion of ν
by the ternary operation symbol q and the constants 0, 1.

Definition 14. A substitution Church algebra is an algebra S = (S, σ, q, 0, 1)σ∈ν
of type ν ′ satisfying the following identities:

S0: The Church algebra identities for (S, q, 0, 1).
S1: q(x, 1, 0) ≈ x.
S2: q(q(x, y, z), t, u) ≈ q(x, q(y, t, u), q(z, t, u)).
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S3: q(g(x̄), y, z) ≈ g(q(x1, y, z), . . . , q(xk, y, z)) for every g ∈ ν of arity
k.

As usual, define x ∧ y = q(x, y, 0), x ∨ y = q(x, 1, y) and x′ = q(x, 0, 1).

Proposition 15. Any substitution Church algebra S satisfies the following
conditions for all a, b, c ∈ S:

(1) (S,∧, 1) and (S,∨, 0) are monoids with respective absorbing elements
0 and 1.

(2) (a′)′ = a.
(3) (a ∧ b)′ = a′ ∨ b′ and (a ∨ b)′ = a′ ∧ b′.
(4) 0′ = 1; 1′ = 0.
(5) q(a′, b, c) = q(a, c, b).

Proof. Let a, b, c ∈ S. Then:
(1) (a ∧ b) ∧ c = q(q(a, b, 0), c, 0) =S2,S0 q(a, q(b, c, 0), 0) = a ∧ (b ∧ c) and
(a ∨ b) ∨ c = q(q(a, 1, b), 1, c) =S2,S0 q(a, 1, q(b, 1, c)) = a ∨ (b ∨ c).
(2) (a′)′ = q(q(a, 0, 1), 0, 1) =S2 q(a, q(0, 0, 1), q(1, 0, 1)) =S0 q(a, 1, 0) =S1 a.
(3) (a∧b)′ = q(q(a, b, 0), 0, 1) =S2 q(a, q(b, 0, 1), 1) =S2 q(q(a, 0, 1), 1, q(b, 0, 1)) =
a′ ∨ b′. Similarly for (a ∨ b)′.
(4) Trivial.
(5) follows by applying (S2) to q(q(a, 0, 1), b, c). �

If S is an arbitrary substitution Church algebra, then b ∈ S is zero-
dimensional if q(b, x, y) = b for all x, y ∈ S. We denote by S0 the set of all
zero-dimensional elements of S.

Lemma 16. S0 is a subuniverse of the ν-reduct of S satisfying the following
condition:

x ∈ S and y, z ∈ S0 ⇒ q(x, y, z) ∈ S0.

Proof. Let b̄ ≡ b1, . . . , bk ∈ S0, t, u ∈ S and σ ∈ ν of arity k. Then we have:

q(σ(b̄), t, u) = σ(q(b1, t, u), . . . q(bk, t, u)) by (S3)
= σ(b̄) by bi ∈ S0.

Moreover, for every x ∈ S and y, z ∈ S0, we have:

q(q(x, y, z), t, u) =S2 q(x, q(y, t, u), q(z, t, u)) = q(x, y, z),

because y, z ∈ S0. �

We denote by S0 the ν-algebra of universe S0.

Example 17. Let Fν be the absolutely free algebra of type ν over a countable
infinite set X of generators and let x0, x1 ∈ X. We define

0Fν = x0, 1Fν = x1, qFν (t, u1, u0) = t[u1/x1, u0/x0],

where t[u1/x1, u0/x0] is the term obtained by substituting the term ui for ev-
ery occurrence of xi in the term t (i = 0, 1). The algebra (Fν , σ, q

Fν , 1Fν , 0Fν )
is a substitution Church algebra. A term t is zero-dimensional if and only
if the variables x0 and x1 do not occur in t.
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4. Substitution Church algebras of binary functions

In what follows, we dovetail the results of Subsections 2.2 and 2.3. The
fact that central elements in a Church algebra form a Boolean algebra iso-
morphic to the Boolean algebra of its factor congruences invites a conjecture
to the effect that Theorem 13 can be appropriately generalised. Mimick-
ing the construction of guard algebras, in fact, we construct a substitution
Church algebra F (A) out of the binary functions on an arbitrary algebra
A, which remains embedded therein as its subreduct of zero-dimensional
elements. We show that the central elements of any subalgebra B of F (A)
containing F (A)0 are decomposition operations on A that commutes with
every element of B. We also prove that the factor congruences corresponding
to decomposition operations on A that commute with every other decompo-
sition operation are bi-balanced and form a Boolean sublattice of the lattice
of congruences of A.

