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Abstract Measuring systemic risk requires the joint analysis of large sets of time

series which calls for the use of high-dimensional models. In this context, inference

and forecasting may suffer from lack of efficiency. In this paper we provide a solu-

tion to these problems based on a Bayesian graphical approach and on recently pro-

posed prior distributions which induces sparsity in the graph structure. The applica-

tion to the European stock market shows the effectiveness of the proposed methods

in extracting the most central sectors during periods of high systemic risk level.

Abstract La misurazione del rischio sistemico comporta l’analisi congiunta di un

numero elevato di serie storiche e all’utilizzo di modelli di grandi dimensioni. In

questo contesto l’inferenza e la previsione possono essere inefficienti. In questo la-

voro viene proposta una soluzione a questi problemi fondata sull’utilizzo di modelli

grafici bayesiani e sull’utilizzo di una distribuzione a priori che induce sparisità

nella struttura del grafo. L’applicazione al mercato azionario europeo mostra

l’efficacia del metodo proposto nell’estrarre i settori più rilevanti durante i peri-

odi di elevato rischio sistemico.
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1 Bayesian Graphical VAR (BGVAR) Models

Graphical modeling is a class of multivariate analysis that uses graphs to repre-

sent statistical models. The graph consists of nodes and edges, where nodes denote

variables and edges show interactions ([7]). They can be represented by the pairs

(G,θ ) ∈ (G ×Θ), where G is a graph of relationships among variables, θ is the

model parameters, G is the space of the graphs and Θ is the parameter space.

Let xt be n× 1 vector of observations at time t and assume xt = (y′t ,z
′
t), where

yt , the ny × 1 vector of endogenous variables, and zt , a nz × 1, nz = (n− ny) vector

of exogenous predictors. In a VAR model with exogenous variables, the variables of

interest yt , is determined by the equation

yt =
p

∑
i=1

Bixt−i + εt , εt ∼ Nny(0,Σε) (1)

t = 1, . . . ,T , independent and identically normal; p is the maximum lag order; Bi,

1 ≤ i ≤ p is ny × n matrix of coefficients.

The temporal dependence structure in (1) can be expressed in a graphical frame-

work with the relation Bs = (Gs ◦Φs), where Gs is a ny×n binary adjacency matrix,

Φs is a ny × n coefficients matrix, and the operator (◦) is the element-by-element

Hadamard’s product. Based on this definition, we identify a one-to-one correspon-

dence between Bs and Φs conditional on Gs, such that Bs,i j = Φs,i j , if Gs,i j = 1;

and Bs,i j = 0, if Gs,i j = 0 (see [1]). The above relationship can be presented in a

stacked matrix form. Let B = (G ◦Φ), where B = (B1, . . . ,Bp), G = (G1, . . . ,Gp),
Φ = (Φ1, . . . ,Φp), and wt = (x′t−1, . . . ,x

′
t−p)

′, vt = (y′t ,w
′
t)
′. Suppose the joint, vt ,

follows the distribution, vt ∼ Nny+np(0,Ω), then the joint distribution of the vari-

ables in vt can be summarized with a graphical model, (G,θ ), where G ∈ G con-

sists of directed edges. See [2] for further details on the relationship between, Ω ,

Σε and B. In this paper, we focus on modeling directed edges from elements in wt

to elements in yt , capturing the temporal dependence among the observed variables.

More specifically, Gi j = 0, means the i-th element of yt and j-th element of wt are

conditionally independent given the remaining variables in vt , and Gi j = 1 corre-

sponds to a conditional dependence between the i-th and j-th elements of yt and wt

respectively given the remaining variables in vt .

2 A Sparse BGVAR Model

The description of our graphical VAR for high dimensional multivariate time series

is completed with the elicitation of the prior distributions for the lag order p, a

sparsity prior on the graph, and the prior on G and Ω .

We allow for different lag orders for the different equations of the VAR model.

We denote with pi the lag order of the i-th equation. We assume for each pi, i =
1, . . . ,ny, a discrete uniform prior on the set {p, . . . , p̄}.
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We follow [2] to model the sparsity on the graph by introducing a prior on the

maximal number of explanatory variables in a DAG model. We denote with η̄ , 0 ≤
η̄ ≤ 1, the measure of the maximal density, i.e. the fraction of the predictors that

explains the dependent variables. Thus the level of sparsity is given by (1− η̄).
We set the upper bound on the number of predictors for each equation (fan-in) to

f = ⌊η̄mp⌋, where mp =min{np,T − p} and ⌊x⌋ is the largest integer less than x. To

allow for different levels of sparsity for the equations in the VAR model, we assume

independent prior distributions for the maximal density in the different equations.

