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Chapter 1

General introduction and thesis

outline

Economic phenomena are characterized by a strong mutual dependence between the

choices of economic actors, e.g. individual consumers or firms, and the economic envi-

ronment in which these choices are made and evaluated. The origin of this dependence

lies in the fact that the economic environment is formed by the aggregation of all individ-

ual choices, while at the same time individual choices are affected by the overall economic

environment.

In order to clarify the nature of this dependence, consider the following examples

which will be recurrent throughout this thesis. In a market of a perishable consumption

good, firms have to decide today how much to produce to supply to the market tomorrow.

On the one hand, firms base their production decision upon tomorrow’s expected profits.

On the other hand, tomorrow’s profits will depend on the total amount firms produce.

In fact, given consumer demand, profits are a function of market clearing prices, which

depend on total supply. Financial markets are another well-known example of this mutual

dependence between choices and environment. The demand of investors for an asset is

driven by expected future returns, while at the same time asset returns are determined,

through realized asset prices, by investors’ demand. Another example, with the advantage

of appealing to everyone’s experience, is the El Farol problem proposed by Arthur (1994).

El Farol is a bar where a live music show takes place on a fixed day, say Thursday,

every week. There are 100 people who would like to go to the bar on Thursday evening,

but the El Farol bar is not big enough for all of them. In fact, the bar is too crowded

when there are more than 60 people. Each Thursday evening everyone decides whether

to go to the bar or not. Each decision maker is directly influencing the number of agents

present at the bar, and at the same time, since that number affects his or her utility,

expectations about the number of agents present at the bar influence each individual

1



2 CHAPTER 1. GENERAL INTRODUCTION AND THESIS OUTLINE

decision. Notice that in all these examples the mutual dependence between individual

decisions and economic environment is mediated through a feedback relation between

expectations and realizations of some variable, e.g. prices, returns, or attendance level.

For this reason we can call these systems expectational feedback systems.

Traditional analysis in economics, i.e. neoclassical economics, has circumvented the

complications arising through the type of interaction of many individuals outlined above,

by assuming that all agents are rational. Modeling human behavior as rational implies

that, in making the decision that maximizes their objectives, agents take into account

the choices of others, assuming that others are doing the same. When expectations are

involved, agents are actually supposed to solve the expectational feedback system and

find a “fixed point” or equilibrium outcome where expectations and realizations of the

same variable coincide. Assuming rational thinking leads directly to an equilibrium where

choices need not be corrected, unless unanticipated changes of the exogenous parameters

characterizing the environment or the decision makers, take place. Thus, if agents were

rational, observed changes of economic variables, which are a function of agents’ choices,

should come from a response to unexpected changes in some exogenous characteristics, or

fundamentals, of the economy. Empirical analysis, both of real world data as well as of

laboratory experiments with human subjects, is at odds with this statement and shows

that economic variables fluctuate, even when changes in the fundamentals of the economy

do not occur.

In this thesis we investigate the possibility that economic fluctuations can be explained

through the interaction of boundedly rational agents, that is, agents are not assumed to

be rational and are not necessarily able to solve the mutual dependence implied by the

expectational feedback. Boundedly rational agents use simple behavioral rules and adapt

their behavior over time, switching from time to time to better performing rules. Since

it is not a priori clear which of these simpler rules should be used, we explicitly assume

that agents are heterogeneous and employ different rules to address the same decision

problem. We let a selection mechanism, such as “survival of the fittest”, discipline the

class of behavioral rules.

In departing from the traditional rational approach we have two main goals. First, we

want to appraise if an argument used in favor of rationality, namely that rationality is the

outcome of the repeated interaction of heterogeneous boundedly rational agents, is justi-

fied. This part of the analysis has thus a theoretical motivation. Second, having shown

in what respect our results differ from the rational benchmark, we want to characterize

whether our interacting agents framework can reproduce empirically observed phenomena

in the specific economic settings we consider.

In the context of this general background, this thesis is built around three different



1.1. THEORETICAL BACKGROUND 3

models discussed in three independent chapters. Every model refers to one of the three

economic frameworks briefly sketched at the beginning of this introduction, for which

the expectational feedback is a crucial characteristic. Chapter 2 uses a classical cobweb

model, i.e. a market for a perishable consumption good, to analyze the trade-off between

benefits and costs of rules with different degrees of sophistication. In fact, if sophisticated

predictions, as rational expectations, are costly, agents could decide to adopt a cheaper,

but simpler predictor, as long as its predictions are not too far from the realized values.

We investigate the impact on commodity prices of the interaction of agents having this

extra degree of freedom in choosing between cheap free riding and costly sophisticated

prediction. In Chapter 3, we characterize the competition of a large group of boundedly

rational agents using different strategies to repeatedly exploit the same scarce resource,

when no market institutions are present to coordinate agents’ actions. This chapter

has been inspired directly by Arthur’s El Farol bar problem. We compare our results

with those of equilibrium rational solutions, agent-based computational simulations, and

laboratory experiment with human subjects. In Chapter 4, we investigate whether, in

financial markets, the interaction of boundedly rational agents, triggered by informational

differences, can help explaining time series properties of empirical financial data.

In the remaining part of this introductory chapter, Section 1.1 offers a more detailed

review of the theoretical background of this thesis, i.e. bounded rationality and interaction

of heterogeneous agents. Section 1.2 presents each of the three remaining chapters. In

that section we also offer a brief introduction to nonlinear dynamics, the main technical

tool that will be used throughout this thesis. Section 1.3 concludes this introductory

chapter discussing an interesting common feature of our models, namely the presence of

negative expectational feedback. This feature proves to be helpful to interpret chapters’

results.

1.1 Theoretical background

Economic theory has always faced the issue of how to model human behavior, in particular

how to model individual decision making in an interactive framework. Assuming that an

economic actor, e.g. an individual consumer or a firm, wants to make the decision in his

best interest and that he is capable of making this judgment, the two approaches that are

currently in use rely on different levels of the decision maker’s rationality.

The approach of neoclassical economics, which we will refer to as rational, can be

summarized using two requirements. First, the decision maker is assumed to be able to

choose the alternative that maximizes utility or profit, given his beliefs about the economic

environment and the actions of the other actors in the economy. Second, each decision
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maker is assumed to be able to predict exogenous as well as endogenous variables, so

that his original beliefs are self-fulfilling. The first requirement is mostly related to the

rationality of preferences and choices. The second requirement is mostly related to the

rationality of expectations, that is, of agents’ prediction of future variables, including other

agents’ actions. An implication of these two requirements is that a rational decision maker

knows as much as the modeler regarding the economic framework of interest. Moreover,

the rational agent is also assumed to be able to “solve” this model, that is, to make

decisions such that all predictions and beliefs are consistent with the outcome of all agents’

choices. Stated differently a rational agent is supposed to solve for the equilibrium of the

expectational feedback system. Thus, the primary effort of a rational agent consists of

searching for an equilibrium1. At the equilibrium rational agents do not need to revise

their decisions unless an exogenous change in some variables of the model, such as an

unanticipated change in the agents’ preferences or in the structure of the economy, comes

about.

The bounded rationality approach (see e.g. Conlisk, 1996 for a survey) considers the

requirements that rationality poses on peoples’ characteristics, both in terms of knowledge

of the economic environment and of their computational capabilities, unrealistic because

they are too demanding. Different notions of bounded rationality have been formulated

in the literature. For example, in Simon (1957) and in Rubinstein (1998) the emphasis

is on limitations of human knowledge and computational abilities in decision making,

whereas Sargent (1993) questions the second aspect of rationality, that is the capability

of individuals to form rational expectations. Generally speaking, a boundedly rational

agent is modeled as able to choose what he perceives as the best for himself, but he

does not know the exact structure of the environment. Put differently, we can think of a

boundedly rational decision maker as one choosing only from a set of alternatives which is

bounded by his individual perception. In particular, when predictions of future variables

or choices of other economic agents are involved, bounded rationality implies that ex-ante

predictions and ex-post outcomes need not coincide perfectly. Therefore a boundedly

rational agent is not assumed to be able to “solve” the model. That is, he is not able

to choose equilibrium outcomes where all beliefs are self-fulfilling so that his decisions

are, both ex-ante and ex-post, optimal. On the contrary, a boundedly rational agent uses

simple rules of thumb and keeps revising his choices as he learns about the economic

environment in which he is operating, through feedback about his past decisions. In

particular, expectational feedbacks relates agents’ expectations about relevant variables,

1When more equilibria are presents, it remains to be seen if agents are able to coordinate on the
same equilibrium. Coordination games are the simplest example of this problem. We do not raise this
important issue in this thesis as in all the model we investigate only one equilibrium typically stands out.
See also Section 1.3 of this introdusction
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e.g. prices, to their realizations. As a result of the feedback structure and learning, models

of bounded rationality are structurally dynamic and may or may not settle down to an

equilibrium where agents have learned how to coordinate their actions.

The decision whether to model agents as rational or boundedly rational is part of the

assumptions of an economic model. The scholars opting for rationality argue that it is a

helpful assumption to describe the equilibrium outcome of people’s economic interaction.

This defence of rationality is known as the “as if” argument and goes back to Friedman

and Savage (1948), Friedman (1953), and Alchian (1950). In particular, Friedman (1953)

argues that a model should not be judged in terms of the realism of its assumptions but

in terms of the realism of its predictions, and that modeling agents as rational is justified

because the repeated interaction of heterogeneous boundedly rational agents leads to the

same outcome as if agents are rational. The general underlying idea is that agents who

are not rational would learn to be rational over time since incentives to behave rationally,

such as higher profits or utility, are constantly at work. In fact, agents who adopt non-

rational rules would be out-performed by agents using rational rules, since rational rules

come from optimization and lead to higher economic performance. In summary, assuming

rationality is often based on the presumption that this approach offers the equilibrium

outcome of repeated interaction, the details of which are not worth being modeled.

Part of the recent interest in models of bounded rationality has been motivated by the

attempt to put some structure on the “as if” argument. Does the interaction of bound-

edly rational agents leads to the same outcome as if agents are rational? Convergence

to rational behavior has been the object of investigation of many theoretical papers in

the last two decades. In macroeconomics, Sargent (1993) and Evans and Honkapohja

(2001) address the possibility of agents learning to form rational expectations. The main

message is that “. . . some rational expectations equilibria are learnable while others are

not. Furthermore, convergence will in general depend on all economic parameters of the

system, including policy parameters” (Bullard 2006, p. 205). Learnability of equilibria

thus needs to be investigated case by case. In microeconomics, more specifically in game

theory, a related issue is the possibility of learning Nash equilibria, i.e. the equilibria

played by rational agents, as investigated in Fudenberg and Levine (1998). Evolutionary

game theory explores the ”as if” argument when the process of converging is regulated

by evolutionary forces driven by “survival of the fittest”, rather than by adaptive learn-

ing, see e.g. Weibull (1995). Whereas, according to the “as if” argument agents who are

closer to rationality should make larger profits and thus overcome other types of behavior,

cases exist, as summarized e.g. in Weibull (1994), where convergence is not attained and

fluctuations around the equilibrium never vanish. In this thesis we will also encounter

some examples of this behavior.
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Together from appraising whether modeling the interaction of different groups of

boundedly rational agents supports the “as if” argument, modeling agents as boundedly

rational can be an important step in narrowing the differences between the predictions of

economic theory and empirical data. Much evidence has been collected in the last thirty

years against the practice of modeling human behavior as rational. For example, Conlisk

(1996) classifies this evidence as either direct, through rationality tests on individuals,

or indirect, when models assuming rational agents are at odds with empirical data. Di-

rect evidence against rationality consists, for example, in showing that, when faced with

decisions involving uncertainty which have an objectively correct answer, agents show psy-

chological biases and failure in rationalizing the problem (see e.g. Tversky and Kahneman,

1974). As already argued by Simon (1957), agents rather use simple rules of thumb or

heuristics than engage in difficult, more rational, computations. Moreover, when deciding

whether to use more sophisticated rules, agents take into account deliberation costs, such

as information gathering costs or information processing costs as those costs associated

with the extra effort they are putting into the decision making. Indirect evidence against

rationality has been collected from empirical testing of economic models built under the

assumption that agents are rational. Consider the following examples that are related to

the economic frameworks investigated in the rest of this thesis. In experiments of market

entry games, which are similar to the El Farol game discussed previously, at the aggregate

level agents seem to be able to coordinate on a Nash equilibrium of the game, but, at the

individual level, use different simple rules which do not coincide with rational behavior.

Furthermore, their interaction generates excess variability of the entry percentages with

respect to the game theoretical predictions, (see e.g. Sundali, Rapoport, and Seale, 1995

or Ochs, 1990). In financial markets, prices seem to be much more volatile than justi-

fied by the movement of the underlying fundamentals (see e.g. Shiller, 1989) and returns

are correlated (see e.g. Fama and French, 1988b). Moreover, expectational surveys, as

Frankel and Froot (1987) or Chow (1989), argue that agents do not use rational expec-

tations. However in general, it is still under debate whether macroeconomic fluctuations

of unemployment, business cycles and growth rates are partly driven by expectations as

argued in Grandmont (1985), see also Grandmont (1998) and Hommes (2004).

In deviating from rationality, and modeling agents as boundedly rational it is often

assumed that agents are heterogeneous. Kirman (1992, 2006) summarizes some of the

reasons why the assumption that agents are homogeneous, or that their heterogeneity is

not relevant as their choices can be summarized by the choice of a so-called representative

agent, should be discarded. One commonly referred to reason is the “no trade” argument,

which states that homogeneous agents, as agents with homogeneous expectations, would

have no reasons to trade among themselves. Another reason, which is particularly relevant
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to our theoretical background, involves an evolutionary explanation. That is, evolution

and adaptation necessarily requires some variety of behavior, if one wants the selection

mechanism to indicate which is the “surviving” trait. Denying heterogeneity in models

with boundedly rational agents gives rise to limitations as it is not clear a priori which kind

of boundedly rational behavior each agents should be endowed with. For these reasons,

modeling agents as heterogeneous is becoming more and more popular in economics,

as shown e.g. by the extensive surveys on analytical and computational models with

heterogeneous agents in Hommes (2006) and LeBaron (2006).

In this thesis we assume that agents are heterogeneous, in the sense that they choose

different simple decision rules to address the same decision problem. Generally speaking,

rules can differ in terms of sophistication, where the most sophisticated rule corresponds

to rationality. We also assume that the higher the sophistication of a rule, the higher

the deliberation cost an agent pays in order to use it. Rules can also differ in terms of

the information they use, where information can also be costly. Instead of considering

fixed fractions of agents employing each rule, we let them evolve over time as a function

of their “fitness”. Thus, we employ an evolutionary approach where a “survival of the

fittest” mechanism is at work. A rule that has performed better according to some

measure, to be defined case by case, is used by a higher fraction of agents. In our

models, we use two different updating mechanism for fractions. In Chapter 2 we use a

discrete choice mechanism along the lines of Manski and McFadden (1981) and Anderson,

de Palma, and Thisse (1993) (see also Brock and Hommes, 1997, for an early application).

This updating mechanism assumes that in choosing between different strategies, agents

have an idiosyncratic component that, together with the fitness measure, determines how

individual choices are distributed among the different alternatives. In Chapters 3 and 4,

we use the replicator dynamics of Taylor and Jonker (1978). The replicator dynamics is

related to biological reproduction and the number of agents using a certain rule evolves

both as a function of the current number of agents using that rule, and of the fitness of each

rule. The replicator dynamics can also be motivated in the context of boundedly rational

agents learning and imitating strategies in a strategic environment (see e.g. Weibull, 1995,

Chapter 5 or Binmore and Samuelson, 1997).

