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ABSTRACT: A reliability-based robust design optimization (RBRDO) for ship hulls is presented. A real
ocean environment is considered, including stochastic sea state and speed. The optimization problem has two
objectives: (a) the reduction of the expected value of the total resistance in waves and (b) the increase of the
ship operability (reliability). Analysis tools include a URANS solver, uncertainty quantification methods and
metamodels, developed and validated in earlier research. The design space is defined by an orthogonal four-
dimensional representation of shape modifications, based on the Karhunen-Loève expansion of free-form defor-
mations of the original hull. The objective of the present paper is the assessment of deterministic derivative-free
multi-objective optimization algorithms for the solution of the RBRDO problem, with focus on multi-objective
extensions of the deterministic particle swarm optimization (DPSO) algorithm. Three evaluation metrics provide
the assessment of the proximity of the solutions to a reference Pareto front and their wideness.

1 INTRODUCTION

Simulation-based design (SBD) optimization is an es-
sential part of the design process for complex engi-
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neering systems. In shape design, geometry modifi-
cation tools are coupled with simulation codes and
optimization algorithms in order to solve the design
problem. The process is often affected by different
sources of uncertainties (such as operational, envi-
ronmental, geometrical or numerical) and require un-
certainty quantification methods and reliability-based
robust design optimization (RBRDO) formulations to
identify optimal solutions, in the stochastic sense. The
numerical solution of the RBRDO problem is usu-
ally computationally very costly (especially if high-
fidelity simulations are used) and may be achieved
by means of metamodels, coupled with effective opti-
mization algorithms.



Herein, a RBRDO for ship hulls is solved, for
real ocean environment with stochastic sea state and
speed. The problem is taken from earlier research
(Diez et al., 2013) and is formulated as a multi-
objective optimization problem aimed at (a) the re-
duction of the expected value of the resistance in
waves and (b) the increase of the ship operability
(which coincides herein with the reliability of the
design, with respect to a set of given contraints).
The design space is defined by an orthogonal four-
dimensional representation of shape modifications,
based on the Karhunen-Loève expansion of free-form
deformations of the original hull (Chen et al., 2014).
The optimization relies on URANS simulations with
a stochastic radial basis function metamodel (Volpi
et al., 2014) and pertains to the hull-form design of
a 100m Delft catamaran, sailing in head waves in the
North Pacific ocean. For details on the problem for-
mulation and the geometry modification technique,
the interested reader is referred to Diez et al. (2013)
and Chen et al. (2014).

The objective of the present work is the assessment
of deterministic derivative-free multi-objective opti-
mization algorithms for the solution of the RBRDO
problem.

The focus is on multi-objective extensions of the
deterministic particle swarm optimization (DPSO) al-
gorithm (e.g., Serani et al. 2014). Three approaches
for multi-objective deterministic PSO (MODPSO) in-
clude generalizations of the single-objective algo-
rithm by: (a) distance from personal and social Pareto
fronts, (b) personal aggregated objective and distance
from social Pareto front, and (c) vector evaluated
particle swarm optimization (VEPSO). Three perfor-
mance metrics are used, providing the assessment of
the proximity of the solutions to the reference Pareto
front along with their wideness. The algorithms are
evaluated by 66 test functions from literature, and
then applied to the catamaran RBRDO problem, vary-
ing the number of analysis-tool calls (evaluation bud-
get).

The final presentation will also include a compari-
son with multi-objective derivative-free (MODFO) al-
gorithms. Specifically, a MODFO method based on a
line search-based approach to approximate the local
Pareto front will be included as well as a MODFO
method encompassing a new globalization technique
based on a suitable modification of the well-known
DIRECT algorithm.

2 MULTI-OBJECTIVE EXTENSIONS OF
DETERMINISTIC PSO

The following single-objective deterministic PSO
(DPSO) iteration (see, e.g., Serani et al. 2014) is used
in the current work for extension to multi-objective

optimization:
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where xt
i and vt

i are the (vector-valued) position and
velocity of the particle i (i = 1, ...,Np) at iteration t, χ
is a damping factor, c1 and c2 are coefficients control-
ling the personal and social behavior of the particles,
pi is the best position ever visited by the i-th particle,
whereas g is the best position ever visited by all the
particles.

When the number of objective functions, Nof , is
greater than one, the definition of personal best po-
sition, pi, and global best position, g, should reflect
the multi-objective nature of the problem. The DPSO
iteration is rewritten as
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where the personal best position pi takes into account
multiple objectives, as well as the global term gi,
which is based on the knowledge shared by all the
particles and may vary from particle to particle.