Let A be an algebra of type ν and F (A) be the set of all functions from
A×A into A. Consider the algebra of type ν ′

F (A) = (F (A), σF (A), qF (A), π
F (A)
0 , π

F (A)
1 )σ∈ν ,

whose operations are defined as follows (for all f, g, h, f1, . . . , fk ∈ F (A) and
all a, b ∈ A):

(1) π
F (A)
0 (a, b) = b,

(2) π
F (A)
1 (a, b) = a,

(3) qF (A)(f, g, h) = f〈g, h〉,
(4) σF (A)(f1, . . . , fk) = σA〈f1, . . . , fk〉,

where the operation −〈−, . . . ,−〉 is defined in Equation (1) on page 4.

Proposition 18. (i) The algebra F (A) is a substitution Church algebra.
(ii) The algebra A is isomorphic to the ν-algebra F (A)0 of all zero-

dimensional elements of F (A).

Proof. (i) It is immediate to see that F (A) abides by the conditions of
Definition 14. By way of example, we show Condition (S1); in fact, for
a, b ∈ A, f〈π1, π0〉(a, b) = f(π1(a, b), π0(a, b)) = f(a, b). (ii) The required
map, for any a ∈ A, is a 7→ fa, where fa(x, y) = a. �

Any subalgebra B of F (A) such that F (A)0 ⊆ B is called a functional
Church algebra of value domain A.

In the next proposition we give a representation theorem for substitution
Church algebras, in a similar vein to Theorem 13(2).

Proposition 19. Let S be a substitution Church algebra of type ν ′. The
map

(5) a ∈ S 7→ qS(a, -, -) : S0 × S0 → S0

is a homomorphism from S to the functional Church algebra F (S0), whose
value domain is the ν-algebra of all zero-dimensional elements of S.
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Proof. If a ∈ S, then qS(a, x, y) ∈ S0 for all x, y ∈ S0, by Lemma 16. It
follows that the map defined in (5) is well-defined. We now prove that it is
a homomorphism.
Let x, y ∈ S0.

qS(σS(ā), x, y) = σS(q(a1, x, y), . . . , q(ak, x, y)) by (S3)
= σS〈q(a1, -, -), . . . , q(ak, -, -)〉(x, y)

= σF (S0)(q(a1, -, -), . . . , q(ak, -, -))(x, y).

qS(qS(ā), x, y) = qS(a1, q
S(a2, x, y), qS(a3, x, y)) by (S2)

= qF (S0)(qS(a1, -, -), q
S(a2, -, -), q

S(a3, -, -))(x, y).

Moreover, qS(0, -, -) = π
F (S0)
0 and qS(1, -, -) = π

F (S0)
1 . This concludes the

proof that a 7→ q(a, -, -) is a homomorphism. �

4.1. Commuting decomposition operations. Recall that two binary
functions f and g on A commute, noted by f Cm g, if the equation (2)
of Section 2 holds. We denote by Cm(f) the set {g ∈ F (A) : f Cm g}. If
g, h ∈ Cm(f) it is not the case, in general, that g and h commute.

Proposition 20. Let f : A × A → A be a decomposition operation on A.
Then the set Cm(f) is a subuniverse of the functional Church algebra F (A).

Proof. Let σ ∈ ν of arity k. We show that, for every g1, . . . , gk ∈ Cm(f), f
and σA〈g1, . . . , gk〉 commute.
Let H = f(σA〈g1, . . . , gk〉(x1, x2), σA〈g1, . . . , gk〉(x3, x4)). Then we have:

H = f(σA(. . . gi(x1, x2) . . . ), σA(. . . gi(x3, x4) . . . ))
= σA(. . . f(gi(x1, x2), gi(x3, x4)) . . . ) f homomorphism
= σA(. . . gi(f(x1, x3), f(x2, x4)) . . . ) by f Cm gi
= σA〈g1, . . . , gk〉(f(x1, x3), f(x2, x4)).