We denote η̄i the maximal density of the i-th equation and assume the prior on η̄i,

given lag order pi is beta distributed with parameters a,b > 0, η̄i ∼ Be(a,b), on the

interval [0,1]

P(η̄i) =
1

B(a,b)
η̄a−1

i (1− η̄i)
b−1 (2)

We define the graph prior for each equation in the VAR model conditional on

the sparsity prior. We refer to the prior on the graph of each equation as the local

graph prior, denoted by P(πi|pi,γ, η̄i). Following [8], we consider the inclusion of

predictors in each equation as exchangeable Bernoulli trials with prior probability

P(πi|pi,γ, η̄i) = γ |πi|(1− γ)npi−|πi|χ{0,..., fi}(|πi|) (3)

where γ ∈ (0,1) is the Bernoulli parameter, |πi| is the number of selected predictors

out of npi and fi = ⌊η̄imp⌋ is the fan-in restriction for the i-th equation and χA(x) is

the indicator function which takes value 1 if x ∈ A and zero otherwise. We assign to

each variable inclusion a prior probability, γ = 1/2, which is equivalent to assigning

the same prior probability to all models with predictors less than the fan-in fi, i.e,

P(πi|pi, η̄i) =
1

2npi
χ{0,..., fi}(|πi|) (4)

Following [5], we assume a prior distribution on the unconstrained precision ma-

trix, Ω , conditional on any complete DAG, G, for a given lag order p, is Wishart

distributed. Based on the assumption that the conditional distribution of the depen-

dent variables given the set of predictors, is described by equation (1), with pa-

rameters {B,Σε}, we assume the prior distribution on (B,Σε |p,G) is an indepen-

dent normal-Wishart. This is one of the prior distributions extensively applied in

the Bayesian VAR literature. Specifically, we assumed the coefficients matrix B is

independent and normally distributed, B|p,G∼Nnynp(B,V ), and Σ−1
ε is Wishart dis-

tributed, Σ−1
ε ∼W (ν ,S/ν). The prior expectation, B = 0ny×np, is a zero matrix, and

the prior variance of the coefficient matrix, V = Inynp, where Ik is a k-dimensional

identity matrix. Also, the prior expectation of Σε is 1
ν S where S= νIny and ν = ny+1

is the degrees of freedom parameter.
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3 Computational Details

In order to approximate the posterior distributions of the equations of interest, we

consider the collapsed Gibbs sampler proposed in [2]:

1. Sample jointly, p( j), η̄( j) and G
( j)
p from P(p, η̄ ,Gp|X ).

2. Estimate B( j) and Σ
( j)
ε directly from P(B,Σε |p

( j),G
( j)
p ,X ).

where X = (v1, . . .vT ) is the set of observations. At the j-th iteration of the Gibbs,

we consider for each equation i = 1, . . . ,ny and each lag order pi = p, . . . , p̄, a sam-

ple of η̄
( j)
i and G

( j)
p,i from P(η̄i,Gp,i|pi,X ) ∝ P(η̄i|pi)P(πi|pi, η̄i)P(X |pi,Gp,i).

By conditioning on each possible lag order, we are able to apply standard MCMC

algorithm. As regards the first step we use the following pseudo-marginal likelihood

P(X |p,Gp)≈
ny

∏
i=1

P(X |pi,Gp,i(yi,πi)) =
ny

∏
i=1

P(X (yi,πi)|pi,Gp,i)

P(X (πi)|pi,Gp,i)
(5)

where Gp(yi,πi) is the local graph of the i-th equation with yi as dependent variable

and πi as the set of predictors; X
(yi,πi) is the sub-matrix of X consisting of yi

and πi; and X (πi) is the sub-matrix of πi. This approximation allows us to develop

search algorithms to focus on local graph estimation. More specifically we apply

the Markov chain Monte Carlo (MCMC) algorithm proposed in [2] and which use

the approximated marginal pseudo-likelihood.