2.1 Pareto-front based MODPSO (PpPg)

The idea behind this variant of MODPSO is that of
generalizing the single-objective DPSO, in the Pareto-
optimality sense (Diez et al., 2013). Specifically, pi

and gi are defined as follows:

pi is the closest point to the i-th particle of the per-
sonal Pareto front of all positions ever visited by
the i-th particle;

gi is the closest point to the i-th particle of the
global Pareto front of all positions ever visited
by all the particles.

Distances are evaluated in the design variables space.

2.2 Pareto-front and aggregate-objective-function
based MODPSO (AOFpPg)

This variant of DPSO has been presented in Campana
and Pinto (2005) and makes use of an aggregate ob-
jective function for the personal term. Accordingly:

pi is the personal optimum of all positions ever vis-
ited by the i-th particle, with respect to the ag-
gregate objective function, fAOF =

∑k
j=1 wjfj ,

where wj = 1/Nof ;

gi is the closest point to the i-th particle of the
global Pareto front of all positions ever visited
by all the particles.



Table 1: Coefficient sets

Reference χ c1 c2

Shi and Eberhart (1998) 0.729 2.050 2.050
Trelea (2003) 0.600 1.700 1.700
Clerc (2006) 0.721 1.655 1.655
Campana and Pinto (2005) 1.000 0.400 1.300
Diez et al. (2013) 0.990 0.330 0.660

2.3 Vector evaluated DPSO (VEPSO)

This MODPSO variant uses a number of sub-swarms
equal to the number of objective functions (Parsopou-
los et al., 2004):

pi is the personal optimum of all positions ever vis-
ited by the i-th particle of the j-th swarm, with
respect to the j-th objective function;

gi is the global optimum of all positions ever visited
by the all the particles of the k-th swarm (k 6= j),
with respect to the k-th objective function.

If Nof > 2, the exchange of information among sub-
swarms follows a ring connection.

2.4 Implementation

The PSO coefficient sets are taken from literature and
included in Tab. 1 (see, e.g. Serani et al. 2014).

The swarm size is set to Np = 2nNdvNof with n ∈
N [1,6] and Ndv number of design variables.

The swarm initialization is based on the Hammers-
ley distribution (Wong et al., 1997), which is applied
respectively to (a) the whole domain, (b) the domain
and its boundaries in even amount, and (c) the domain
boundaries only. The initial particles location is com-
bined with null (v0 = 0) and non-null initial velocity
(v0 6= 0).

Finally, a semi-elastic wall type approach is used
for the box constraints. For details, see Serani et al.
(2014).

3 EVALUATION METRICS

Generational Distance (GD) and Inverse Generational
Distance (IGD) (see, e.g, Cabrera and Coello 2010)
are chosen as performance indicators. An overall per-
formance metric is given, as a Generational Merit
Factor (GMF), combining GD and IGS. Specifically,
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where di is the distance between the i-th point (i =
1, ...,Q) of the Pareto front found and the reference
Pareto front;
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Table 2: Occurrence of number of variables Ndv and objective
functions Nof values for the test functions

Ndv Occurrence
2 42
3 4
4 4
7 1
8 15

Nof Occurrence
2 43
3 23

where dj is the distance between the j-th point (i =
1, ..., P ) of the reference Pareto front and the Pareto
front found; finally,

GMF =

√
GD2 + IGD2

2
(5)

Distances d are evaluated in the objective functions
space, suitably normalized between minimum and
maximum reference values.

4 APPROACH OF ANALYSIS AND
NUMERICAL RESULTS

The evaluation metrics GD, IGD and GMF are evalu-
ated as a function of the number of objective-function
calls (Nfeval). The reference Pareto front is defined
as the set of non-dominated solutions among all op-
timizations (obtained by varying the algorithms’ pa-
rameters), with a number of function evaluations
equal to Nfeval = 2,000NdvNof .