We show that, for every g, h, u ∈ Cm(f), f and qF (A)(g, h, u) commute. Let
K = f(g〈h, u〉(x1, x2), g〈h, u〉(x3, x4)). Then we have:

K = f(g(h(x1, x2), u(x1, x2)), g(h(x3, x4), u(x3, x4)))
= g(f(h(x1, x2), h(x3, x4)), f(u(x1, x2), u(x3, x4))) by f Cm g
= g(h(f(x1, x3), f(x2, x4)), u(f(x1, x3), f(x2, x4))) by f Cm h, u
= g〈h, u〉(f(x1, x3), f(x2, x4)).

�

In the hypothesis of Proposition 20, Cm(f) contains all binary constant
functions. We denote by Cm(f) the functional Church algebra of value
domain A with universe Cm(f).

The following proposition characterises commuting decomposition opera-
tions in terms of factor congruences.

Recall that, if g : A×A→ A is a function, then g′ is the function defined
by

g′(x, y) = g(y, x).
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Proposition 21. Let A be an algebra of type ν and g, h be decomposition
operations on A. Then the following conditions are equivalent:

(i) g Cm h;
(ii) θx = (θx ∨ θy) ∩ (θx ∨ θy′) for every x, y ∈ {g, h, g′, h′};
(iii) θx ◦ θy = θy ◦ θx and (θx∨ θy)∩ θy′ ⊆ θx for every x, y ∈ {g, h, g′, h′}.

Proof. The equivalence of (ii) and (iii) follows from the proof of [30, Theorem
1].

(i) ⇒ (iii): We prove that g Cm h implies:

(6) ∃z(xθhzθgy)⇒ xθgh(x, y)θhy.

Let xθhzθgy. Then h(x, z) = x and g(y, z) = y. By this last equality and
by g Cm h we derive that g(h(x, y), h(x, z)) = h(g(x, x), g(y, z)) = h(x, y),
whence h(x, y)θgh(x, z) = x. Since h(y, h(x, y)) = h(y, y) = y, then the
conclusion xθgh(x, y)θhy follows and θg ◦ θh = θh ◦ θg holds.

We show that (θg∨θh)∩θh′ ⊆ θg. Let xθguθhyθ̄hx. We have to show that
g(x, y) = x (i.e., xθgy) assuming g(x, u) = x, h(y, x) = x and h(y, u) = y:

g(x, y) = g(h(y, x), h(y, u)) = h(g(y, y), g(x, u)) = h(y, x) = x,

where the second equality holds because by hypothesis g and h commute.
From the hypothesis g Cm h it follows that g′ Cm h, g Cm h′ and g′ Cm h′.

Then the other conditions of (iii) can be proved in a similar way.
(ii) ⇒ (i): By [30, Lemma 3(2)] and by the hypothesis we derive that

φ1 ≡ θh ∨ θg, φ2 ≡ θh ∨ θ̄g, φ3 ≡ θ̄h ∨ θg and φ4 ≡ θ̄h ∨ θ̄g are factor
congruences. Then we have:

A ∼= A/θh×A/θ̄h ∼= [A/(θh∨θg)×A/(θh∨ θ̄g)]× [A/(θ̄h∨θg)×A/(θ̄h∨ θ̄g)]

because by hypothesis θh = (θh∨θg)∩(θh∨ θ̄g) and θ̄h = (θ̄h∨θg)∩(θ̄h∨ θ̄g).
It is easy to check that the map t(x1, x2, x3, x4) = h(g(x4, x3), g(x2, x1)) is
the unique element u ∈ A such that uφixi for every i = 1, 2, 3, 4, and that t
satisfies the following identities:

• t(x, x, x, x) = x;
• t(t(x11, x12, x13, x14), . . . , t(x41, x42, x43, x44)) = t(x11, x22, x33, x44);
• t commutes with the operations of A.

Then the conclusion that h and g commute follows from [20, Exercise 4.38(15)].
�

4.2. Central elements of functional Church algebras. Recall that, by
Theorem 8, the algebra

c[S] = (Ce(S),∨,∧,′ , 0, 1)

of central elements of a substitution Church algebra S is a Boolean algebra
isomorphic to the Boolean algebra of factor congruences of S. We now prove
the main theorem of this section.
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Theorem 22. Let A be a ν-algebra and B be a functional Church ν ′-algebra
of value domain A. Then the following conditions are equivalent, for every
e ∈ B:

(i) e is a central element of B;
(ii) e is a decomposition operation on A such that e Cm g for every

g ∈ B (in other words, B is a subalgebra of Cm(e)).