1.2 Thesis Outline

This thesis is built around three main economic frameworks, which are developed in

separate chapters. Each chapter is self-contained, with its own introduction, conclusion,

notes, and appendices as needed. For this reason each chapter can be read independently

from the others. A common bibliography is collected at the end of the thesis. A working
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paper has been extracted from each chapter: Brock, Dindo, and Hommes (2006) is based

on Chapter 2, Dindo and Tuinstra (2006) on Chapter 3 and Diks and Dindo (2006) on

Chapter 4. This section briefly discusses each chapter and the mathematical tools used

for their analysis.

1.2.1 Deliberation costs in a cobweb model

In Chapter 2, we use the classic example of the cobweb model (see e.g. Ezekiel, 1938)

to investigate the impact of endogenizing agents’ choices between a costly sophisticated

prediction rule, such as rational expectations, and a cheap prediction rule, such as naive

expectations.

The cobweb model describes the production decisions of a producer of perishable con-

sumption goods which take one period to be produced, such as crop or cattle. Producers

want to maximize their next period’s profit, which depends on the next period’s market

price of the good. Assume that the production technology is convex so that optimal

output is an increasing function of the agent’s prediction of market price. Also assume,

as usual, that the aggregate demand function is downward sloping. In this case market

equilibrium implies that a high (low) supply leads to a low (high) market price. Summa-

rizing, high (low) expected prices result in a high (low) supply which clears the demand

at a low (high) realized price in this system. The characteristic of this system is that the

ex-post realized price is “opposite” to the ex-ante expected price.

This example offers a typical case of an economic system with a mutual dependence

between individual choices and aggregate outcome. The dependence is due to the fact that

producers’ expectations of prices affect realized prices. When the ex-ante expected price

is equal to the average ex-post realized price, that is, when the expectational feedback is

at a fixed point, we have an expectational equilibrium price.

Historically, the cobweb model is an important example, because Muth (1961) uses this

framework to introduce the concept of rational expectations. Muth argues that rational

agents, in order to effectively optimize realized profits, should use a rational expectations

predictor. This is the same as the expectational equilibrium or the “prediction of the

relevant economic theory” (Muth, 1961, p. 316). Muth shows that in a cobweb model,

the rational expectations predictor is the one with the highest realized profits. In other

words, rational expectations are optimal expectations. Agents using other predictors

would perform worse than those using rational expectations, and would, sooner or later,

be wiped out of the market. However, Muth assumes that agents can choose among all

possible predictors, rational or not, at no cost. Muth ignores the presence of deliberation

costs, or information gathering costs, associated with more sophisticated prediction rules.

In Chapter 2, we concentrate on the cobweb model taking into account deliberation
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costs. Early contributions along the same line are Conlisk (1980), Sethi and Franke

(1995), and Brock and Hommes (1997). In particular, in their paper Brock and Hommes

introduce the concept of adaptive rational equilibrium dynamics (ARED), where agents

choose between a costly rational expectations forecast and a cheap naive forecast. The

fractions of agents using each of the two strategies evolve over time and are endogenously

coupled to the market equilibrium price dynamics. Brock and Hommes show that when

the selection pressure to switch to the more profitable strategy is high, instability and

complicated chaotic price fluctuations arise. Brock and Hommes call this phenomenon a

rational route to randomness.

In their setting, Brock and Hommes assume that agents are backward looking in the

sense that strategy selection is based on experience measured by relative past realized

profits. Implicitly this means that agents, even those employing rational expectations

concerning prices, use naive expectations regarding the amount of profit earned by each

of the strategies. In fact, in deciding which predictor is best at maximizing expected

profit, they use today’s profit as a forecast of expected profit.

In Chapter 2, we model the ARED with forward looking agents, that is, where strategy

selection is based upon expected profits rather than realized profits. As agents’ objective is

to maximize expected profits, assuming that agents choose a strategy based upon expected

profitability seems a natural extension of the original model by Brock and Hommes. Our

aim is to investigate whether forward looking behavior dampens, fosters or eliminates price

fluctuations compared to backward looking behavior. In particular we analyze whether

forward looking behavior has an impact on the rational route to randomness found by

Brock and Hommes.

A second contribution of Chapter 2 consists in establishing an equivalence between

a heterogeneous agents model with switching between two different strategies, and a

representative agent framework, where the representative agent optimally chooses from a

continuum of alternative predictors. As usual, predictors differ for their cost and degree

of sophistication. This analysis aims at finding a correspondence between the mechanism

responsible for the updating of predictor choices in a heterogeneous agents framework,

and the cost function associated with a continuum of predictors in a representative agent

framework. Notice that if such a correspondence exists, price fluctuations driven by

strategy switching of heterogeneous firms may as well being explained by a representative

firm switching between a continuum of predictors with different characteristics.

1.2.2 Competition and coordination in participation games

Chapter 3 is devoted to an analysis of repeated interaction of a large number of boundedly

rational agents that are competing for the same scarce resource, when no coordinating
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market institution is at work. We formalize this general interaction structure, which has

been inspired by the El Farol game, as a participation game. We concentrate on participa-

tion games for which the payoff for participating decreases as the number of participating

agents increases, so that there is negative expectational feedback. Well-known examples

of participation games with negative feedback analyzed in the literature are market en-

try games, where firms have to decide whether to enter a market and compete, or stay

out of it. Another example is given by route choice games, where a group of commuters

repeatedly choose, between two routes, the fastest way from their homes to their offices.

Experimental research in this area (see e.g. Sundali, Rapoport, and Seale, 1995) has

aimed at appraising to which extent the aggregate participation rate emerging from the

competition of many agents can be described using the traditional tools of game theory.

The evidence is mixed. At the aggregate level the time average participation rate is

consistent with the symmetric Nash equilibrium. However, at the individual level agents

do not learn to play that Nash equilibrium, but use different deterministic rules. In

particular individuals seem to employ simple rules, such as always participate, always

abstain, or participate conditionally on the outcome of previous rounds. As a result the

aggregate participation rate is much more volatile than would be in the case where all

agents play Nash. The computational model of Arthur (1994), where 100 heterogeneous

agents are choosing among different decision rules to decide whether to participate or

not, gives the same results. In fact, Arthur observes convergence of the first moment of

the participation rate to the symmetric Nash equilibrium, but he obtains a higher second

moment, and thus a more volatile participation rate series.

Our aim is to obtain a simple analytic model that can replicate the main experimental

and computational findings in the area of participation games with negative feedback.

At this purpose we use the same model building guidelines as Brock and Hommes (1997)

and Droste, Hommes, and Tuinstra (2002). We set up an analytic model with hetero-

geneous boundedly rational agents choosing between simple rules. Fractions of agents

using each rule are endogenous and evolve according to the past performance of each

rule as described by the replicator dynamics. We concentrate on the evolutionary dy-

namics produced by the competition between different deterministic rules that condition

the participation decision on the outcome of the previous rounds. We characterize the

resulting participation rate dynamics as the number of players increases. The interaction

of a large number of players leads to complicated participation rate patterns and our

aim is to check whether the average participation rate along these patterns is consistent

with the symmetric Nash equilibrium and the existing experimental and computational

evidence. We also investigate how the aggregation of agents’ interaction is affected by the

presence of agents choosing rules that try to exploit the linear autocorrelation structure of
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the past participation rates. Agents who try to exploit past inefficiencies of the aggregate

to improve their performances, act as some kind of arbitrageurs and we investigate how

their behavior affects the properties of the system.

1.2.3 Informational differences in an asset market

Asset markets, involving an extremely large number of investors of different character-

istics, are a plausible context for modeling the interaction of heterogeneous boundedly

rational agents. The failure of the traditional representative rational agent framework to

replicate properties of asset returns, such as excess volatility, clustered volatility, corre-

lations of returns, persistent deviations from fundamental values (see e.g. Shiller, 1989

and Fama and French, 1988a, 1988b), explains why most of the research in the area

of bounded rationality and heterogeneity has been pursued in the context of financial

markets as surveyed in Hommes (2006), LeBaron (2006) and Kirman (2006).

In Chapter 4 we study a market for a financial asset populated by boundedly rational

agents and we concentrate on the role of informational differences. The starting point is an

asset pricing model in which agents can choose among two different degrees of information

on fundamentals. At the same time agents are also learning the growth rate of the dividend

generating process. An inherent feature of our model is that it contains two important

benchmarks as special cases. When both informational differences and learning are both

discarded, our results coincide with those of the classical Gordon model (see.g. Gordon,

1962). When only informational differences are discarded our model coincides with the

one of Barsky and De Long (1993).

After developing and analyzing the full model, we investigate the extent to which

our model is able to explain empirical properties of asset prices. In particular we aim

at offering theoretical support to the empirical evidence that the log price of a financial

asset is the sum of a persistent component and a nonlinear temporary component, which

switches between two different regimes. The empirical evidence for this so-called nonlinear

mean reversion is documented e.g. by Gallagher and Taylor (2001) and Manzan (2003).

Chapter 4 is also closely related to the work on informational efficiency by Grossman

and Stiglitz (1980). They investigate whether the price is informationally efficient in a

repeated market for a single period living asset, in which agents can decide between two

different degrees of information about the value of the asset return at the end of the period.

They assume that both informed and uninformed agents are rational. In a financial

market where agents face informational differences, the use of rational expectations poses

puzzling consequences. In fact, when the information costs are positive, if agents had

rational expectations the price would fully reveal the available information about future

dividends and nobody would pay for information anymore. This implies that the fraction



12 CHAPTER 1. GENERAL INTRODUCTION AND THESIS OUTLINE

of informed agents would go to zero. However, in the limit the price would not contain

information about the dividend anymore, so that it would pay to buy information again.

The absence of a rational expectation equilibrium has been referred to as the Grossman-

Stiglitz paradox. In a framework with rational agents one needs two sources of noise to

solve the paradox. One source is the presence of noise traders who provide liquidity to

the market, the other is a noisy dividend signal for the informed agents. In this case,

the model of Grossman and Stiglitz leads to a static equilibrium degree of disequilibrium,

where agents’ fractions and price distribution are constant over time and a function of

the exogenous noise parameters.

In Chapter 4 we analyze the case where each agent can decide whether or not to be

informed about next period’s dividend, but we relax the assumption of rationality. We

also endogenize the dynamics of the fraction of agents choosing to buy costly information

or to extract information about future dividends from the price. We investigate whether

the interaction of boundedly rational agents can offer a different solution to the Grossman-

Stiglitz paradox. We argue that the interaction of boundedly rational agents, triggered by

informational differences, can act as a source of endogenous noise to the price dynamics

and no other source of noise needs to be added to the system to obtain a well-defined price

and well-defined fractions. Our dynamic approach aims at offering a dynamic equilibrium

degree of disequilibrium, in contrast with the static case of Grossman and Stiglitz. Our

dynamic case is strictly connected to the endogenous noise created by agents’ switching

between being informed and free riding on public information.

1.2.4 Computational tools for nonlinear dynamics

Whereas in economic models with rational agents there is an emphasis on equilibria, in

models with bounded rationality and heterogeneity there is an emphasis on dynamics.

Since most of these dynamical systems are nonlinear, the theory of nonlinear dynamical

systems is an important tool of analysis. For this reason nonlinear dynamics has become a

widely used instrument in recent years. Day (1994), Gandolfo (1997), and Medio and Lines

(2001) are, among others, introductory textbooks with a particular emphasis on nonlinear

economic dynamics. Mathematical textbooks are e.g. Guckenheimer and Holmes (1991)

and Wiggins (1990). For the convenience of the reader, we here include a brief discussion

of some tools from nonlinear dynamics which will be used in our study.

In this thesis, we model agents’ interaction and decision making taking place at discrete

times separated by a conventional time unit, called one period, and we focus on discrete

time dynamical systems. Typically, one of our model equations is the expectational

feedback map related to the equilibrium pricing condition, and the others are the updating

rules for the fractions of agents using different decision strategies. Whereas the equilibrium
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pricing equation is linear in the fractions of agents, the fact that these fractions are

endogenously determined yields strong nonlinearities.

Occasionally, we investigate the effect of random exogenous shocks upon the dynamics.

In this case, we will refer to the original, noise-free, system as the deterministic skeleton.

Whereas the impact of noise in linear systems is well understood, results concerning the

effect of noise on the local and global dynamics of nonlinear systems is limited, and

therefore we have to rely on simulations.

Once a system of difference equations is derived from agents’ decision making and

from fractions’ evolution, we typically proceed as follows. First, we search for the steady

state(s) of the system. The steady state(s) of our systems typically corresponds to rational

behavior. After a steady state is detected, we use local stability analysis to specify for

which parameters values, the interaction and adaptation of boundedly rational agents

converges to it. If a steady state is unstable, we continue with the analysis of the global

dynamics and investigate the occurrence of periodic or complicated chaotic fluctuations.

Whereas the dynamics in linear systems can only converge to a steady state or diverge

to infinity (except hairline cases), the dynamics of nonlinear systems is richer. In our

examples, the dynamics can be characterized either by convergence to a stable cycle or

by irregular fluctuations and is always bounded. In particular the development of chaos

theory has pointed out that deterministic dynamical systems can generate erratic time

series with ongoing fluctuations whose patterns resemble those of random time series. We

will encounter many of these time series in the following chapters.

In this thesis, when possible, the global dynamics is characterized analytically. How-

ever, often this is difficult or impossible, and we have to use computational tools. A

useful numerical tool for detecting changes in the long run dynamics as one parameter of

the model changes, is the bifurcation diagram. In a bifurcation diagram a parameter is

varied and, for a grid of parameter values, the system of equations is simulated and the

resulting long run behavior plotted. In such diagrams one can see that for some param-

eter values the state variable, say the price, converges to an equilibrium value, whereas

for other parameter values the state variable oscillates along a two cycle, or follows a

more complicated path. An example of a bifurcation diagram is given in the left panel

of Figure 1.1, which is taken from the analysis of participation games in Chapter 3. The

horizontal axes indicates the parameter N , which gives the number of agents playing the

game. The vertical axes represents the participation rate, i.e. the fraction of the entire

population that decides to go to the bar. The bifurcation diagrams allows to compare

the dynamics of the system for different values of the parameter N . One can notice that

when N is small, e.g. N = 50, the long run behavior of the system convergences to a

participation rate of 0.5. As the number of agents N increases, the long run behavior
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Figure 1.1: Simulation of the dynamical systems analyzed in Chapter 3. Left panel: the
bifurcation diagram with respect to the number of participants N gives the long run behavior
of the participation rate as N changes. Right panel: Lyapunov exponents for different values of
N . Parameters values are as in Figure 3.6. For every value of N , 100 iterations are used after
a transient period of 100.

of the interaction is more complicated. For example, when N = 150, the participation

rate is oscillating between two different values. As N increases further other bifurcations

occur and the participation rates follows cycles of period four, eight . . . For future refer-

ence, this particular bifurcation structure with period of the cycle doubling step by step

is called period-doubling bifurcation route to chaos. The bifurcations continue until we

reach a point, N ≈ 250, where many different values between 0.4 and 0.55 are possible.

A useful tool for analyzing whether the black region of the bifurcation diagram corre-

sponds to a cycle of very large period or to more complex chaotic behavior is the largest

Lyapunov exponent plot. Lyapunov exponents are used to characterize sensitive depen-

dence on initial conditions, that is, whether a small change of the initial condition can

lead to a large change of the realized state variable. When the system has a positive

Lyapunov exponent there is sensitive dependence on initial conditions and the dynamics

is chaotic. The right panel of Figure 1.1 gives an example of a Lyapunov exponent plot

for the parameter corresponding to the bifurcation diagram. The horizontal axes indi-

cates the parameter N . The vertical axes represents the Lyapunov exponent. When the

Lyapunov exponent is negative, e.g. for N = 50 or N = 150, the system converges to a

regular attractor, and, in fact, the bifurcation digram shows long run convergence to a

stable cycle. When the Lyapunov exponent is positive, e.g. N ≈ 300, the corresponding

long run behavior is instead chaotic as suggested by the bifurcation diagram at the same

value of N . These numerical tools will be used throughout the thesis to investigate global

dynamics.
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1.3 Negative expectational feedback

An interesting feature of the different economic frameworks analyzed in Chapters 2− 4 is

that they all share the same type of feedback between agents’ expectation of a variable,

e.g. price, and its realization. In general, one can classify this expectational feedback

structure as negative when positive (negative) deviations of the expectations from the

expectational equilibrium price result in negative (positive) deviations of the realized

price from the expectational equilibrium price. Conversely, the expectational feedback

is positive when positive (negative) deviations of the expected price from the expecta-

tional feedback equilibrium result in positive (negative) deviations of the realized price

from the expectational feedback equilibrium. When the expectational feedback map is

differentiable, negative (positive) feedback corresponds to a negative (positive) first order

derivative of the map around the expectational equilibrium. It turns out that all our

examples show a negative expectational feedback structure.