MODPSO algorithms are assessed using 66 test
functions taken from Hwang and Masud (1979); Kur-
sawe (1991); Fonseca and Fleming (1998); Cheng and
Li (1999); Deb (1999); Jin et al. (2001); Deb et al.
(2002); Okabe et al. (2004); Huband et al. (2005,
2006) and Lovison (2010). The number of design
variables Ndv ranges from two to eight, whereas the
number of objective functions Nof ranges from two
to three. The frequency of occurrence of Ndv and Nof

values in the test functions set is shown in Tab. 2.
Figure 1 shows the average GD, IGD and GMF val-

ues obtained by the MODPSO algorithms, over all
test functions, coefficient sets, swarm sizes and ini-
tializations. PpPg and AOFpPg have similar perfor-
mance, and are more effective that VEPSO. PpPg has
the best performance overall. It may be noted how, on
average, GD is found larger than IGD. This is due to
non-dominated solutions, found by the MODPSO al-
gorithms, which are still significantly far from the ref-
erence Pareto front. Figures 2, 3, and 4 show the rela-
tive variance of GD, IGD and GMF, retained by each
of the MODPSO parameters (coefficient set, swarm
size, initialization), for PpPg, AOFpPg and VEPSO re-
spectively. All parameters affect significantly the al-
gorithms’ performance, and therefore deserve a care-
ful investigation. The best performance overall is
given by PpPg with the coefficient set from Clerc
(2006), a swarm size equal to 32NdvNof and initial-
ization of particles over the whole domain with null



velocity. The best performance for AOFpPg is pro-
vided by the coefficient set by Clerc (2006), a swarm
size equal to 64NdvNof and initialization of particles
over the whole domain with null velocity. Finally,
the best-performing VEPSO is given by the coeffi-
cient set by Diez et al. (2013), a swarm size equal to
64NdvNof , with particles initialized over the domain
and the boundaries with non-null velocity.

Figure 5 shows the average GD, IGD and GMF val-
ues obtained by the MODPSO algorithms for the cata-
maran RBRDO problem. GD, IGD and GMF have
similar trends. As for the test functions, the choice
of the algorithm is found a significant issue. PpPg

and AOFpPg have very similar performances and are
more effective than VEPSO. Figures 6, 7, and 8 show
the relative variance of GD, IGD and GMF, retained
by each of the MODPSO parameters (coefficient set,
swarm size, initialization), for PpPg, AOFpPg and
VEPSO respectively. The best implementation for
PpPg and VEPSO is found using the coefficient set
by Diez et al. (2013), with 64NofNdv particles for
PpPg and 32NofNdv particles for VEPSO, initialized
over the domain and the boundaries with null and non
null velocity, respectively; the best-performing imple-
mentation for AOFpPg is given by the coefficients by
Shi and Eberhart (1998), with 16NofNdv particles ini-
tially distributed over the domain and the boundaries,
with null velocity. The best-performing implementa-
tion overall is provided by PpPg. Finally, Fig. 9 shows
the best Pareto fronts, with Nfeval = 2,000NdvNof ,
for each of the algorithms, with comparison with the
reference.

5 CONCLUSIONS

A parametric analysis of three MODPSO variants’
performance has been given, varying the coefficient
set, the swarm size and the initialization of the parti-
cles. The algorithms are extension to multi-objective
problems of the single-objective DPSO. Three eval-
uation metrics have been used, namely the genera-
tional distance, the inverse generational distance and
an overall generational merit factor. Results have been
shown for 66 test functions and for a metamodel-
based RBRDO of a high-speed catamaran in real
ocean environment.

The choice of the algorithm has been found the
most significant issue in order for the MODPSO to be
effective and efficient. Coefficient set, swarm size and
particles initialization also affect significantly the op-
timization performance (at least for the Pareto-front
based algoritms). Overall, PpPg is found the most ef-
fective for both the test functions and the catamaran
RBRDO.

Comparison with MODFO methods will be also
given in the final presentation, based on a line search-
based approach to approximate the local Pareto front
and on a new globalization technique derived from a

suitable modification of the well-known DIRECT al-
gorithm.
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Figure 1: Test functions: average GD, IGD and GMF (from left to right respectively), conditional to the algorithm used
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Figure 2: Test functions: relative variance of GD, IGD and GMF (from left to right respectively) for PpPg algorithm
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Figure 3: Test functions: relative variance of GD, IGD and GMF (from left to right respectively) for AOFpPg algorithm
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Figure 4: Test functions: relative variance of GD, IGD and GMF (from left to right respectively) for VEPSO algorithm
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Figure 5: Catamaran RBRDO: average GD, IGD and GMF (from left to right respectively), conditional to the algorithm used
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Figure 6: Catamaran RBRDO: relative variance of GD, IGD and GMF (from left to right respectively) for PpPg algorithm
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Figure 7: Catamaran RBRDO: relative variance of GD, IGD and GMF (from left to right respectively) for AOFpPg algorithm
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