Proof. (ii)⇒(i). Let e ∈ B be a decomposition operation on A such that
e Cm g for every g ∈ B. We show that e is a central element of B, i.e., it
satisfies conditions (A1)-(A4) of Proposition 7. In the following, x, y range
over A and g, h, t, r, s, u over B.
(A1): q(e, g, g) = e〈g, g〉 = g, because by (D1) in Definition 2 we have that
e(g(x, y), g(x, y)) = g(x, y) for every x, y ∈ A.
(A2):

q(e, q(e, g11, g12), q(e, g21, g22)) = e〈e〈g11, g12〉, e〈g21, g22〉〉
= e〈g11, g22〉 by (D2)
= q(e, g11, g22).

(A3): We recall that the type of the algebra B is ν ∪ {q, 0, 1}. Then, taking
into account the fact that e is a decomposition operation on A and the fact
that e Cm g and e Cm r, we have that:

q(e, q(g, h, t), q(r, s, u)) = e〈g〈h, t〉, r〈s, u〉〉
= e〈e〈g〈h, t〉, g〈s, u〉〉, e〈r〈h, t〉, r〈s, u〉〉〉 by (A2)

where g11 = g〈h, t〉, g12 = g〈s, u〉, etc.
= e〈g〈e〈h, s〉, e〈t, u〉〉, r〈e〈h, s〉, e〈t, u〉〉〉

because e Cm g and e Cm r
= (e〈g, r〉)〈e〈h, s〉, e〈t, u〉〉
= q(q(e, g, r), q(e, h, s), q(e, t, u)).

Now, let σ ∈ ν:

q(e, σB(ḡ), σB(h̄))(x, y) = e〈σB(ḡ), σB(h̄)〉(x, y)
= e(σA(ḡ(x, y)), σA(h̄(x, y)))
= σA(. . . , e(gi(x, y), hi(x, y)), . . . ) by (D3)
= σB(q(e, g1, h1), . . . , q(e, gn, hn))(x, y).

(A4): By definition of π1, π0 we easily obtain the conclusion: q(e, π1, π0) =
e〈π1, π0〉 = e.

(i)⇒(ii). Let e : A×A→ A be a central element of B. Then by definition
of qB and by Proposition 7, the map fe : B ×B → B, defined by

fe(g, h) = qB(e, g, h) = e〈g, h〉,
is a decomposition operation on B that satisfies the following conditions for
all maps g, gij ∈ B:

(1) e〈g, g〉 = g;
(2) e〈e〈g11, g12〉, e〈g21, g22〉〉 = e〈g11, g22〉;
(3) fe is a homomorphism from B×B into B.
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The proof that e is a decomposition operation on A is now trivial, because,
by Proposition 18(ii), A is isomorphic to B0 and fe restricted to B0 × B0

maps B0 ×B0 into B0. Moreover, e Cm g for every g ∈ B follows from the
fact that fe is a homomorphism from B×B into B. �

Corollary 23. Let f be a decomposition operation on A. Then f is a central
element of the algebra Cm(f).

Proposition 24. Let A be an algebra of type ν and B be an algebra in
the similarity type of Boolean algebras such that B ⊆ F (A). Then B is a
guard algebra of decomposition operations on A if and only if B is a Boolean
algebra of central elements of a functional Church algebra of value domain
A.

Proof. (⇐) By Theorems 22 and 13(1).
(⇒) By Theorem 13(1) B is a set of mutually commuting decomposition

operations. Then from Theorem 22 it follows that B is a subalgebra of
the Boolean algebra of central elements of the functional Church algebra⋂
f∈B Cm(f). �

Let A be an algebra of type ν. The function

f ∈ DE(A) 7→ θf = {(x, y) ∈ A×A : f(x, y) = x} ∈ FC(A)

is a bijective correspondence between the set DE(A) of decomposition opera-
tions and the set FC(A) of factor congruences. If X is a set of decomposition
operations we denote by ΘX the set {θf : f ∈ X}.

Proposition 25. The map associating to any set of decomposition opera-
tions X the set ΘX determines a bijective correspondence between universes
of guard algebras of decomposition operations and universes of Boolean sub-
lattices of Con(A) of permutable factor congruences.

Proof. If g and h are mutually commuting decomposition operations on A,
then it is easy to show that θg∧h = θg ∩ θh and θg∨h = θg ∨ θh. Then the
conclusion follows from Proposition 21. �

Another proof of the above proposition can be found in [11, Proposition
VI.2.2].