The cobweb model of Chapter 2 is perhaps the best known example of a system with

negative expectational feedback. If a producer expects a high (low) price, his optimal de-

cision is to produce a high (low) quantity that will clear the market at a low (high) price,

“opposite” to the producer’s prediction. Participation games investigated in Chapter 3

also have this characteristic. Consider the El Farol bar problem as a concrete example.

If most (few) agents believe that many agents will go to the bar, few (most) will show up,

contradicting the majority belief. Finally, financial markets where agents have informa-

tional differences, as studied in Chapter 4, are also systems with negative expectational

feedback. In fact when many agents believe that the information is valuable and buy it, an

investor is better off not buying information as the information will be revealed by prices.

On the other hand if nobody buys information, believing that it is better to extract the

information from prices, an investor is better off buying information as there are so few

informed agents that prices do not accurately reveal information. Our three models share

the same expectational feedback structure because they all stem from essentially the same

economic framework: repeated competition for a limited resource. This limited resource

is the demand for crop or cattle in the cobweb model, the number of seats in the El Farol

game, and the information about profitability of the listed firms in a financial market.

The opposite type of expectational feedback, positive feedback, is characterized by

consistency of actions and beliefs. Coordination games are one example of positive feed-

back since when most agents think other player are going to play a certain action they

play the same action thus creating consistency between beliefs and realizations. In gen-

eral, probably both types of feedback play a role. For example, real financial markets have

a negative feedback component due to informational differences, and a positive feedback

component due to the fact that agents’ demand is increasing in the expected (or antici-
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pated) prices. Fashion cycles are also systems with mixed feedbacks, with agents copying

each other at certain stages but also moving to different products at other moments.

A pair of concepts related to the expectational feedback are “strategic substitutabil-

ity” and “strategic complementarity”. These concepts were first developed in studies of

firm interactions in Bulow, Geanakoplos, and Klemperer (1985), but later extended to

the interaction of economic agents with bounded rationality (see e.g. Haltiwanger and

Waldman, 1985). Strategies are substitutes if agents have an incentive to do the opposite

of what most other players are doing as happens to be the case in systems with negative

feedback. Strategies are complementary if agents have an incentive to imitate each other

as in systems with positive feedback.

Recent experimental studies as reported by Camerer and Fehr (2006) and Heemeijer,

Hommes, Sonnemans, and Tuinstra (2006) argue that convergence to a rational expecta-

tions equilibrium is more likely in economic systems with negative feedback and less likely

in economic systems with positive feedback. Theoretical results of this thesis confirm, for

systems with negative feedback, that overall convergence to the rational equilibrium is

on average correct. Nevertheless, we also show that boundedly rational agents’ inter-

action and adaptation trigger ongoing fluctuations around such an equilibrium. This is

consistent with other experiments of systems with negative feedbacks as reported in e.g.

Hommes, Sonnemans, Tuinstra, and Van de Velden (2007) for a cobweb setting, in e.g.

Sundali, Rapoport, and Seale (1995) for market entry games and in e.g. Selten, Chmura,

Pitz, Kube, and Schreckenberg (2006) for route choice games. This is also consistent with

excess volatility in financial markets summarized in Shiller (1989). In general, these en-

dogenous fluctuations can be characterized as irregular cycles along which rules perform

better than others in different periods of time, but no rule is “dominating” the scene for

every period. In this respect our results also support the observation that within systems

with negative feedback incentives work in the direction of heterogeneity, that is, agents

are better off if they do not imitate each other. In fact, such incentives explain why

the persistence of heterogeneity, and consequently of endogenous fluctuations, is a robust

characteristic of our models.



Chapter 2

Deliberation costs in a cobweb model

2.1 Introduction

The purpose of this chapter is to study a “toy model” of a compromise economy where

it is costly to possess rational expectations but less costly or free to possess “simpler”

expectations. Our key objective is to study prices and expectations dynamics in such

an economy and to address whether switching between two predictors may or may not

lead to coordination and convergence to self-fulfilling expectations. This debate is impor-

tant, because instability of adaptive learning, in this case switching between predictors,

may explain why markets exhibit excess volatility, i.e. are more volatile than justified by

underlying economic fundamentals.

If it were very costly to purchase rational expectations our model economy would

act like a temporary general equilibrium economy. Grandmont (1982) surveys the field

of temporary general equilibrium theory. In this theory, at each date t, agents form

expectations for relevant quantities at date t + 1, and given these expectations, agents

optimize to produce demand functions at date t. Markets then clear at date t, producing

equilibrium prices and quantities at date t. At date t + 1 the process is repeated before

going into date t+ 2. A sequence of prices, quantities, and expectations, is produced. In

principle, there could be feedback from equilibrium prices and quantities into expectations

but the expectations need not be rational. At each date t, the actions of the agents are

coordinated only by the price system. Unlike rational expectations the plans for the future

which are made by the agents are not coordinated. As Grandmont (1982, p. 887) puts

it, “The aim of temporary equilibrium theory is to study the interaction through markets

of different individuals in a given period, and to analyze the behavior over time of the

sequence of these equilibria.”.

Instead, if rational expectations were cheap our economy would act more like a rational

expectations economy. While it would be an excellent research project to study such

17
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an economy with endogenous rational choice of the “level of rationality” in a general

equilibrium system at the level of generality of Grandmont (1982) and Radner (1982), it

turns out to be challenging enough to study the impact of this extra level of dynamics of

information choice in a simple cobweb economy as we shall do here.

Brock and Hommes (1997), BH henceforth, introduce the concept of Adaptive Rational

Equilibrium Dynamics (ARED), which is an endogenous coupling between the selection

of expectations rules and market equilibrium dynamics. In the ARED, the consistency

requirement that has to be imposed upon learning rules is evolutionary selection of strate-

gies, that is, agents switch to rules that have performed well in the recent past BH (1998)

apply this evolutionary switching mechanism to an asset pricing model with heteroge-

neous beliefs; see Hommes (2006) for an extensive survey of heterogeneous agent models

in economics and finance.

Another type of complicated “learning equilibrium” in which forecasting mistakes are

“self-fulfilling” is the consistent expectations equilibrium (CEE), introduced by Hommes

(1998). In a CEE, agents use a simple linear forecasting rule in an unknown non-linear

economy. A CEE arises when the sample average and sample autocorrelations of the

nonlinear implied law of motion coincide with the corresponding linear belief. One pos-

sibility are chaotic CEE with chaotic price fluctuations with sample average and sample

autocorrelations exactly corresponding to a stochastic AR(1) process. See also Bullard

(1994), Schönhofer (1999) and Tuinstra (2003) for similar complicated learning equilibria.

As a simple illustration of the ARED concept, BH (1997) consider a cobweb model

where agents can choose between two predictors: either a cheap naive predictor, equal

to last observed price, or an expensive rational expectations (perfect foresight) predictor.

In order to choose between the two predictors, agents compare their performance as

measured by relative past realized profit. One of the main results in BH is that, when

the selection pressure to switch between a costly sophisticated rational and cheap simple

naive strategy is high, the price dynamics becomes locally unstable around the steady

state given by the rational expectation equilibrium. As prices diverge, errors from the

simple, naive strategy increase and it becomes worthwhile to switch to the costly rational

strategy, pushing prices back towards the steady state. This interaction between a “close

to the steady state destabilizing force” and a “far from the steady state stabilizing force”

leads to complicated, chaotic price fluctuations. These complicated “learning equilibria”

are driven by past realized net profits of the expectation strategies. More precisely, in

the original BH (1997) model strategy selection is given by a discrete choice model with

a performance or fitness measure based upon past realized profits from earlier choices of

predictors. Strategy selection is thus based on “experience” or “regret”, and agents tend

to switch to strategies that have performed well in the (recent) past. In the original BH
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(1997) model both the naive and the rational agents are backward looking with respect

to the choice of their prediction strategy but forward looking in their production decision

because they want to maximize expected profits. In fact, these agents implicitly use past

profits as a proxy for expected future profits. One might argue that sophisticated agents

should realize that other agents are making their choices in this backward looking manner

and will learn to use a more sophisticated predictor selection strategy attempting to

exploit the backward looking behavior. This reasoning raises the obvious question: Will

the BH (1997) instability results vanish under a concept of sophisticated forward looking

predictor strategy selection?

In this chapter, we investigate ARED with agents who are forward looking concerning

their strategy selection. For this purpose we reconsider the same cobweb model as BH

(1997), in the case where agents evaluate the different predictors based upon their expected

profit instead of their realized profits. As one might expect in hindsight, forward looking

behavior dampens some of the instabilities uncovered by the original BH (1997) work.

The tendency to overshoot when “selection pressure” is high is dampened. Indeed in one

case the erratic dynamics is dampened down to a stable 2-cycle. In other cases however,

small amplitude chaotic price fluctuations persist.

Our setup is also related to the concept of quantal response equilibrium (QRE) intro-

duced by McKelvey and Palfrey (1995, 1998). They also use a discrete choice model for

strategy selection in a game theoretic setting, with expected payoff as the performance

measure. A similar approach is used by Camerer, Ho, and Chong (2002), who study

repeated games with various levels of rationality. An important difference between these

game theoretic settings and BH (1997) is that in the latter case strategy selection is cou-

pled to the dynamics of an endogenous variable, say the market price, whose realization

affects the performance of all strategies.

A second contribution of this chapter is to formulate a representative agent version of

the model, where the deliberation cost of more sophisticated strategies are endogenized.

This approach is inspired by Simon (1955, 1957) and more recently by Evans and Ramey

(1992) and especially by Dudek (2004). We formulate hybrid models based on Brock

and Hommes (1997) and Dudek (2004), where a representative agent chooses optimally

among predictors of different quality, where each predictor is purchased at a cost which is

increasing and convex in its quality. We establish a close link between the representative

agent optimizing between the benefits of sophisticated prediction rules and deliberation

costs and a heterogeneous agent framework with switching of strategies. See Kirman

(1992) for a critique upon the representative agent approach in economics and Hommes

(2006) and LeBaron (2006) for surveys of heterogeneous agent modeling.

The chapter is organized as follows. Section 2.2 reviews some facts from BH (1997)
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for comparison purposes. Section 2.3 introduces forward looking behavior with respect to

strategy selection. Two different cases will be discussed, one where agents have perfect

foresight regarding expected profits for strategy selection and one where agents make a

boundedly rational estimate of expected profits. Section 2.4 introduces a representative

agent who weighs expected profits versus deliberation costs. Section 5 concludes and all

proofs are contained in the Appendix to this chapter.

2.2 The BH model

Following BH (1997), we recall some key features of the ARED in the simple economic

setting of the cobweb model with selection of forecasting rules based upon past realized

profits. The cobweb model describes price fluctuations in a competitive market for a

non-storable good which takes one period to be produced. We call pt+1 the price of the

good at time t+ 1 and pe
t+1 a producer expectation at time t of the market price at time

t+ 1. The demand at time t+ 1, D(pt+1), is a linearly decreasing function:

D(pt+1) = A−Bpt+1, A > 0, B > 0. (2.1)

The supply at time t+ 1, S, is an increasing function of the producers’ forecasts at time

t of the price at time t + 1. More specifically, for every producer, the supply curve S is

derived from expected profit maximization:

S(pe
t+1) = Argmaxx(xp

e
t+1 − c(x)), (2.2)

where x is the amount of goods he decides to produce at time t and c(x) is the production

cost function. Since the decision is taken at time t, but the price is realized only at time

t + 1, a producer have to condition their decision on their expected price pe
t+1. Taking a

quadric cost function

c(x) =
x2

2b
, b > 0 (2.3)

gives the linear supply curve:1

S(pe
t+1) = bpe

t+1. (2.4)

We assume that agents (producers) can choose between two types of predictors, pe,1
t+1 and

pe,2
t+1. Let n1

t and n2
t be the fractions of agents choosing at the end of time t (or at the

beginning of time t + 1) respectively predictor 1 and predictor 2. The market clearing

1The general case with non-linear demand and non-linear supply is investigated in Goeree and Hommes
(2000). Since it leads to similar results we restrict our analysis to the linear case.
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equation at time t+ 1 is given by:

D(pt+1) = n1
tS(pe,1

t+1) + n2
tS(pe,2

t+1). (2.5)

We now have to specify how agents choose between the two prediction rules. BH (1997)

assume that agents are “comparing” past realized profits. At time t, the realized profit

of strategy i is a function of both the realized price at time t, pt, and the predictor pe,i
t ,

i = 1, 2, used at time t−1. The price pt determines the price at which the goods are sold,

while the predictor pe,i
t determines the amount of good produced by agent i. As a result,

the realized profit at time t under expectations scheme i is given by

πi
t = π(pt, p

e,i
t ) = ptS(pe,i

t )− c(S(pe,i
t )) = ptbp

e,i
t − (bpe,i

t )2

2b
=
b

2
pe,i

t (2pt − pe,i
t ). (2.6)

We consider the realistic case where one predictor, say pe,1, is more sophisticated or

of higher “quality” than the other predictor pe,2, which is just an easy-to-use rule of

thumb. The sophisticated predictor however is more “expensive” than the simple predictor

because it is more difficult to compute, deliberation cost, or requires more information

gathering. We call C ≥ 0 the net costs for obtaining the sophisticated predictor. In this

chapter we will refer to C as to deliberation or information costs.

As mentioned before, the choice of the predictor rule is based on the fitness or perfor-

mance measure for the two strategies. BH (1997) take last period’s net realized profits as

the fitness measure, i.e.2

U1
t = π1

t − C,

U2
t = π2

t ,

∆Ut = ∆πt − C = π1
t − π2

t − C,

where ∆Ut is the difference in fitness and ∆πt is the difference in realized profits (ex-cost

for the sophisticated rule). The fraction of agents choosing predictor i at time t is given

by a discrete choice (logit) model:

ni
t =

eβU i
t

Zt

, i = 1, 2, (2.7)

2More generally, BH (1997) introduce memory in the fitness measure which is a weighted average of
past realized profits. In this chapter, we focus on the simplest case with fitness determined by last period
realized profit.
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where β is the intensity of choice parameter and Zt =
∑

h e
βUh

t is a normalization factor

such that n1
t + n2

t = 1. The model (2.7) is derived from a random utility framework

see e.g. McFadden (1973); see also BH (1997) for more details and Anderson, de Palma,

and Thisse (1993) for many economic applications. The intensity of choice parameter β

determines how eager agents are to switch to different strategies as it is inversely related

to the variance noise level in the random utility model. In the extreme case β = 0, there is

no switching at all and both fractions are 0.5, whereas in the other extreme case β = ∞,

all agents choose the predictor with the highest fitness. In an evolutionary framework one

can refer to β as the selection pressure. As β increases the selection pressure increases,

so that more and more agents use the strategy with the higher fitness.

If we introduce mt = n1
t − n2

t we can rewrite the market equilibrium equation as:

A−Bpt+1 =
b

2

(
pe,1

t+1(1 +mt) + pe,2
t+1(1−mt)

)

where

mt+1 = tanh

(
β

2
(∆πt+1 − C)

)
.