P(X di |pi,Gp,i) = π
−Ti |di |

2
|Σ̄di

|−
(ν+Ti)

2

|Σ di
|−

ν
2

|di|

∏
i=1

Γ
(

ν+Ti+1−i
2

)

Γ
(

ν+1−i
2

) (6)

where di ∈
{

(yi,πi), πi

}

, and X di is a sub-matrix of X consisting of |di| × Ti

realizations, where |di| is the dimension of di, Ti = T − pi, |Σdi
| and |Σ̄di

| are the

determinants of the prior and posterior covariance matrices associated with di.

4 Systemic Risk Measures

Volatility connectedness also referred to as “fear connectedness” by [3] has received

a lot of attention due to the evidence that volatilities track the fear of investors and re-

flect the extent to which markets evaluate arrival of information. They have become

important for analyzing contagion and risk propagation in the financial system.

The dataset in this application is intra-day high-low price indexes of 119 institu-

tions of the financial sector of Euro Stoxx 600 from November 1, 2005 to December

13, 2012 from Datastream. These are the largest financial institutions which consists

of 41 Banks, 24 Financial Service institutions, 33 Insurance companies and 21 Real
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Fig. 1 Dynamics of total

connectedness index over the

period 2006-2012 obtained

from a rolling estimation with

windows size of 150-days.
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Fig. 2 Volatility network

among the financial institu-

tions for the period ending

February 28, 2007. Size of the

variable shows the degree of

connectedness in the network. I:BP
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Estates in the Euro-area covering countries like Austria, Belgium, Finland, France,

Germany, Greece, Ireland, Italy, Luxembourg, the Netherlands, Portugal, and Spain.

We present the connectedness as the dependence pattern from a VAR(1) model

with lag order based on testing the appropriate lag length using the BIC criteria and

the available dataset (see [2]). We characterize the dynamics of the volatility con-

nectedness (see Figure 1) using a rolling estimation with window size of 150-days

over the sample period. From the figure, the highest total connectedness started early

in the first quarter of 2007. We present in Figure 2, the graphical representation of

the volatility network for the period ending February 28, 2007 which characterized

the highest connectedness over the sample period. Table 1 report the top 10 institu-

tions by eigenvector centrality from Figure 2. From the table, we observed that the

top 10 central institutions as at the time was dominated by Banks, Financial Services

and Real Estates. More specifically, we notice that prior to the global financial crisis

between 2007-2009, the first quarter of 2007 shows evidence of some Banks, no-

tably Credit Suisse Group in Switzerland, Raiffeisen Bank in Austria and Banco de

Sabadell in Spain, acting as systemically important institutions in the “fear connect-

edness” expressed by market participants in the financial sector of the Euro-area.



6 Daniel Felix Ahelegbey and Monica Billio and Roberto Casarin

Table 1 Volatility Network Centrality Ranking

Rank Name Tick Typea Eigenb In-Degc Out-Degd T-Dege

1 Credit Suisse Group S:CSGN BK 0.1885 19 2 21

2 Raiffeisen Bank Intl. O:RAI BK 0.1804 16 6 22

3 Banco de Sabadell E:BSAB BK 0.1775 13 7 20

4 London Stock Ex. Group LSE FS 0.1716 16 15 31

5 Immofinanz Group O:IMMO RE 0.1619 13 14 27

6 Zurich Insurance Group S:ZURN IN 0.1602 16 1 17

7 Kinnevik ‘B’ W:KIVB FS 0.1596 13 7 20

8 Derwent London DLN RE 0.1595 13 18 31

9 Gecina F:GFC RE 0.1579 14 17 31

10 PSP Swiss Property AG S:PSPN RE 0.1519 14 18 32

Note: The table report the top 10 institutions by eigenvector centrality for the period ending

February 28, 2007; a The financial super-sectors, BK (Banks), FS (Financial Services), RE (Real

Estates), and IN (Insurance); b Eigenvector Centrality; c In-Degree; d Out-Degree; e Total Degree

5 Conclusion

We applied sparse Bayesian graphical VAR model to the analysis of systemic risk

on the European stock market. We found evidence of increased number of linkages

between institutions during the 2007-2009 financial crisis. Our sparse method allows

us to extract a reduced number of systemically relevant institutions with respect non-

sparse approaches.
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