4.3. Totally commuting factor congruences. Let A be an algebra of
type ν. A decomposition operation f : A × A → A is called totally com-
muting if f Cm g for every decomposition operation g on A. We denote by
T C(A) the set of all totally commuting decomposition operations on A. If
f is totally commuting, then the factor congruence θf is also called totally
commuting.

Proposition 26. Let A be an algebra of type ν. A factor congruence of A
is totally commuting if and only if it is bi-balanced.

Proof. By Proposition 21. �
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The following proposition provides a proof of [30, Theorem 2].

Proposition 27. Let A be an algebra of type ν. The set of all bi-balanced
factor congruences is a Boolean sublattice of Con(A) of permutable factor
congruences.

Proof. If g is a totally commuting decomposition operation on A, then by
Proposition 20 Cm(g) is a functional Church algebra containing all decom-
position operations on A. The functional Church algebra B =

⋂
g∈T C(A) Cm(g)

contains all decomposition operations on A and satisfies T C(A) ⊆ Ce(B).
By Theorem 22 a decomposition operation e is a central element of B if and
only if e Cm g for every g ∈ B, that implies e Cm g for every decomposition
operation g. In conclusion, T C(A) = Ce(B). �

The following proposition partially solves [11, Problem 2.16(a)].

Proposition 28. Let A be an algebra of type ν. The set of all bi-balanced
factor congruences is the intersection of all maximal Boolean sublattices of
Con(A) of permutable factor congruences.

Proof. By Propositions 25 and 26 we can work on decomposition operations.
Let L be a maximal Boolean algebra of mutually commuting decomposition
operations on A and let B =

⋂
f∈L Cm(f). Since f Cm g for all f, g ∈ L,

then by Theorem 22 and by the maximality of L we derive that L = Ce(B).
We now show that T C(A) ⊆ L. Let h be a totally commuting decomposition
operation. Since h ∈ Cm(f) and f ∈ Cm(h) for every f ∈ L, then h ∈
B ∩ Cm(h), so that L ∪ {h} ⊆ Ce(B ∩ Cm(h)). By maximality of L we
derive that h ∈ L = Ce(B ∩Cm(h)).

Let h ∈ L for every maximal Boolean lattice L of mutually commuting
decomposition operations on A. If there exists a decomposition operation
f such that h /∈ Cm(f), then by Zorn’s Lemma there exists a maximal
Boolean lattice L such that Ce(Cm(f)) ⊆ L but h /∈ L. This contradicts
the hypothesis, so h is totally commuting. �

5. Weak Boolean product representations via polynomials

A case of special interest as regards the construction of the foregoing
section arises when the functional algebra of value domain A is the algebra
Â of binary polynomial operations of A. Under this circumstance, the
central elements of Â are exactly the polynomial decomposition operations
of A. This allows us to take advantage of the results in Section 2.2 and
obtain a weak Boolean decomposition of A out of the decomposition of Â
provided by Theorem 10. Although we cannot, in general, say much about
the factors in these products, we identify a number of sufficient conditions
for the stalks to be directly indecomposable.

Definition 29. Let A be an arbitrary algebra of type ν.
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(1) A map f : A × A → A that is both a decomposition operation and
a polynomial operation is called a polynomial decomposition opera-
tion.

(2) If f is as in (1), the complementary factor congruences θf and θ̄f
are called polynomial factor congruences.

(3) A is polynomially directly indecomposable if ∆ and ∇ are the unique
polynomial factor congruences.

The set Â of all binary polynomial operations on A is the universe of the
least subalgebra Â of the functional Church algebra F (A) of value domain
A. The next theorem sheds some light on the reasons behind Theorem 13(1)
and the other results in Section 2.3.

Theorem 30. A polynomial operation is a central element of Â if and only
if it is a decomposition operation on A.

Proof. The conclusion follows from Theorem 22, because the decomposition
operations commute with all polynomial operations. �

Let p ∈ Ce(Â). We denote by (θ̂p, θ̂′p) the pair of complementary factor

congruences on Â determined by the central element p. By Corollary 9 we

have that θ̂p = θ(p, πÂ0 ) and θ̂′p = θ(p, πÂ1 ). Since p ∈ Ce(Â) is a decomposi-
tion operation on A, we denote by (θp, θ

′
p) the pair of complementary factor

congruences on A determined by p. Clearly, for all x, y ∈ A and f, g ∈ Â,

xθpy iff p(x, y) = x and fθ̂pg iff p〈f, g〉 = f.