The framework introduced so far is still general in terms of the actual predictors used.

Following BH (1997) we consider the choice between costly rational expectations and

freely available naive expectations:

pe,1
t+1 = pt+1,

pe,2
t+1 = pt.

The ARED in the case of a rational expectation predictor “versus” a naive predictor is

then given by:

A−Bpt+1 = b
2
(pt+1(1 +mt) + pt(1−mt)) , (2.8)

mt+1 = tanh
(

β
2

[
b
2
(pt+1 − pt)

2 − C
])
. (2.9)

The timing in the ARED is important. First, the new market clearing price pt+1 is

determined using the old fractions n1
t and n2

t (or difference in fractions mt). Second,

the new realized market price pt+1 is used to update and determine the new fractions

n1
t+1 and n2

t+1 (or difference in fractions mt+1). Notice that in the market clearing equa-

tion (2.8) pt+1 is only implicitly defined, but it can be solved explicitly easily by some

map pt+1 = Fβ,1(pt,mt). The ARED of the cobweb model with rational versus naive

expectations and strategy selection based upon realized profits is thus described by a
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two-dimensional system of nonlinear difference equations (pt+1,mt+1) = Fβ(pt,mt) =

(Fβ,1(pt,mt), Fβ,2(pt,mt)). We discuss the dynamics of Fβ as the intensity of choice, or

selection pressure, β, increases.

A straightforward computation shows that the unique steady state of the system is:

E = (p∗,m∗) =

(
A

b+B
, tanh

(
−βC

2

))
.

Notice that the steady state value of the difference in fractions, m∗ = m∗(β), depends on

β. In particular when costs for rational expectations C > 0, as the intensity of choice β

increases, the steady state fraction of rational agents, n1∗ = (1 + m∗)/2, decreases and

n1∗ → 0 as β → ∞. The economic intuition is that at the steady state p∗ there is no

fitness advantage in buying a rational predictor, since both predictors predict the same,

correct, value. As the intensity of choice increases more and more agents choose the naive

predictor. The following Theorem (Theorem 3.1 in BH (1997)) summarizes the stability

of the steady state.

Theorem 2.1 Assume that the slopes of supply and demand satisfy b/B > 1:

(i) When the information costs C = 0, the steady state E = (p∗, 0) is always globally

stable;

(ii) When the information costs C > 0, then there exists a critical value β1 such that

for 0 ≤ β < β1 the steady state is globally stable, while for β > β1 the steady state

is an unstable saddle point with eigenvalues 0 and

λ(β) = − b(1−m∗(β))

2B + b(1 +m∗(β))
.

At the critical value β1 the steady state value m∗(β1) = −B/b.

(iii) When the steady state is unstable, there exists a locally unique period 2 cycle. There

exists a β2 > β1 such that the period 2 cycle is stable for β1 < β < β2.

The assumption b/B > 1 means that if all agents employ naive expectations, the market

will be unstable. The case with b/B < 1 is straightforward since it leads to convergence

to the steady state for all values in the parameter space. In the ARED with b/B > 1, as

soon as deliberation costs are positive an increase in the intensity of choice destabilizes

the system, and yields an unstable saddle point steady state and the creation of a (stable)

two-cycle through a period doubling bifurcation. BH (1997) show that, as the intensity

of choice further increases, the two-cycle also becomes unstable and a rational route to
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randomness, that is, a bifurcation route to complicated chaotic price fluctuations, occurs.

The mechanism responsible for generating complicated price dynamics is the interplay

between a local, close to the steady state, destabilizing force and a global, far from the

steady state, stabilizing force. The interplay is fostered by the evolutionary switching

mechanism. Technically, it is responsible for homoclinic bifurcations and the presence

of strange attractors in the dynamics of prices and fractions as discussed in detail in

BH (1997). Recently, the same mechanism and type of bifurcations have been shown

to generate complicated price fluctuations in other frameworks, for example a Cournot

duopoly model in Droste, Hommes, and Tuinstra (2002) or a financial market where

informed and uniformed agents coexist as in De Fontnouvelle (2000) and in Chapter 4 of

this thesis.

The economic intuition of this phenomenon can be explained in the limiting case

β = ∞. In this case, in each period, all agents choose the predictor with the highest

fitness measure, i.e. past realized profits, no matter how small or big this difference is.

From (2.9), for β = ∞, the difference in fractions mt is determined by:

mt =





+1, if
b

2
(pt − pt−1)

2 > C,

−1, if
b

2
(pt − pt−1)

2 ≤ C,

so that pt+1 is given by:

pt+1 = f∞(pt, pt−1) =





p∗, if
b

2
(pt − pt−1)

2 > C,

A

B
− b

B
pt, if

b

2
(pt − pt−1)

2 ≤ C.

(2.10)

The following Theorem (Theorem 3.2 in BH (1997)) characterizes the price dynamics

in this case.

Theorem 2.2 For β = ∞, even when the market is locally unstable (i.e. b/B > 1) and

when deliberation or information costs C > 0, the system always converges to the saddle

point equilibrium steady state E = (p∗,−1).

The reasoning behind the proof is quite instructive and provides a simple economic

intuition. For β = ∞ in each period either all agents are rational (m = +1) or all

agents are naive (m = −1). Assume e.g. that all agents are naive and let the price be

close to the steady state. For m = −1 the price will diverge from p∗ due to the local

instability. As long as m = −1, price fluctuations become bigger (in absolute value) and
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errors made by the naive forecast will rapidly increase, until the point where the difference

between realized profits of rational and naive expectations exceeds the costs for rational

expectations. At that point, since β = ∞, all agents buy the rational predictor, so that

m becomes +1, and in the next period the price jumps immediately onto the steady state

price p∗, and remains there forever.

For future comparison with the model of Section 2.3, it is instructive to compute the

difference between the maximum and the minimum observable price when β = ∞. We

define this maximum difference ∆f
∞, where the superscript fand the subscript ∞ refer to

the map f∞ defined in (2.10).

Lemma 2.1 When β = ∞, the difference between the maximum and the minimum ob-

servable price is ∆f
∞ =

2b2

B(B + b)

√
2C/b.

2.3 Strategy switching with forward looking agents

In the original BH-model agents are backward looking in their selection of prediction

strategies since their choice is based upon past realized profits, but they are forward looking

in their production decision because, given their price forecast, they maximize expected

profits. In this section we discuss the model with forward looking agents, with both

strategy selection and production decisions based upon expected profit. In the forward

looking case, at time t the fitness measure difference used for strategy selection between

the rational and naive predictors becomes:

∆U e
t+1 = ∆πe

t+1 − C = πe,1
t+1 − πe,2

t+1 − C, (2.11)

where, as before, C represents the costs for the rational expectations predictor.

We will discuss two different versions of the model with forward looking agents, de-

pending on the way agents compute their expected profit. In Subsection 2.3.1 all agents,

i.e. both agents using the rational and the naive forecast, have perfect foresight on ex-

pected profits conditional on their production decision. We will refer to this case as

perfectly forward looking agents in strategy selection. In Subsection 2.3.2 we discuss a

different version of the model where agents using the rational price forecast still have

perfect foresight on expected profits, whereas the agents using the naive price forecast

employ their most recent observations to make a simple estimate of their expected profit.

We will refer to this case as boundedly rational forward looking agents.
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2.3.1 Perfectly forward looking agents

Consider forward looking agents and a discrete choice random utility model, with expected

profit as the fitness measure in the following way. As before, given the expected price

pe
t+1, the optimal supply S(pe

t+1) = bpe
t+1 is derived from expected profit maximization

with quadratic production cost function. There are two price forecast strategies available,

the rational forecast at cost C and the freely available naive forecast. As before, market

equilibrium at time t+ 1 is given by:

A−Bpt+1 = n1
t bpt+1 + n2

t bpt. (2.12)

The fraction of agents who adopt strategy i, ni
t, is determined via a discrete choice model as

in (2.7), but this time the fitness of each predictor is measured in terms of the expectations

at time t about profits at time t+ 1:

ni
t =

eβUe,i
t+1

Zt

, (2.13)

where Zt =
∑

h e
βUe,h

t+1 is the usual normalization factor. The rational predictor is evalu-

ated according to:

U e,1
t+1 = πe,1

t+1 − C, (2.14)

whereas the naive predictor is evaluated according to:

U e,2
t+1 = πe,2

t+1. (2.15)

In both cases:

πe,i
t+1 = π(pt+1, p

e,i
t+1) = pt+1S(pe,i

t+1)− c(S(pe,i
t+1)). (2.16)

Notice that the expected profit, πe,i
t+1, i = 1, 2, depends both on the expected price pe,i

t+1,

which determines the production decision at time t, and on the price that clears the market

at time t+1, pt+1. We assume that the economy works “as if” agents have perfect foresight

on this second price. This implies that whatever their production decision is, agents have

perfect foresight on expected profits. Stated differently, given the production decisions,

fractions of the strategies are determined “as if” agents compute expected profits without

errors.

At this point it is useful to discuss a potential inconsistency problem in the model. If

agents have perfect foresight on the expected profit, then, at time t, wouldn’t they also

“know” the price forecast pt+1? If they could extract the perfect foresight price forecast

from perfect foresight on expected profits, there would be no incentive left to pay the
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information costs C for the perfect price forecast.

In order to avoid this behavioral inconsistency, we assume that there is an expert man-

ager who has “structural knowledge” about the economy enabling him to have structural

rational expectations. Each agent can choose either to run the business by himself or hire

an expert manager with “structural knowledge” of the economy and rational expecta-

tions. The manager promises the agent a sure net profit, after subtracting an (unknown)

cost C for his service. Agents take the decision to hire or not to hire the rational ex-

pert manager by evaluating the fitness measure difference (2.11) which is computed and

announced by the expert manager and available as public information. The fraction of

agents that chooses to hire the rational expert manager is determined by the difference

in fitness announced by the manager, according to the random utility framework. It is

important that agents do not know the division between profits and costs C in the net

revenue they receive from their manager, because if they did they could derive the perfect

foresight forecast from public information. Notice also that the manager is “credible” in

the sense that, given the production decision of the agents, the manager delivers the net

profits that he announces.

We are aware of the limitations of these assumptions and we do not claim this to be

a realistic description of market behavior. Rather we view this model as an interesting

theoretical benchmark with strategy switching determined by rational forward looking

behavior on expected profits. In this theoretical benchmark, forward looking strategy

switching is not affected by any mistakes of the agents in evaluating their expected profits.

In Subsection 2.3.2 we will consider the probably more realistic case where some forward

looking agents make mistakes in evaluating their expected payoff.

Under the assumption of perfect foresight on expected profits for both types, the

expected profits for rational respectively naive agents are given by

πe,1
t+1 = π(pt+1, p

e,1
t+1) = pt+1S(pt+1)− c(S(pt+1)) =

b

2
p2

t+1, (2.17)

πe,2
t+1 = π(pt+1, p

e,2
t+1) = pt+1S(pt)− c(S(pt)) =

b

2
pt(2pt+1 − pt), (2.18)

where we have used pe,1
t+1 = pt+1 and pe,2

t+1 = pt. Notice that the fitness difference (2.11)

becomes:

∆U e
t+1 =

b

2
(pt+1 − pt)

2 − C. (2.19)

The fractions of the two types are determined via a discrete choice model as before,

with fitness measure difference (2.19). Working again with the difference in fractions
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mt = n1
t − n2

t , the system is given by:

A−Bpt+1 =
b

2
(pt+1(1 +mt) + pt(1−mt)) , (2.20)

mt = tanh

(
β

2

[
b

2
(pt+1 − pt)

2 − C

])
. (2.21)

We define a Managerial Perfect Foresight Equilibrium to be a time path of prices pt,

produced quantities xi
t, i = 1, 2, fractions of agents choosing strategy i, ni

t, i = 1, 2, and

point expectation of profits, πe,i
t+1, i = 1, 2, that, at each date t satisfies equations (2.12–

2.18) with supply equals demand and fulfilled point expectations. Co-evolution of prices

and (difference in) fractions is described by (2.20–2.21). We use the extra adjective,

managerial, because our concept of perfect foresight equilibrium requires both agents

having perfect foresight (i.e. fulfilled point expectations) on the amount of net revenue

(which is the net profit received by the agent after deducting the manager’s operating

cost, C), as well as the manager generating profits consistent with perfect foresight on

the date t+ 1 price pt+1.

It is useful to compare the model with perfectly forward looking agents (2.20-2.21)

to the original model with backward looking agents (2.8-2.9). In the forward looking

case the difference in fractions mt is simply a one period ahead version of the backward

looking case. In fact, in the forward looking case the difference in fractions of the two

strategies, mt, depends upon pt and pt+1, implying that the market clearing equation

(2.20) is only implicitly defined. The following result states that (2.20-2.21) translates

into a well defined, explicit one-dimensional map pt+1 = gβ(pt) (seeFigure 2.1).

Theorem 2.3 Given a linear demand and a linear supply curve, for any value of the

information cost C ≥ 0, the intensity of choice β ≥ 0 and the initial price pt, (2.20-2.21)

determines a well defined map pt+1 = gβ(pt). That is, there exists a unique non-negative

price pt+1 such that, at time t+1, either the market is in equilibrium or the excess supply

is positive at pt+1 = 0. Furthermore the map gβ is continuous.

A straightforward calculation shows that, as before, p∗ = A/(b + B) is always the

unique fixed point of the map gβ. The corresponding fraction difference m is again given

by m∗(β) = tanh(−βC/2). The following theorem characterizes the dynamics:

Theorem 2.4 Assume that the slopes of supply and demand satisfy b/B > 1.

(i) When the information costs C = 0, the steady state E = p∗ is always globally stable.

(ii) When the information costs C > 0, then there exists a critical value β1 such that

for 0 ≤ β < β1 the equilibrium is globally stable, while for β > β1 the equilibrium is
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Figure 2.1: Perfectly forward looking agents. The graph of pt+1 = gβ(pt) for four different
values of β. The three points where all graphs intersect correspond to the steady state p∗ (in
the middle) and points where m(pt, pt+1) = 0, that is, where the profit difference of the two
strategies is equal to the net cost C. Other parameters are: A = 1.5, B = 1, b = 2, C = 0.1.

unstable with eigenvalue,

λ(β) = − b(1−m∗(β))

2B + b(1 +m∗(β))
.

At the critical value β1 the steady state value m∗(β1) = −B/b.

(iii) When the steady state is unstable, there exists a unique period 2 orbit {p1, p2}. The

period 2 orbit is globally stable for any value of β > β1.

Compare the local stability of the system with forward looking agents as specified in The-

orem 2.4 with the local stability of the system with backward looking agents as specified

in Theorem 2.1. Points (i) and (ii) of both Theorems imply that for small values of the

switching parameter β the systems behave similarly. When the switching parameter is

smaller than the primary bifurcation value β1 the steady state is stable, while for β > β1 a

(stable) period 2-cycle is created. Notice that the primary bifurcation value β1 is the same

for both systems. For larger values of β, according to (iii), the backward looking and

forward looking cases are different. In the backward looking case the 2-cycle is stable only

when β1 < β < β2, whereas in the perfectly forward looking case the 2-cycle is stable for

all values of the switching parameter β > β1. The rational route to randomness (i.e. the

bifurcation route to chaos) has disappeared due to the perfectly forward looking strategy

switching behavior of the agents. Technically, no homoclinic bifurcation is observed and

the interplay between local instability and global stability is different.
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The reason that complicated dynamics does not arise is that perfectly forward looking

agents do not make mistakes in the estimation of their expected profits. In contrast,

backward looking agents use past realized profits to evaluate which predictor to use,

and therefore may make big mistakes. In particular, these mistakes may lead to big

losses for the agents who choose a naive predictor, especially when β is high. In fact

in the backward looking case, when the cheap naive predictor has performed well in the

last period it attracts many agents. This triggers local instability with prices deviating

more and more from the steady state and bigger and bigger errors in profit estimation.