Also,

fθ̂pg iff f(x, y)θpg(x, y) for all x, y ∈ A,

and similarly for θ̂′p and θ′p. We now show that the Church algebra of polyno-
mial operations on the quotient of A modulo θp is nothing but the quotient

modulo θ̂p of the Church algebra Â of polynomial operations on A.

Proposition 31. Â/θ̂p ∼= Â/θp.

Proof. Let t(cā, y, z) be a polynomial. Define

ϕ(tA(cā, y, z)/θ̂p) = tA/θp(cā/θp , y, z).

It is not difficult to show that the map ϕ is a well-defined isomorphism. �

Let X be the Boolean space of the maximal ideals of the Boolean algebra
c[Â]. For every maximal ideal I we define two congruences:

θI = {(a, b) ∈ A2 : ∃p(p ∈ I Z p(a, b) = a)}
and

θ̂I = {(f, g) ∈ Â2 : ∃p(p ∈ I Z p〈f, g〉 = f)}.
Since θI =

⋃
p∈I
θp and θ̂I =

⋃
p∈I
θ̂p, from Proposition 31 it follows that

Â/θ̂I ∼= Â/θI . We are now ready to state the main result of this section:



BOOLEAN PRODUCT REPRESENTATIONS VIA BINARY POLYNOMIALS 17

Theorem 32. Let A be an arbitrary algebra and let X be the Boolean space
of maximal ideals of the Boolean algebra c[Â]. Then:

(1) The map

F : Â→
∏
I∈X

Â/θ̂I ∼=
∏
I∈X

Â/θI ,

defined by

F (p) = (p/θ̂I : I ∈ X)

gives a weak Boolean representation of Â.
(2) The restriction F|A of F to the constant polynomials provides a weak

Boolean product representation F|A : A→
∏
I∈X

A/θI of A.

(3) The stalks of the representation of Â are directly indecomposable if
and only if the stalks of the representation of A are polynomially
directly indecomposable.

Proof. (1) By Theorem 10 and Proposition 31.
(2) The polynomial factor congruences constitute a Boolean algebra of

permuting congruences.
(3) By Theorem 30. �

If V is a variety of algebras of type ν, then we denote by Ch(V) the variety
of algebras of type ν ∪ {q, 0, 1} axiomatised by the equational theory Eq(V)
of V and the axioms of substitution Church algebra.

We say that a variety V has polynomial factor congruences (PFC, for
short) if, for every A ∈ V, all factor congruences of A are polynomial factor
congruences. By Theorem 30, PFC implies BFC. Now, Theorems 11 and 32
imply the following corollary.

Corollary 33.

(1) If Ch(V)di is a universal class then every algebra A ∈ V is repre-
sentable as a weak Boolean product of polynomially directly indecom-
posable algebras.

(2) If V has PFC and Ch(V)di is a universal class then every algebra
A ∈ V is representable as a weak Boolean product of directly inde-
composable algebras.

If p is a (binary) polynomial on A, then we write p ≡ p(a1, . . . , ak, x, y),
where ai ∈ A, to spell out in full all constants and variables occurring in p.
For every homomorphism g : A → B of algebras of type ν, let ĝ : Â → B̂
be the homomorphism of algebras of type ν ∪ {q, 0, 1}, defined by

ĝ(pA(a1, . . . , ak, x, y)) = pB(g(a1), . . . , g(ak), x, y)

for every polynomial p on A. We recall that, for every onto homomorphism
g : C→ D of Church algebras, the restriction of g to the central elements of
C is a (non necessarily onto) Boolean homomorphism from c[C] into c[D].
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Theorem 34. Let V be a variety of algebras satisfying the following two
conditions:

(1) The polynomially directly indecomposable members of V are directly
indecomposable;

(2) For every homomorphism g from A ∈ V onto a directly decomposable

algebra B, the codomain of ĝ|c[Â] : c[Â] → c[B̂] properly includes

{πB0 , πB1 }.
Then the weak Boolean product representations, provided by Theorem 32,

have directly indecomposable stalks.