When these mistakes become sufficiently large and β is high, many agents switch back

to the rational predictor, thus pushing prices back very close to the steady state. But

close to the steady state the cheap naive predictor works fine and is less costly than the

rational predictor, so that the story repeats. When agents are perfectly forward looking

concerning expected profits, big mistakes by the naive predictor are anticipated by the

forward looking behavior, and therefore prices will not deviate from their steady state

very far nor will they be pushed back to the steady state very closely.

An analysis of the case of an infinite switching parameter enables us to make this

point precise. Remember that in the case of backward looking agents for β = ∞ the price

always converges to the (locally unstable) steady state value, as stated in Theorem 2.2.

As stated in the next theorem in the case of forward looking agents, in the limit case

β = ∞ prices always converge to a period 2 orbit. For β = ∞ the map gβ defined by

(2.20-2.21) becomes (see Figure 2.2):

pt+1 = g∞(pt) =





p∗, if pt ∈ [0, p∗ − p̃] ∪ [p∗ + p̃,∞),

pt +
√

2C/b, if pt ∈ (p∗ − p̃, p∗ − δp̃),

A

B
− b

B
pt, if pt ∈ [p∗ − δp̃, p∗ + δp̃],

pt −
√

2C/b, if pt ∈ (p∗ + δp̃, p∗ + p̃),

(2.22)

where p̃ =
√

2C/b and δ = B/(B + b) < 1.

Theorem 2.5 For β = ∞, when the market is locally unstable (i.e. b/B > 1) and when

information costs C > 0 the system always converges to a period 2 orbit. A continuum of

period 2 orbits exists. Furthermore, the difference between the maximum and the minimum

observable price is:

∆g
∞ =

2b

B + b

√
2C

b
.
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Figure 2.2: β = ∞. Comparison of the map pt+1 = g∞(pt) in (2.22) for perfectly forward
looking agents and the corresponding 1-D map in the case of backward looking agents. The
latter has been obtained from the projection of the two dimensional map pt+1 = f∞(pt, pt−1) in
(2.10) with pt−1 given by the inverse-image of (pt,−1) through the map Fβ,1 (see also the Proof
of Lemma 2.1 in Appendix). Other parameters: A = 1.5, B = 1, b = 2 C = 0.1.

that is ∆g
∞ =

(B
b

)
∆f
∞ < ∆f

∞.

The last part of Theorem 2.5 points to another difference with the original model concern-

ing the size of fluctuations. Figure 2.2 illustrates this difference between the models with

backward looking and forward looking strategy selection. The backward looking map f∞
has a higher maximum and a lower minimum, that is ∆g

∞ < ∆f
∞. A comparison of the two

maps clarifies that the globally stabilizing forces are different. In the backward looking

case agents make larger errors and it takes one extra time period before agents are ready

to switch to the costly rational strategy. Moreover, if the errors have grown too large, all

agents share the same experience and all switch to the costly rational strategy at the same

time. In the forward looking case, agents anticipate large mistakes and start switching to

the rational strategy already before the errors grow too large. Moreover, forward looking

behavior prevents all agents to switch at the same point in time, but instead ensures a

smooth and gradual switching to the costly rational strategy, leading to smooth dynamics

and an interval of 2-cycles at some not too far away distance from the steady state with

rational and naive agents co-existing (see the parts of the graph of g∞ parallel to the

diagonal). In this model, forward looking behavior based on expected profits instead of

realized profits leads to smoother transitions and dampened fluctuations in the short run

but also prevents the system to return (close) to the steady state price in the long run.

The presence of a regular 2-cycle for a large interval of values of the switching param-
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eter β (e.g. Figure 2.3) raises the question whether boundedly rational agents are able to

detect the regular structure from time series observations and exploit it? Stated differ-

ently, is the 2-cycle equilibrium “evolutionary stable”, that is, will the cycle persist when

other boundedly rational agents “invade” the system? We will not address this problem in

detail here, but investigate the problem by some simple simulations, illustrated in Figure

2.4. The answer depends on whether or not additional boundedly rational rules have costs

associated to them, e.g. higher costs when the rule uses more memory. In what follows,

all agents, including those using the new price forecasting rules, have perfect foresight

on expected profits as before. First consider the case where rational expectations at cost

C versus free naive expectations leads to a stable 2-cycle. Suppose a new forecast rule

pe
t+1 = pt−1 (call it a period-2 rule), at costs C ′, 0 < C ′ < C, enters the system. Along

the 2-cycle this period-2 rule has in fact perfect foresight, and since it is cheaper than

the rational perfect foresight rule, many agents will start using the period-2 rule. Figure

2.4 shows that the system with rational versus period-2 versus naive locks into another

stable 2-cycle, with smaller amplitude because of the lower costs for the period-2 rule.

The costly rational expectations rule is (almost) driven out of the market and replaced by

the cheaper (but still costly) period-2 rule, but the equilibrium outcome remains a stable

2-cycle (with smaller amplitude).

Next consider the case where costly rational versus free naive expectations leads to a

stable 2-cycle, and a new period-2 rule at zero costs invades the system. Figure 2.4 shows

that the system with costly rational versus free naive versus free period-2 converges to a

stable 3-cycle of smaller amplitude. The intuition is that along the original 2-cycle, agents

switch to the period-2 rule because its forecast is the same as the rational rule but at no

costs. As a consequence, the amplitude of price fluctuations decreases, which leads to

smaller forecasting errors of the naive rule and thus an increase of the fraction of agents

using the naive rule. With the naive and the period-2 rule both having positive fractions

the system locks into a stable small amplitude 3-cycle. We can continue the story and

introduce an additional type using a period-3 rule (i.e. pt+1 = pt−2) entering the market.

This system with 4 different rules locks into a stable 4-cycle with even smaller amplitude

as shown in Figure 2.4. Similarly, adding another new type, a period-4 rule, the system

locks into a stable 5-cycle with very small amplitude. Finally, adding a period-5 rule,

the system stabilizes and locks into the stable steady state price. The intuition is that

with more and more period-k rules at no costs, many rules gain positive weight and the

system behaves as if agents use (a weighed average) of past prices as their forecast, thus

stabilizing price fluctuations.

The key point of this simulation exercise is that when new boundedly rational fore-

casting rules “invade” the system and more memory comes at higher costs, the stable
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Figure 2.3: Bifurcation diagrams with respect to β. The case of backward looking agents (top
panel, Section 2.2), perfectly forward looking agents (middle panel, Subsection 2.3.1) and the
case of boundedly rational forward looking agents (bottom panel, Subsection 2.3.2). The other
parameters are A = 1.5, B = 1.0, b = 2.0 (this leads p∗ = 0.5) and C = 0.1.
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Figure 2.4: Forward looking agents with perfect foresight. This figure illustrates the stability
of the 2-cycle when naive and rational predictors are available (first row, left panel) with respect
to “mutation” to other predictors (all the other panels). If a 2-period predictor emerges at a
cost C ′ ∈ (0, C), the 2-cycle is still stable but has a lower amplitude (first row, right panel). If a
2-period predictor emerges at no cost, the interaction of naive, rational and 2-period predictors
leads to a 3-cycle (second row, left panel). In the panels that follow, at every step (from left to
right and from top to bottom) a higher period predictor is introduced. This leads to creation of
a 4-cycle, a 5-cycle and, finally, to the stabilization of the system. In all cases, the parameters
are A = 3, B = 1, b = 5, β = 300, C = 0.1.
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2-cycle persists but has smaller amplitude. In contrast, when there are no costs asso-

ciated to boundedly rational rules with more memory, price fluctuations stabilize. This

situation is similar to the simulations of the El-Farol bar problem described by Arthur

(1994), where “cycles are quickly arbitraged away” by cycle-detector predictors. Another

example, where autocorrelation structure is arbitraged away by adding rules, is presented

in Chapter 3 of this thesis. This may be a characteristic feature of systems with negative

feedback from expectation to realization, as in the cobweb model.

2.3.2 Boundedly rational forward looking agents

In the previous subsection all agents were assumed to be perfectly forward looking con-

cerning expected profits. In this subsection we back off from perfect rationality and

assume that in order to choose their strategy some agents only make a boundedly ra-

tional estimate of expected profits. As in the previous subsection, we assume that each

agent is faced with the choice of either hiring an expert manager to run the business or to

run the business himself. In the first case, the story unfolds as in the previous subsection:

by hiring an expert manager, at time t the owner is promised to receive at time t + 1 a

sure profit U e,1
t+1 as computed in (2.14) and (2.17). The manager promising this last payoff

uses rational expectations and keeps an (unknown) amount C of the profit of the firm

for himself. As a result U e,1
t+1 = πe,1

t+1 − C. Since the agent (the owner of the firm) does

not know C, he is not able to extract the rational expectations price forecast at the time

he compares the two expected net profits. The computation of the fitness in the second

case, when the owner decides to run the business by himself, is done in a different way

than in the previous subsection. Equation (2.15) still holds but, in this case, we assume

that the naive agent makes an estimate of the expected profit. We refer to this case as

boundedly rational forward looking agents. We focus here on a simple case where the

naive agents use their naive forecast both in the production decision and in the forecast

of the expected profit. Instead of (2.18) he uses:

πe,2
t+1 = π(pe,2

t+1, p
e,2
t+1) = π(pt, pt) =

b

2
(pt)

2. (2.23)

In Subsection 2.3.1 agents switch between prediction strategies only because one of the

two is granted a higher profit. In the present case, agents are switching between the two

predictors not only because naive agents make price forecasting errors, but also because

they make a wrong estimate of the expected payoff they will get by using the naive

predictor. As we shall see this additional error complicates the qualitative dynamics, but

does not change the amplitude of the price fluctuation significantly.
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Summing up, at time t, the expected fitness difference of the two predictors is:

∆U e
t+1 =

b

2
(p2

t+1 − p2
t )− C. (2.24)

The fraction of agents using the predictor i = 1, 2 at time t is as in (2.13). Using

mt = n1
t − n2

t , market equilibrium and the evolution of the fractions’ difference are

A−Bpt+1 =
b

2
[pt+1(1 +mt) + pt(1−mt)], (2.25)

mt = tanh

(
β

2

[
b

2
(p2

t+1 − p2
t )− C

])
. (2.26)

As in the case of perfectly forward looking agents in (2.21), the difference in fractions mt

in (2.26) depends upon pt and pt+1, so that the market clearing equation (2.25) is again

implicitly defined. The following result states that (2.25-2.26) determines a well defined,

explicit one-dimensional map pt+1 = hβ(pt):

Theorem 2.6 Given linear demand and linear supply, for any value of the information

cost C ≥ 0, the intensity of choice β ≥ 0 and the price pt, the system (2.25-2.26) implies

a well defined map pt+1 = hβ(pt). That is, there exists a unique minimum non-negative

price pt+1 such that, at time t+1, either the market is in equilibrium or the excess supply

is positive at pt+1 = 0. Sufficient conditions for continuity of the map hβ are β < 2/(Ap∗)

or , when β > 2/(Ap∗),

1 + tanh

(
−β

2
C

)
< 2

B

b

2/(Ap∗)
β − 2/(Ap∗)

. (2.27)

Notice that (2.27) is always satisfied in the limit as β →∞. Some graphs of the map hβ

and the associated dynamics are given in Figure 2.5. The fixed point of the system is the

same as before: E = (p∗,m∗(β)) = (A/(b+ B), tanh(−βC/2)). The following theorem is

the analogue of Theorems 2.1 and 2.4 in the case of forward looking boundedly rational

agents:

Theorem 2.7 Assume that the slopes of supply and demand satisfy b/B > 1.

(i) When the information costs C > 0, then there exists a critical value β1 such that

for 0 ≤ β < β1 the equilibrium is globally stable, while for β > β1 the equilibrium is

unstable with eigenvalue,

λ(β) = − b(1−m∗(β))

2B + b(1 +m∗(β))
.
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At the critical value β1 the steady state value m∗(β1) = −B/b.

(ii) When the steady state is unstable, there exists a locally unique period 2 orbit {p1, p2}.
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Figure 2.5: Boundedly rational forward looking agents. On the left: map and price dynamics
for A = 1.5, B = 1.0, b = 2.0, C = 0.1 and β = 20. The price dynamics converges to a 2-cycle.
On the right: map and price dynamics for A = 1.5, B = 1.0, b = 2.0, C = 0.1 and β = 140. The
price dynamics is chaotic.

Notice the similarity between Theorems 2.1, 2.4 and 2.7. In all cases, the primary

bifurcation leading to local instability is the same. After local instability sets in, the

global dynamics becomes quite different however. Figure 2.3 shows the dynamics of all

three cases, the original backward looking case, the perfectly forward looking case and

the boundedly rational forward looking case. Both forward looking cases clearly have

price fluctuations with smaller amplitude. In contrast to the perfectly forward looking

case, with boundedly rational forward looking agents simulations show that a secondary

bifurcation and a rational route to randomness (i.e. a bifurcation route to chaos) occur,

but for higher values of β than in the original BH-model and with chaotic fluctuations
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with smaller amplitude. The investigation of the case β = ∞ helps us to understand the

origins of this difference, the intuition behind it and its economic consequences.

For β = ∞, the difference in fractions (2.26) becomes:

mt+1 =





+1, if
b

2
(p2

t+1 − p2
t ) > C,

−1, if,
b

2
(p2

t+1 − p2
t ) < C,

and, using (2.25), the price at time t+ 1 becomes

pt+1 =





p∗, if pt+1 >
√
p2

t + 2C/b,

A

B
− b

B
pt, if pt+1 <

√
p2

t + 2C/b,

√
p2

t + 2C/b, otherwise.

If we define p̄ such that
√
p̄2 + 2C/b = p∗ and p̂ such that A/B− (b/B)p̂ =

√
p̂2 + 2C/b,

the map h∞ becomes:3

pt+1 = h∞(pt) =





p∗, if pt < p̄,

√
p2

t + 2C/b, if p ∈ [p̄, p̂],

A

B
− b

B
pt, if pt > p̂.

(2.28)

Two graphs of the map h∞ are given in Figure 2.10 in the Appendix illustrating the

proofs. The following theorem states that, if the market is sufficiently unstable, in the

case with boundedly rational agents complicated dynamical behavior arises.

Theorem 2.8 For β = +∞, when the market is locally unstable (i.e. b/B > 1) and when

information costs C > 0, there exists a value M > 1 (depending on p∗, C and b) such

that:

(i) when b/B ∈ (1,M ], for an interval of initial conditions, the price dynamics is

bounded away from p∗.

3Notice that p̄ is only defined if C is not too large. If p̄ is well defined, so is p̂ and p̂ ∈ (p̄, p∗).
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Figure 2.6: Comparison of the effect of an homoclinic point in the case of backward looking
agents (left panel) with the case of boundedly rational forward looking agents (right panel).
Notice that even if the price fluctuations are qualitatively similar, they are larger and less
frequent when agents are backward looking. In both cases the parameters are: A = 1.5, B =
0.85, b = 2.15 (this leads to p∗ = 0.5), β = 200 and C = 0.1.

(ii) when b/B > M , there exist infinitely many homoclinic points p, that is, points such

that limn→+∞ hn
∞(p) = p∗ and limn→−∞ hn

∞(p) = p∗.

Recall from Subsection 2.3.1 that in the case with perfectly forward looking agents

local instability always leads to a stable 2-cycle. In the case with boundedly rational

forward looking agents more complicated dynamics arises. Mathematically this difference

is explained by the fact that in the perfectly forward looking case the map g∞ has two

critical points (i.e. points where the map has a local maximum or a local minimum; see

Figure 2.2), whereas in the boundedly rational forward looking case the map h∞ has only

one critical point (a local maximum) and the map is linearly decreasing for all p > p∗. In

particular, if the local instability is strong enough (i.e. b/B is large enough), the steady

state p∗ of the map h∞ has homoclinic points (i.e. points whose time path converges

to p∗ both forward and backward in time). As is well known, existence of homoclinic

points implies complicated, chaotic dynamical behavior as illustrated in the time series of

Figure 2.5 and 2.6.