Proof. Let A ∈ V, and let I be a maximal ideal of the Boolean algebra c[Â]

of central elements of Â. Let f : A → A/θI be the onto homomorphism
mapping a to a/θI . Assume A/θI to be directly decomposable. Then by

(1) c[Â/θI ] 6= {π0, π1}. By (2), there exists a polynomial operation p ∈ c[Â]

such that f̂(p) 6= π0, π1. To simplify notation, let p̂ = f̂(p). So, there are
a, b, c, d ∈ A such that a/θI 6= d/θI , b/θI 6= c/θI and

p̂(b/θI , c/θI) = p(b, c)/θI = c/θI ; p̂(a/θI , d/θI) = p(a, d)/θI = a/θI

that is, p(b, c) θI c and p(a, d) θI a. Since I is a maximal ideal, then either
p ∈ I or p′ ∈ I (recall that p′(x, y) = p(y, x)). Assume w.l.g. that p′ ∈ I. So
θ̄p = {(x, y) : p(x, y) = y} ⊆ θI . Since

θI = {(a, b) ∈ A2 : ∃r ∈ I (r(a, b) = a)} = {(a, b) ∈ A2 : ∃r ∈ I (aθrb)} =
⋃
r∈I

θr,

then by p(b, c) θI c there exists a polynomial decomposition operation e ∈ I
such that p(b, c) θe c. In other words, the algebra A satisfies the equality
e(c, p(b, c)) = c. Since e and p are polynomial decomposition operations, we
have:

c = e(c, p(b, c)) = e(p(c, c), p(b, c)) = p(e(c, b), e(c, c)) = p(e(c, b), c).

This, together with {(x, y) : p(x, y) = y} ⊆ θI , implies cθIe(c, b). Since
bθee(c, b)θ̄ec and θe ⊆ θI , we obtain bθIe(c, b). In conclusion, from cθIe(c, b),
bθIe(c, b) we get bθIc, contradicting the hypothesis b/θI 6= c/θI . A similar
reasoning works if p ∈ I. �

6. An application

As a first application of the results in the previous section, we give a weak
Boolean product representation of skew Boolean algebras.

Weakenings of lattices where the meet and join operations may fail to be
commutative attracted from time to time the attention of various commu-
nities of scholars, including ordered algebra theorists (for their connection
with preordered sets) and semigroup theorists (who viewed them as struc-
turally enriched bands possessing a dual multiplication). Probably the most
interesting and successful such generalisation is the concept of skew lattice
[15], along with the related notion of skew Boolean algebra [14]. Here we



BOOLEAN PRODUCT REPRESENTATIONS VIA BINARY POLYNOMIALS 19

will just review some definitions needed in the sequel; the interested reader
is referred to [15] or [29] for far more comprehensive accounts and for an
illustration of the importance of both notions, especially in light of their
connection to discriminator varieties [2, 9].

Definition 35. A band is a semigroup (A, ·) satisfying the identity xx ≈ x.
A band is regular if it satisfies xyxzx ≈ xyzx; it is left (right) regular if it
satisfies the identity xyx ≈ xy (xyx ≈ yx).

Left and right regular bands are obviously regular. Observe that, given a
band A, the relation

a ≤ b ⇔ ab = a = ba

is a partial ordering on A.

Definition 36. A double band is an algebra (A,+, ·) of type (2, 2) such that
the reducts (A, ·) and (A,+) are both bands. A double band satisfying the
absorption identities

x(x+ y) ≈ x ≈ x+ xy;
(y + x)x ≈ x ≈ yx+ x.

is called a skew lattice. A skew lattice is called left-handed (right-handed)
if the reduct (A, ·) is left (right) regular and the reduct (A,+) is right (left)
regular.

If we expand skew lattices by a subtraction operation and a constant 0,
we get the following noncommutative variant of Boolean algebras.

Definition 37. A skew Boolean algebra is an algebra A = (A,+, ·, \, 0) of
type (2, 2, 2, 0) such that:

• its reduct (A,+, ·) is a skew lattice satisfying the identities xyzx ≈
xzyx, x(y + z) ≈ xy + xz and (y + z)x ≈ yx+ zx;
• 0 is left and right absorbing w.r.t. multiplication;
• the operation \ satisfies the identities

xyx+ (x\y) ≈ x ≈ (x\y) + xyx;
xyx(x\y) ≈ 0 ≈ (x\y)xyx.

We call right- (left-) handed any skew Boolean algebra that is right- (left-)
handed as a skew lattice. In the interests of brevity, we write “right-handed
SBA” for “right-handed skew Boolean algebra”.