From an economic viewpoint the key difference is that boundedly rational agents make

errors in their estimation of expected profits. In particular, when the price pt > p∗ is large,

boundedly rational forward looking agents expect a high profit and therefore stick to the

simple, naive strategy. This profit expectation turns out to be wrong, and the error may

become so large that (almost) all agents switch to the rational strategy, pushing prices

back (close) to the steady state. This interaction between local instability and global

stability generates chaotic price fluctuations when the intensity of choice is high, as in

case of backward looking agents. Nevertheless the size of such fluctuations remains limited
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as in the case of perfectly forward looking agents. Forward looking behavior thus dampens

the amplitude of price fluctuations, while bounded rationality may lead to chaotic (small

amplitude) fluctuations.

2.4 An optimizing representative agent

Until now we have focussed on a heterogeneous agent framework, where agents switch

between a costly sophisticated and a cheap simple rule. The aim of this section is to

reconcile the heterogeneous agent framework with that of a representative agent optimally

choosing from a continuum of expectation rules of different quality. The representative

agent outweighs the benefits of a better prediction rule against the costs of information

gathering, or deliberation costs, in the spirit of Simon (1955, 1957). Our approach has

been inspired by a recent chapter of Dudek (2004); see also Evans and Ramey (1992).

Consider a cobweb model with a representative supplier. As before the production

decision at time t depends upon the prediction pe
t+1 for the price at time t + 1. The

representative supplier can optimally choose among a continuum of forecasting rules, each

with different quality and costs. At time t, choosing a predictor with quality q ∈ [0, 1]

corresponds to buy, at a cost C(q), a signal νt such that

νt =





pt+1, with probability q,

pt, with probability 1− q.

(2.29)

The information gathering cost function C(q) is assumed to be increasing and convex.

In order to optimally choose the quality of the signal, the representative agent computes

his expected net profit and maximizes it with respect to q. In general, a better signal

gives a higher gross expected profit at a higher cost. At period t, the trade off between

expected profits and information gathering costs sets the optimal predictor quality, q∗t ,

which determines the optimal supply xt, which, given the demand, determines the realized

price and profit at time t + 1, and so on and so forth. The purpose of this section is to

investigate the equilibrium price dynamics generated by this mechanism and to compare

it with the heterogeneous agent models of the previous section.

Similarly to Subsection 2.3.1, we focus on the case of a perfectly forward looking

representative agent, that is, the representative agent behaves “as if” he has perfect

foresight on expected profit and no systematic errors are made in estimating expected

profits. Expected profits of a representative agent choosing the perfect foresight forecast
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with probability q and the naive forecast with probability (1− q) is then given by:

πe
t+1(q) = qπ(pt+1, pt+1) + (1− q)π(pt+1, pt). (2.30)

In this case the fitness measure for using quality q is given by:

U e
t+1(q) = πe

t+1 − C(q). (2.31)

Similarly to the story underlying the managerial perfect foresight equilibrium of Subsec-

tion 2.3.1, we assume that there is a continuum of managers who offer to sell a predictor of

quality q ∈ [0, 1]. The managers have perfect foresight on expected profits. The represen-

tative agent can not compute the expected profit by himself, but compares the fitnesses

announced by the managers without knowing the value of C(q) and thus being unable to

derive pt+1 from public information.

To optimally choose the quality of the signal, the representative agent compares the

fitness associated with each predictor q ∈ [0, 1]. At period t, by choosing the predictor,

that is, the level of q that grants him the higher fitness, the agent behaves “as if” he is

solving:

Argmaxq{U e
t+1(q)} = Argmaxq{qπ(pt+1, pt+1) + (1− q)π(pt+1, pt)− C(q)}. (2.32)

If this maximization problem has an interior solution, it is given by the solution of the

first order condition:

π(pt+1, pt+1)− π(pt+1, pt) =
b

2
(pt+1 − pt)

2 = C ′(q). (2.33)

The specific solution depends on the functional form of C(q). In general, given a solution

of the maximization problem at time t, which we shall call q∗t , we can derive the implicit

equation that sets the price at time t + 1. To do that notice that, by the Law of Large

Numbers, on average the representative agent produces:

S̄(νt) = S(ν̄t) = bq∗t pt+1 + b(1− q∗t )pt.

At time t+ 1 market clearing (implicitly) defines the price pt+1 according to:

A−Bpt+1 = bq∗t pt+1 + b(1− q∗t )pt. (2.34)

The price is only implicitly defined because the optimal level of q is, in general, a function

of pt and pt+1, that is, q∗t = q∗t (pt, pt+1). In what follows we investigate the equilibrium
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price dynamics for different functional forms of the information gathering cost function

C(q).

2.4.1 Linear cost function

Consider first the case of a linear information gathering cost function C(q). The following

theorem shows that in the linear case, the price dynamics described by (2.34) exactly

corresponds to the price dynamics of the heterogeneous agent model with perfectly forward

looking agents in Subsection 2.3.1 when β = ∞.

Theorem 2.9 When the marginal information gathering costs of the representative agent

is constant, i.e. , C ′(q) = C, the system (2.33-2.34) is equivalent to the heterogeneous

agent system (2.20-2.21) with β = ∞. Consequently, when the market is locally unstable

the system (2.33-2.34) always converges to a period 2 orbit.

This is a first interesting correspondence between the models: the representative agent

model with a linear cost function for information gathering corresponds exactly to the

heterogeneous agent model with intensity of choice β = ∞. This result may be explained

by observing two key features: (1) in the limit β →∞ all agents choose the best predictor,

so that the heterogeneous agent model reduces to a single agent model (possibly switching

between strategies over time); (2) in the case of a linear information gathering function

in each time period typically it is optimal for the representative agent to use an extreme

signal, that is, to use either q∗ = 0 (naive) or q∗ = 1 (rational expectations).

2.4.2 Nonlinear cost function

What is the relation between a heterogeneous agent and a representative agent framework

in the case of a general, nonlinear information gathering function C(q)? To answer this

question, it is useful to consider an explicit example. Take as cost function:

C(q;α) = Cqα, α > 1,

where C(0) = 0, C(1) = C, C ′(0) = 0 and C ′(1) = αC. In this case the maximization

problem (2.32) may have an interior solution. In order to find it, we solve the first order

condition (2.33) and get:

q∗t =
[b/2(pt+1 − pt)

2

αC

] 1
α−1

.

Notice that as long as the cost function is convex (α > 1), the optimal level of q is an

increasing function of pt+1. This turns out to be important for the uniqueness of the
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market equilibrium price. The market equilibrium equation (2.34) becomes:

A−Bpt+1 =
[b/2(pt+1 − pt)

2

αC

] 1
α−1

b(pt+1 − pt) + bpt. (2.35)

Theorem 2.10 Let α > 1. For any fixed value of pt ≥ 0, the system (2.35) implies a

well-defined map pt+1 = r(pt). That is, there exists a unique minimum non-negative price

pt+1 such that, at time t + 1, either the market is in equilibrium or the excess supply is

positive at pt+1 = 0.

A straightforward calculation shows that for any α ≥ 1 and C ≥ 0 the fixed point

of the system is p∗ = A/(b + B), as before. Figure 2.7 shows a graph of the map in the

case of a quadratic cost function (α = 2). The following theorem characterizes the price

dynamics.

Theorem 2.11 Let C(q) = Cq2. When b/B < 1, the price dynamics converges to the

steady state equilibrium p∗. When b/B > 1, the steady state is locally unstable and a

unique globally stable 2-cycle exists.

It turns out to be possible to generalize Theorem 2.11 for any increasing and convex

cost function C(q). In fact, the condition for the existence of an interior solution of

(2.32) defines four parallel lines with slope one and intercepts
√

2C ′(1)/b,
√

2C ′(0)/b,

−
√

2C ′(0)/b, −
√

2C ′(1)/b; see the Proof of Theorem 2.12 for details. We can use these

lines to define the price dynamics in different regions, for any given C(q). In some regions

delimited by these lines the representative agent is choosing either q = 0 or q = 1 (see

Figure 2.7). For all other values of q the dynamics is implicitly determined by the solution

of the corresponding market equilibrium equation. In terms of the deviation xt = pt − p∗

from the steady state, the map becomes:

xt+1 = r(xt) =





0 if xt ≤ −
√

2C ′(1)/b,

implicit if xt ∈
(
−

√
2C ′(1)/b,−

√
2C ′(0)/b

B

B + b

)
,

− b

B
xt if xt ∈

[
−

√
2C ′(0)/b

B

B + b
,+

√
2C ′(0)/b

B

B + b

]
,

implicit if xt ∈
(

+
√

2C ′(0)/b
B

B + b
,+

√
2C ′(1)/b

)
,

0 if xt ≥
√

2C ′(1)/b.

(2.36)
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Figure 2.7: Graphs of the map xt+1 = r(xt) in (2.36) for different cost functions. Left panel:
C(q) = 0.2q2. Right panel: C(q) = 0.2q2 + 0.1q. In both case, due to the symmetry of the map
around x = 0, the dynamics converges to a 2-cycle. The lines parallel to the diagonal delimit
zones where an implicit solution exists, as specified in (2.36). Other parameters are B = 1 and
b = 2.0.

Figure 2.7 shows the graph of r in two specific cases. The next Theorem shows that

only this partial knowledge of the map r is sufficient to characterize the price dynamic:

Theorem 2.12 Let C(q) be any increasing and convex information gathering cost func-

tion. When b/B < 1 the price dynamics converges to the stable steady state p∗; when

b/B > 1 the steady state is locally unstable and a unique globally stable 2-cycle exists.

Notice that according to Theorem 2.12, in the case of a perfectly forward looking

representative agent concerning expected profit, in the long run the incentives to buy

a perfect foresight predictor are never strong enough, no matter how strong the local

instability of the market is. Stated differently, for any functional form of the cost function,

either (when the market is stable) the agent always chooses a cheap naive predictor (q = 0)

or (when the market is unstable) he switches between a naive predictor and a better, but

non-perfect, predictor with q < 1. Before concluding, we present another interesting

relationship between the representative agent and the heterogeneous agent framework of

Subsection 2.3.1.

Theorem 2.13 There exists a non-decreasing and convex information gathering cost

function C(q) such that the price dynamics driven by the interaction of a group of het-

erogeneous agents choosing between a freely available naive forecast (q = 0) and a costly

perfect foresight forecast (q = 1) at constant cost C as given by (2.20-2.21) is the same

as if a representative agent is operating in the market and optimally chooses a signal

q ∈ [0, 1] with cost C(q) as in(2.33-2.34). For every fixed β and C the cost function C(q)
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is given by:

C(q) =





∫ q

t0

(2 tanh−1(2t− 1)

β
+ C

)
dt, if q ∈ (t0, 1],

0, if q ∈ [0, t0].

where t0 = (1 +m∗)/2.

It can be shown that this exact correspondence between a heterogeneous agent and

a representative agent framework is not only valid in the perfectly forward looking case

studied in this section, but holds more generally. For example also in the case of boundedly

rational forward looking agents (making mistakes in the estimation of expected profits)

or in the original framework of BH (1997) (with backward looking agents and strategy

switching based on realized profits). Hence, the same trade off between local instability

and global stability when a group of heterogeneous agent is operating in the market exists

when a representative agent optimally chooses the quality of his price predictor. This

kind of theorems show that, for an outside observer, it would be impossible to distinguish

between a heterogeneous agent and the corresponding representative agent economy (cf.

e.g. the discussion in (Kirman, 1992)).

2.5 Conclusion

The Adaptive Rational Equilibrium dynamic can produce complicated equilibrium price

dynamics, due to the interaction between a locally destabilizing force when agents use

simple, cheap strategies and a far from the steady state globally stabilizing force when

errors become so large that most agents switch to the costly rational forecast. In the

original framework, strategy selection is driven by experience or regret, as it based upon

a measure of past realized profits. In this chapter we have investigated how forward look-

ing behavior in strategy selection may affect the co-evolving equilibrium dynamics. With

forward looking behavior, the same local instability due to costly information gathering

and free riding remains, but the amplitude of price fluctuations is dampened. How ex-

actly forward looking behavior affects the globally stabilizing force depends upon how

sophisticated agents are in computing expected profits. When agents are able to make a

perfect forecast for expected profits, prices lock into a stable 2-cycle and the errors of the

cheap naive strategy remain small enough for the population of agents never to switch

completely to the costly rational forecast. If however agents can only make a boundedly

rational forecast of expected profits, errors may grow big enough for (almost) all agents to

switch to the costly rational strategy. In that case, the globally stabilizing force becomes
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strong enough to push prices back close to the (locally unstable) steady state, thus causing

irregular switching between price fluctuations of low and moderate amplitude. Boundedly

rational forward looking agents thus dampen the amplitude of the price oscillations but

a rational route to randomness, as in the backward looking case, remains.

We also have established an equivalence relation between heterogeneous agent models

with evolutionary switching of strategies and a representative agent who optimally chooses

between the benefits of a high quality forecasts and the associated information gathering

costs. To an outside observer it is impossible to distinguish between the heterogeneous

agent model and the corresponding optimal representative agent framework.

We emphasize that we have shown these results to hold in a supply-driven commodity

market, with negative expectational feedback (i.e. a high price forecast leads to high

production and thus a low realized market price). An interesting question for future work

is whether similar results hold for speculative asset markets. In fact, for asset markets

we conjecture that forward looking behavior may actually destabilize the amplitude of

price fluctuations, because of the positive expectational feedback (i.e. high expectations

of future asset prices lead to increased asset demand and thus higher realized market

prices). We leave this conjecture for future research.
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Appendix

2.A Proofs

Proofs of Section 2.2

Proof of Lemma 2.1 The map f∞ defined in (2.10) is two-dimensional. Define f 1
∞ as

a one-dimensional projection of f∞ according to

f 1
∞(pt) = f∞(pt, (f

−
∞,1)

−1(pt))

where f−∞,1(·) = F∞,1(·,−1) and F∞,1 is the first component of the map Fβ, for β = ∞,

defined in Section 2.2 below equations (2.8-2.9). By applying this definition, one can

easily show that

f 1
∞(pt) =

{
A
B
− b

B
pt, if pt ∈ [p∗ − ε, p∗ + ε]

p∗, otherwise

where ε = b
b+B

√
2C/b. The graph of f 1

∞ is given in Figure 2.2. The lemma follows by

noticing that the difference between the maximum and the minimum of the map f 1
∞ is

2 b2

B(B+b)

√
2C/b. ¤

Proofs of Section 2.3

Proof of Theorem 2.3 From (2.20) the excess supply function ES(pt, pt+1) is given

by:

ES(pt, pt+1) =
b

2
(pt+1(1 +m(pt, pt+1)) + pt(1−m(pt, pt+1)))− A+Bpt+1, (2.37)

where

m(pt, pt+1) = mt = tanh

(
β

2

[
b

2
(pt+1 − pt)

2 − C

])
. (2.38)

Consider for a moment the function ES(pt, y). We define a function y = g̃(pt) such that

ES(pt, y) = 0. A straightforward computation shows that:

∂ES(pt, y)

∂y
=
b

2

(
1 +mt + β

b

2
(y − pt)

2(1−mt)(1 +mt)

)
+B > 0.

This implies that given any value of pt we can always find a unique y such that ES(pt, y) =

0. Consequently the function y = g̃(pt) is well defined and, by the implicit function
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theorem, the function g̃ is C1. Define the map gβ as follows

gβ(pt) =

{
g̃(pt) if g̃(pt) ≥ 0

0 if g̃(pt) < 0.

This means that when gβ(pt) = pt+1 > 0, we have ES(pt, pt+1) = 0, whereas when

gβ(pt) = pt+1 = 0, there is excess supply even when the market price is pt+1 = 0. In fact

∂ES(pt, y)/∂y > 0 implies that when g̃(pt) < 0, ES(pt, 0) > ES(pt, g̃(pt)) = 0. Finally

the map g is continuous but in general not differentiable at the lowest price pt for which

gβ(pt) = 0. ¤

Proof of Theorem 2.4 In terms of xt = pt − p∗ the system (2.20-2.21) becomes:





−Bxt+1 = b
2
(xt+1(1 +mt) + xt(1−mt))

mt = tanh
(

β
2

[
b
2
(xt+1 − xt)

2 − C
])

with fixed point x∗ = 0 and corresponding m∗ = tanh(−βC/2). Similarly as in the proof

of Theorem 2.3 it follows that there exists a well defined map xt+1 = ḡβ(xt), obtained

from the map pt+1 = gβ(pt) by choosing p∗ as the origin. To keep the notation simple we

drop the bar, and write g instead of ḡ in what follows. The following properties of the

map g will be useful to prove the Theorem:

(a) g is odd, that is g(−x) = −g(x), and g(x) > 0 when x < 0.

(b) When β > β1 there exists a unique period 2 orbit {a,−a}, satisfying g(g(a)) = a

and g(a) = −a.

(c) g′(0) < g′(x) < 1, for all x.

(d) The map g has two critical points, c and −c. Furthermore g′(x) < 0 iff x ∈ (−c, c),
so that g has a local minimum at x = c and a local maximum at x = −c.

We postpone the proof of properties (a) − (d), and first use them to prove (i) − (iii) in

Theorem 2.4. Notice that, (a) and (d) imply that g(c) is in fact a global minimum and

g(−c) a global maximum. Using the implicit function theorem, we get:

g′(x) = −
∂ES(x,y)

∂x
∂ES(x,y)

∂y

|y=g(x) =
−b(1− α)(1−m(x, y))

b(1 +m(x, y) + α(1−m(x, y))) + 2B
|y=g(x), (2.39)

where

α =
b

2
β(y − x)2(1 +m(x, y))
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and ES(x, y) is the excess supply function defined in (2.37) and m(x, y) is the difference

of agents’ fractions in (2.38).

Proof of (i). The global stability of x∗ = 0 when C = 0 follows from the fact that in

this case g is a contraction. Indeed using (2.39) one gets g′(0) = −b/(b + 2B) > −1, so

that property (c) implies g′(x) ∈ (−1, 1) for all x.

Proof of (ii). The global stability of the fixed point when β < β1 follows again from

the fact that g is a contraction. In fact

g′(0) = λ(β) = − b(1−m(0, 0))

b(1 +m(0, 0)) + 2B
> −1 iff β < β1,

so that (c) implies g′(x) ∈ (−1, 1). Local instability follows from the fact that g′(0) < −1

when β > β1. The value of β1 is determined by the condition g′(0) = −1 which gives

m(0, 0) = m∗ = −B/b.
Proof of (iii). Uniqueness of the period 2 cycle follows from (b). In order to show

global stability of the 2-cycle we have to characterize the shape of the map g2. By (d) the

map g has only two critical points, −c < 0 (local maximum) and c > 0 (local minimum).

From now on we concentrate on g2 for x > 0, the results for x < 0 follow by symmetry. We

look for the critical points of g2, that is for the points where (g2)′(x) = g′(g(x))g′(x) = 0.

The positive critical points of g2 are the positive critical point c of g, and points d > 0

such that g(d) = −c. We distinguish two cases.

CASE 1.: g(c) > −c and g(−c) < c (see Figure 2.8). In this case, because c is larger

than the global maximum g(−c), there is no d > 0 such that g(−d) = c. Hence c and

−c are the unique critical points of g2. We claim that (g2)′(x) > 0 when x ∈ (−c, c).
This follows because x ∈ (−c, c) implies both g′(x) < 0 and g(x) ∈ (−c, c) so that

(g2)′(x) = g′(g(x))g′(x) > 0. This, together with g(c) > −c, implies that at the unique

point a > 0 for which g(a) = −a, we have a < c and g′(a) > 0. When β > β1, g
′(0) < −1,

so that (g2)′(0) > 1. Hence, x = a is the unique intersection point of g2(x) with y = x

and (g2)′(a) < 1. {a,−a} is therefore a locally stable 2-cycle. Since g2(x) > 0 for all

x > 0 all points (except the unstable steady state) converge and the 2-cycle is globally

stable.

CASE 2.: g(c) < −c and g(−c) > c (see Figure 2.9). In this case there exist two other

positive critical points of g2, d1 and d2, d1 < c < d2, for which g(x) = −c. Moreover,

property (b) implies that a is the unique positive intersection point of g(x) with the line

y = −x, and since g(c) < −c we have d1 < c < a < d2. By symmetry also −d1 and −d2

are critical points of g2 and −d2 < −a < −c < d1. Clearly g2(d1) and g2(d2) are local
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Figure 2.8: Graph of the map g∞ (left panel) and its second iterate g2 (right panel) in the
case when c > a. A = 1.5, B = 1, b = 2, C = 0.1 and β = 20.

maxima and g2(c) is a local minimum, and using (c) and (d) we get 0 ≤ (g2)′(x) < 1, for

all x ∈ [c, d2]. This implies that a ∈ (c, d2) is a locally stable fixed point of g2. From the

global shape of the graph of g2 it follows easily that the 2-cycle is globally stable.
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Figure 2.9: Graph of the map g∞ (left panel) and its second iterate g2 (right panel) in the
case when c < a. A = 1.5, B = 1, b = 2, C = 0.1 and β = 50.

To conclude the proof we have to show that (a), (b), (c), (d) hold.

(a). In deviations x from the steady state the excess supply function is

ES(xt, xt+1) =
b

2
(xt+1(1 +m(xt, xt+1)) + xt(1−m(xt, xt+1))) +Bpt+1. (2.40)

If ES(x, g(x)) = 0 then also ES(−x,−g(x)) = 0, implying g(−x) = −g(x). Moreover,

when x > 0 (x < 0) the only possibility to have ES(x, g(x)) = 0 is g(x) < 0 (g(x) < 0).

(b). We are looking for a point a that g(g(a)) = a. If such a point exists, ES(a, g(a)) =

0 implies ES(g(a), g(g(a))) = ES(g(a), a) = 0 and vice versa. Hence the existence and
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uniqueness of a period-2 orbit {a, g(a)} is equivalent to the existence and uniqueness of

a such that ES(a, g(a)) = ES(g(a), a) = 0. Consider the change of variable z = a+ g(a),

w = g(a) − a. We can rewrite ES(a, g(a)) = ES((z − w)/2, (z + w)/2) = ẼS(w, z).

In terms of the new variables and the function ẼS, the existence and uniqueness of

a is equivalent to the existence and uniqueness of two points z̄ and w̄ such that both

ẼS(w̄, z̄) = ẼS(−w̄, z̄) = 0. Writing down these two conditions as a function of the new

variables one obtains: 



z̄ = −B+bm(w̄)
B+b

w̄

z̄ = B+bm(w̄)
B+b

w̄

(2.41)

where, with abuse of notation, m(w) is the difference of fraction in (2.38) defined as a

function of g(a) − a = w. Notice that if a solution of (2.41) exists, then z̄ = 0 and

bm(w̄) = −B. Obviously z̄ = 0 implies g(a) = −a. The other equation bm(w̄) = −B is

only possible when β > β1. In fact, when β < β1, m(0) > −B/b so that m(w) > m(0)

implies m(w) > −B/b. When β > β1, bm(w) = −B has two symmetric solutions.

Consequently, a unique symmetric 2-cycle {a,−a} exists for β > β1.

(c). The expression of g′(x) in (2.39) can be rewritten as:

g′(x) =
−b(1− α)

b
(

(1+m(x,y))
(1−m(x,y))

+ α
)

+ 2B
(1−m(x,y))

, (2.42)

where

α =
b

2
β(y − x)2(1 +m(x, y))

Since the difference of fractions m is an increasing function of (y − x)2, α is also an

increasing function of (y − x)2. Moreover α ≥ 0 and α = 0 when (y − x)2 = 0. These

properties together with m ∈ (−1, 1) imply that the denominator of g′(x) is a positive

increasing function of (y−x)2 and that the numerator is an increasing function of (y−x)2

which is negative when (y − x)2 = 0. These facts imply that the minimum of g′(x) is

achieved when y − x = 0 that is when y = x which implies x = 0. Moreover when

g′(x) > 0, that is when α > 1, one can easily show that the numerator is always smaller

then the denominator so that g′(x) < 1 for all x.

(d). A critical point c satisfies g′(c) = 0. From (2.42), and from the facts that α is

increasing in (y − x)2 and α = 0 for (y − x)2 = 0, it follows that there exists a unique

(y − x)2 = k such that g′ = 0. In order to show that g has a unique critical point c > 0,

we thus have to show that c is the unique solution of (g(c)− c)2 = k. This translates into

showing that g(c) − c = −
√
k has a unique positive solution4. We claim here the more

4Since by (a) g(x) < 0 when x > 0, in this case the equation g(c)− c = +
√
k has no positive solution.
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general statement that the line y = x − h and the curve y = g(x) intersect only once

when x > 0, ∀h > 0. Change variables from (x, y) to (x, h = x− y), and consider ES as

a function of the new variables. We have ES(x, y) = ES(x, x− h) = ÊS(x, h). One can

easily show that holds:

∂ÊS(x, h)

∂x
=
∂(b/2((1 +m(h))(x− h) + (1−m(h))x) + B(x− h))

∂x
= B + b > 0.

As a consequence we can apply the implicit function theorem and find a function t such

that ÊS(x = t(h), h) = 0. This means that ∀h > 0 it exists a unique x = t(h) and,

as a consequence, a unique y = x − h where ÊS(x, h) = ÊS(x, x − y) = ES(x, y) = 0.

From the last expression it follows that y = g(x), so that, for every given h, there exists

a unique point (x, g(x)) with g(x) = x− h. From this we conlcude that g(x)− x = −
√
k

has a unique solution c. Property (a) implies c > 0. Since c is the unique positive critical

point, by symmetry also −c is a critical point. Being c and −c the only critical points

and g′(0) < 0 it must be that g′(x) < 0 iff x ∈ (−c, c). This implies that g(c) is a local

minimum and g(−c) a local maximum. ¤

Proof of Theorem 2.5 The existence of a 2-cycle can be proven along the same lines

as in Theorem 2.4. Consider the explicit definition of g∞ in (2.22). Let c and −c be the

critical points and d2 > c and −d2 < −c points such that g(d2) = −c and g(−d2) = c as

in the proof of Theorem 2.4. A straightforward computation shows that g2(x) = x for all

x ∈ [−d2, c] ∪ [c, d2]. This implies that g has a continuum of 2-cycles. The computation

of ∆g
∞ follows directly from the definition of the map g∞ in (2.22). ¤

Proof of Theorem 2.6 From (2.25) excess supply is given by

ES(pt, pt+1) =
b

2
[pt+1(1 +mt) + pt(1−mt)]− A+Bpt+1 = 0,

where as in (2.26)

mt = tanh

(
β

2

[
b

2
(p2

t+1 − p2
t )− C

])
.

We are looking for a function h (we drop the subscript β here) such that ES(pt, h(pt)) = 0.

First, we show that there always exists a unique minimum non-negative price pt+1 such

that, at time t+ 1, either the market is in equilibrium or the excess supply is positive at

pt+1 = 0. Second, we show that under certain parameters restrictions h is continuous.

Existence. Write y = pt+1 and x = pt, and let p∗ = A/(B+ b) as usual and notice that
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ES(p∗, p∗) = 0. Consider y > x, it can be verified that in this case:

∂ES(x, y)

∂y
=
b

2

(
1 +mt +

β

2
by(y − x)(1−mt)(1 +mt)

)
+B > 0. (2.43)

Consequently we can apply the implicit function theorem and there exists a C1 map h

such that ES(x, h(x)) = 0. The case y < x is more difficult, since ∂ES(x, y)/∂y may be

zero. We can rewrite the condition ES(x, y) = 0 as:

2(A− (B + b)y)

b(y − x)
= m(y, x)− 1 (2.44)

where

m(y, x) = tanh

(
β

2

b

2
(y2 − x2)− β

2
C

)
.

For y < x, −2 < m− 1 < −1 together with (2.44) imply

A

B
− b

B
x < y <

2A

2B + b
− b

2B + b
x (2.45)

and therefore also x > p∗. Eq. (2.44) and −2 < m− 1 < −1 also imply that when y = 0

there is a value x̃ ∈ (A/b, 2A/b) such that ES(x̃, 0) = 0. Furthermore since

∂ES(x, y)

∂x
|y=0 =

b

2
(1−mt − βbx(y − x)(1−mt)(1 +mt)) |y=0 > 0 (2.46)

such a value is unique and ES(x, 0) > 0 for x > x̃, so that we can define h(x) = 0 for

x ∈ [x̃,∞). Notice that for all y ≤ x, ∂ES(x, y)/∂x > 0. By the implicit function theo-

rem there exists a C1 function x = s(y) such that ES(s(y), y) = 0. Clearly s(p∗) = p∗ and

s(0) = x̃. Furthermore by(2.45), s(y) must always be between the lines y = A/b− b/Bx

and y = 2A/(2B+ b)− b/(2B+ b)x. The function h we are looking for is not well defined

yet since many different y values may be mapped to the same x through the map s.

However, when this is the case case, we can always choose the minimum of these y values.

Consequently there always exists a unique minimum non negative price y = pt+1 such

that, at time t+ 1, either the market is in equilibrium or the excess supply is positive at

pt+1 = 0 so that h is well defined. Notice that y = pt+1 is the lowest non negative price

for which ES(pt, y) ≥ 0.

Continuity. The map h defined above may be discontinuous. A sufficient condition for

continuity can be obtained by restricting parameters values such that ∂ES(x, y)/∂y > 0,

also for y < x. In order to obtain such restriction we use (2.43) and (2.44) to evaluate
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∂ES(x, y)/∂y > 0 in those points (x, y) for which ES(x, y) = 0:

∂ES(x, y)

∂y
|ES=0 = B + (1 +m(x, y))

b

2
(1− βy(A− (B + b)y)) > 0. (2.47)

Since (2.45) implies that 0 < y < p∗, we have 1− βy(A− (B + b)y) has a minimum value

1− (βAp∗/4). As a consequence condition (2.47) is satisfied when

B + (1 +m(x, y))
b

2
(1− β

Ap∗

4
) > 0. (2.48)

This is clearly always the case when β < 4/(Ap∗). Otherwise, when β ≥ 4/(Ap∗), since

0 ≤ y < x, condition (2.48) is satisfied when

B + (1 +m(0, 0))
b

2
(1− β

Ap∗

4
) > 0. (2.49)

which can be rewritten as condition (2.27) in Theorem 2.6. ¤

Proof of Theorem 2.7 From Theorem 2.6 one can derive that the map hβ(p) is always

well defined and differentiable in a neighborhood of the point (p∗, p∗). Furthermore one

can use expression (2.43) and (2.46) to compute:

(hβ)′(p∗) = λ(β) = −(∂ES(x, y)/∂x)|(p∗,p∗)
(∂ES(x, y)/∂y)|(p∗,p∗) = − b(1−m∗(β))

2B + b(1 +m∗(β))

The value of β1 is found by imposing λ(β) = −1. Local stability follows from λ(β) ∈
(−1, 0) when β < β1. When β > β1, λ(β) < −1 and graphical analysis of h2

β shows that

h2
β has (at least) two other intersection points with the diagonal than p∗. ¤

Proof of Theorem 2.8 Consider the map h∞ given in (2.28). Call p̄ = a and p̂ = c

that is a solves
√
a2 + 2C/b = p∗ and c solves A/B − (b/B)c =

√
c2 + 2C/b. One can

show easily that these points always exist, as long as 2C/b < (p∗)2 which we assume here,

are unique, and c > a. In terms of the points a and c, the map h∞ can be rewritten as:

h∞(pt) =





p∗, 0 ≤ pt < a

√
p2

t + 2C/b, p ∈ [a, c]

p∗ − (b/B)(pt − p∗), pt > c.