Let A = (A,+, ·, \, 0) be a right-handed SBA. Define the following term:

t(x, y, z) = (xy) + (z \ x).

For every a ∈ A, ta will denote the polynomial operation on A given by

ta(x, y) = tA(a, x, y).

Cvetko-Vah and the first author of the present paper proved the following
result.
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Lemma 38. [9] If A is a right-handed SBA then, for every a ∈ A, the
map ta is a polynomial decomposition operation on A. Moreover, the factor
congruence θta associated with ta is θ(a, 0), the least congruence collapsing
a and 0.

It follows that the pair (θta , θ̄ta), where θta = θ(a, 0) = {(x, y) : tA(a, x, y) =
x} and θ̄ta = {(x, y) : tA(a, x, y) = y}, is the pair of complementary fac-
tor congruences determined by the polynomial decomposition operation ta.
Notice that t0 = πA0 . We recall one more result from [9].

Lemma 39. [9, Lemma 4.5] A right-handed SBA A is directly indecom-
posable iff ta = πA1 for every a 6= 0 (that is, θta = θ(a, 0) = ∇ for every
a 6= 0).

By Proposition 3, a decomposition operation f on an algebra A corre-
sponds to a pair of trivial factor congruences if and only if either f = πA0 or
f = πA1 .

Lemma 40. (i) Every right-handed SBA A is isomorphic to a weak
Boolean product of directly indecomposable right-handed SBAs1.

(ii) Every left-handed SBA A is isomorphic to a weak Boolean product
of directly indecomposable left-handed SBAs.

Proof. (i) We show that the assumptions (1) and (2) of Theorem 34 are
satisfied.

(1) Assume that there exists a 6= 0 ∈ A such that ta = π0. Then by
Lemma 38 we have

θ(a, 0) = {(x, y) : tA(a, x, y) = x} = ∆,

which contradicts a 6= 0. Then ta = π1 for all a 6= 0 and the conclusion
follows from Lemma 39(ii).

(2) Let f : A → B be an onto homomorphism of right-handed SBAs.

Assume B to be directly decomposable. Then, Ce(B̂) 6= {πB0 , πB1 }. By
Lemma 39 there exists b ∈ B such that tb 6= πB1 defines a nontrivial pair
of factor congruences. Since f is onto, then there exists a ∈ A such that
f(a) = b. The polynomial ta defines a nontrivial pair of factor congruences

on A and f̂(ta) = tb. (ii) Follows from (i) by skew-lattice duality. �

Theorem 41. Every skew Boolean algebra is isomorphic to a weak Boolean
product of directly indecomposable skew Boolean algebras.

Proof. Recall that by [13, Thm. 1.15] every skew Boolean algebra A is
isomorphic to the fibred product

i : A ∼= A/R×A/D A/L,

1This result has been part of the folklore on the subject for more than a decade
(Matthew Spinks, personal communication). To the best of the authors’ knowledge, it
has never been explicitly written down in print.
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where A/R and A/L are the maximal left- and right-handed homomorphic
images of A, respectively, and D is the Green’s congruence [13, Sec. 1.6].
By Lemma 40, A/L admits a weak Boolean product representation f :

A/L →
∏

I∈S
A/L/θI (S the spectrum of maximal ideals), with directly

indecomposable stalks, and similarly for A/R, g : A/R →
∏

I∈T
A/R/θI

(T the spectrum of maximal ideals). Consider the Boolean space T ] S,
which is the disjoint union of the spaces T and S with the topology in which
a subset U of T ] S is open if U ∩ T is open in T and U ∩ S is open in
S. By [12, Sec. 3, Prop 8.7], the Boolean algebra Clop(T ] S) of clopen
subsets of T ] S is isomorphic to the product Clop(T ) × Clop(S). Then

(g, f) : A/R × A/L →
∏

I∈T
A/R/θI ×

∏
I∈S

A/L/θI ∼=
∏

I∈T]S
A/φI ,

where, for all a, b ∈ A, aφIb iff a/RθIb/R (resp. a/LθIb/L) in the case
I ∈ T (resp. I ∈ S). Therefore it can be easily seen that the map (g, f) ◦ i
provides a weak Boolean product representation of A in

∏
I∈(S]T )

A/φI ,

with directly indecomposable stalks. �
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