The map h∞ has a global maximum at the critical point c. Let d be the point such
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that h∞(d) = a. Notice that when p > d, h2
∞(p) = p∗. Two examples of the map are

given in Figure 2.10.
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Figure 2.10: Graphs of the map h∞. In the left panel (b/B = 1.2) h∞(c) < d implies that the
price fluctuations remain bounded away from p∗ in the long run. In the right panel, (b/B = 2),
h∞(c) > d implies that the map has (infinitely many) homoclinic points and a typical price time
series converges to the locally unstable steady state p∗. Other parameters: A = 1.5, b = 2 and
C = 0.1.

Since b/B > 1, the steady state p∗ is locally unstable. In what follows we show that for

b/B sufficiently large, there are (infinitely many) homoclinic points, whose orbits converge

to p∗ both forward and backward in time. We consider two cases:

CASE 1.: h∞(c) < d (as in the left panel of Figure 2.10). When h∞(c) < d we have

h2
∞(c) < h4

∞(c) < p∗ < h3
∞(c) < h∞(c). Let I1 = [h2

∞(c), h4
∞(c)] and I2 = [h3

∞(c), h∞(c)].

In this case it is easy to show all initial states p0 are “repelled” from p∗ and mapped in

I1 ∪ I2 after some iterations. The long run dynamics is therefore contained in the set

I1 ∪ I2. and therefore bounded away from p∗.

CASE 2.:, h∞(c) ≥ d (as in the right panel of Figure 2.10). In this case the critical

point c is a homoclinic point. It converges to p∗ forward in time and also backwards in

time (take successive inverse images x ¿ c, with hk
∞(x) = c, k = 1, 2, ...). In fact, there is

an interval I of homoclinic points containing c.

To conclude the proof we have to show that there exists an M > 1 such that when

b/B > M then case 2 obtains, i.e. h∞(c) ≥ d. We derive the existence of such a value M

from the dependence of the point d and h∞(c) upon b/B. Define B/b = N , N ∈ (0, 1).

Depending upon N , p∗, C and b, the point d and the image h∞(c) are defined as:

d(N) = p∗ +N
(
p∗ −

√
(p∗)2 − 2C/b

)

h∞(c;N) = p∗ + p∗
1−N

(√
1 + 1−N

1+N
(2C)/b− 1

)

One can show that d(0) < h∞(c; 0), d(1) > h∞(c; 1) and d′(N) > 0. Furthermore (p∗)2 >
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2C/b, which is assumed here to guarantee the existence of a and c, is a sufficient condition

for ∂h∞(c;N)/∂N < 0. These facts imply that there exists a unique N such that d(N) =

h∞(c;N). It follows that there exists a uniqueM = 1/N such that: (i) when b/B ∈ (1,M ],

case 1. applies, and (ii) when b/B > M , case 2. applies. ¤

Proofs of Section 2.4

Proof of Theorem 2.9 When C ′(q) = C the first order condition (2.33) for the optimal

choice of q becomes:

∆πt+1 =
b

2
(pt+1 − pt)

2 = C

Consequently in general there is no interior solution, but q∗t = 1 if ∆πt+1 > C and q∗t = 0

if ∆πt+1 < C. This implies that the equilibrium price dynamics (2.34) is governed either

by näıve expectations or by rational expectation, which gives exactly the same dynamical

system as in (2.20-2.21) with β = +∞, or equivalently as in (2.22). ¤

Proof of Theorem 2.10 Consider the market equilibrium equation (2.35):

A−Bpt+1 =
[b/2(pt+1 − pt)

2

αC

] 1
α−1

b(pt+1 − pt) + bpt.

Notice that, given the values of the parameters A, B, b, α, C, for any fixed value of pt ≥ 0

the demand (l.h.s) is a decreasing function of pt+1, while the supply (r.h.s) is an increasing

function of pt+1 provided that α > 1. This implies that there exists a unique point x ∈ R
where demand and supply are equal. Notice that this point is negative for those values

of pt for which there is excess supply at pt+1 = 0, that is when

(1−
[ bp2

t

2αC

] 1
α−1

)bpt ≥ A

In this case we set pt+1 = 0, and otherwise pt+1 = x. ¤

Proof of Theorem 2.11 This is just a special case of Theorem 2.12. ¤

Proof of Theorem 2.12 Market clearing in (2.34) implicitly defines a map pt+1 = r(pt)

by ES(pt, r(pt)) = 0, that is,

ES(pt, r(pt)) = q∗t b(r(pt)− pt) + bpt −Bpt+1 + A = 0,
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where q∗t solves the maximization problem (2.32), whose F.O.C is

∆πt+1 =
b

2
(pt+1 − pt)

2 = C ′(q). (2.50)

The F.O.C. (2.50) gives only the interior optimal solution. From the convexity of C(q) it

follows that C ′(0) is a global minimum and C ′(1) is a global maximum of C ′(q). Hence,

q∗t = 0 if ∆πt+1 ≤ C ′(0) and q∗t = 1 if ∆π ≥ C ′(1). These two conditions on ∆πt+1

define four parallel lines in the plane (pt, pt+1) with slope 1 and intercepts
√

2C ′(1)/b,√
2C ′(0)/b, −

√
2C ′(0)/b, −

√
2C ′(1)/b. The interior solution (2.50) determines the map

r only in the region between the relevant lines in the map (2.36). The implicitly defined

part of r in (2.36) is the function r(xt) that solves

ES(xt, r(xt)) = q∗t b(r(xt)− xt) + bxt −Br(xt) = 0, (2.51)

with

q∗t = q(xt, xt+1) = (C ′)−1(
b

2
(xt+1 − xt)

2).

Notice that, since C ′(q) is increasing, (C ′)−1 is always a well defined function and is

itself increasing. We claim that the map r has exactly the same properties (a-d) as the

map g in the proof of Theorem 2.4. From property (c) it follows that when b/B < 1,

−1 < g′(x) < 1, so that the map is a contraction and all orbits converge to the steady

state p∗. From properties (a − d) and the proof of Theorem 2.4 it follows that when

b/B > 1 the steady state is locally unstable and a unique globally stable 2-cycle exists.

We conclude the proof by showing that properties (a-d) hold. in this case.

(a). From (2.51) it follows immediately that if ES(x, r(x)) = 0, then ES(−x,−r(x)) =

0. Hence r(−x) = −r(x).
(b) We show that y = r(x) has only one positive intersection a with the line y = −x.
This follows from a change in variables z = x + r(x) and w = r(x) − x as in the proof

of Theorem 2.4. In this case the corresponding system (2.41) has solution only when

b/B > 1.

(c) Obviously when the map in (2.36) is explicitly defined, r′(x) = 0 or r′(x) = −b/B.

In order to compute r′(x) when it is implicitly defined one can use the implicit function

theorem and obtain:

r′(xt) = − ∂ES/∂xt

∂ES/∂xt+1

=
q′(xt, xt+1)(xt − xt+1)

2 + q(xt, xt+1)− 1

q′(xt, xt+1)(xt − xt+1)2 + q(xt, xt+1) + B
b

(2.52)

Since both q and q′ are always positive, from the expression above it follows that r′(xt) ∈
[−b/B, 1). Notice that q′ is positive iff C ′(q) is convex.
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(d). Consider the proof of property (d) in Theorem 2.4. One can prove here that the

same statement holds by replacing (2.51) with (2.37) and (2.52) with (2.42). ¤

Proof of Theorem 2.13 Comparing (2.34) and (2.12), we have to show that there

exists a non decreasing, convex, information gathering cost function C(q), such that the

optimal solution of the representative agent problem (2.32) is given by:

q∗t = n1,t =
1 + tanh{β

2
[ b
2
(pt+1 − pt)

2 − C]}
2

. (2.53)

From the first order condition in (2.33) for an arbitrary cost function we obtain:

q∗t = (C ′)−1

(
b

2
(pt+1 − pt)

2

)
. (2.54)

Combining (2.53) and (2.54) it follows that:

(
b

2
(pt+1 − pt)

2) = C ′
(

1 + tanh
(
β[ b

2
(pt+1 − pt)

2 − C]
)

2

)
. (2.55)

In terms of the variable z = b/2(pt+1 − pt)
2 ≥ 0, (2.55) becomes:

z = C ′
(1 + tanh{β

2
[z − C]}

2

)
.

The change of variable t = (1+tanh(β(z−C)/2))/2 gives an ordinary differential equation:

2 tanh−1(2t− 1)

β
+ C = C ′(t), (2.56)

whose solution is the cost function C(q) we are looking for. The restriction z ≥ 0 implies

t ≥ (1 + tanh(−βC/2))/2 = t0. In integral form, C(q) is given by:

C(q) =

∫ q

t0

(
2 tanh−1(2t− 1)

β
+ C

)
dt+ C0, q ∈ (t0, 1]

Notice that t0 = 1+m∗
2

, C(t0) = C0 and C ′(t0) = 0. This guarantees that when pt = pt+1 =

p∗ the solution of (2.54) is q∗ = (1 + m∗)/2, the minimum fraction of rational agents at

the fixed point in the heterogeneous agent model. When q < t0 one can define without

loss of generality, C(q) = C0, and take the integration constant C0 = 0. As a result one
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gets

C(q) =

{ ∫ q

t0

(
2 tanh−1(2t−1)

β
+ C

)
dt q ∈ (t0, 1]

0 q ∈ [0, t0]

By construction, the function C(q) above has derivative C ′(q) = 0 when q ≤ t0, and C ′(q)

as in (2.56) when q > t0. Using this plus the fact that the function (tanh)−1(2t − 1) is

positive and increasing when t ≥ t0, it follows that the map C(q) is non-decreasing and

convex. ¤





Chapter 3

Competition and coordination in

participation games

3.1 Introduction

In economics and social sciences many strategic decisions can be modeled as participation

games. Market entry, route choice, union membership, voter turnout, public good provi-

sion are only a few examples. We can classify all of them as participation games where the

two actions are either to participate, action 1, or to abstain, action 0. Typically the payoff

associated with participating is a function of the number of other players participating,

while the payoff associated with abstaining is fixed. One key element of participation

games is the shape of the payoff function associated with the action of participating. On

the one hand, cases where a group of agents compete for a limited resource, as in market

entry games and route choice, can be modeled with a decreasing payoff function. The par-

ticipation payoff diminishes as the number of other participating agents increases. On the

other hand, cases where agents profit only if some of them decide to participate, such as

public good provisions, union memberships or technology adoption, can be modeled with

an increasing payoff function. The general participation game can be seen as a combina-

tion of these two types of strategic interaction. Hype cycles, for example, can be modeled

with an initially increasing and thereafter decreasing participation payoff function.

Strictly related to the shape of the participation payoff is the feedback between individ-

ual motives and the subsequent aggregate participation rate. This effect is particularly

relevant in situations where the participation game is played repeatedly over time, as

considered here. When the participation payoff is a decreasing function in the number

of other participating agents there is negative expectational feedback. In fact if, at time

t, one individual believes that the next period few agents will participate, he increases

his willingness to participate. If all agents have the same belief, the t + 1 participation

61
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rate will be high, which is the opposite of the individual beliefs at time t. In contrast,

when the participating payoff is an increasing function in the number of participating

agents there is positive expectational feedback. In this case the belief that many agents

will participate is self reinforcing, because, if many agents share this belief, the number

of participating agents will be large. The result is a positive feedback between beliefs or

motives of behavior and the realization of the aggregate outcome.

Related to expectational feedback are the concept of substitutability and complemen-

tarity. (see e.g. Haltiwanger and Waldman, 1985). Strategies are substitutes if agents

have an incentive to do the opposite of what other player are doing as it happens in

systems with negative feedback. Strategies are complementary if agents have an incentive

to imitate each other as it in systems with positive feedback. Recent experimental stud-

ies as reported in Camerer and Fehr (2006) or in Heemeijer, Hommes, Sonnemans, and

Tuinstra (2006) show there indeed exist substantial differences between behavior in envi-

ronments characterised by positive expectations feedback and environments characterised

by negative expectations feedback.

In this chapter, we focus on participation games with negative feedback and we leave

the analysis of positive or mixed feedback for future research. Participation games with

negative feedback are interesting because they stem from a basic economic problem, i.e.

exploitation of scarce resources, in the simplest setting, i.e. repeated interaction, without

market institutions acting as coordination devices. In the general participation game with

negative feedback, agents (firms or drivers) repeatedly interact to use the same resource

(a market or a route) without the possibility of communicating with each other or of

coordinating on a certain outcome. Each agent, thus, relies on personal beliefs and/or

on aggregate quantities observed in the previous rounds, such as the participation rate

history, to decide whether to participate or not. An important question we try to answer

when we deal with exploitation of scarce resources is under which circumstances agents

are able to use the resource efficiently. On the one hand each agent would like to exploit

the available resource (a market, a road . . . ) alone and repeatedly. Agents thus fiercely

compete to use the limited resource. On the other hand, knowing that the other agents

have the same objective, agents have an incentive to implicitly coordinate their actions so

that the exploitation of the scarce resource is maintained at a level from which agents can

still profit. Competition and coordination are thus at work at the same time. Interestingly,

competition and coordination are related to two different types of efficiency. Coordination

is related to allocative efficiency: The better the agents are able to coordinate their actions

the more they can profit from the use of the limited resource. Competition is related to

informational efficiency: If patterns of the participation rate contain regularities, there are

profit opportunities to be taken as agents can use these regularities to better forecast the
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future participation rate and use this information to decide when to participate and when

not. If competition works at best, no regularity should be observed in the participation

rate time series, that is an informationally efficient outcome is generated.

The aim of this chapter is to build a theoretical model of the interaction of many agents

who are repeatedly playing a participation game with negative feedback. In particular

we want to use this framework to address issues of informational and allocative efficiency

that we outlined above.

3.1.1 Overview of the literature

Before we present the guidelines of our model building, we review the existing experimen-

tal, computational, and theoretical investigations of participation games with negative

feedback. Existing examples of participation games with negative feedback can be di-

vided in two classes of games. In the first class, usually referred to as market entry

games, the payoff for participating is a decreasing function of the number of other agents

participating while the payoff for absenting is constant. Firms deciding whether to enter

a new market (participating), face competition from other firms, and thus are exposed

to an uncertain payoff, only if they enter the market. When they stay out of the market

(absenting), their payoff is constant and not depending on the number of other firms

which have decided to enter. In the other class of negative feedback games, usually re-

ferred to as route choice games, both the payoff for participating and for absenting are a

decreasing function of the number of other agents taking the same decision. Commuters

traveling every day from their residential area in A to their office facilities in B have to

decide whether to take road 1 (participating) or road 0 (absenting). Their traveling time,

which can be associated to their payoff, is clearly decreasing with the number of other

commuters who take the same route. We will see that results for these two types of games

are similar.

An early experimental investigation of market entry games is Sundali, Rapoport, and

Seale (1995). They consider zero entry cost and linearly decreasing payoff for entering.

The number of agents involved in the experiment is N = 20 and the maximum profitable

capacity of the market changes in the range [1, 19]. For each capacity they run the ex-

periment over 10 periods for 6 different groups. Their main finding is that the average

participation rate is close to the prediction of the symmetric mixed strategy Nash equilib-

rium of the one stage market entry game. Nevertheless, at the individual level, agents are

not playing a mixed strategy Nash equilibrium, in particular they are not randomizing

their action. The individual profiles of actions of each player is very diversified, with

players that are, over time and across different capacities, always participating, players

that are always absenting, and players that are changing their action conditionally on the
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outcome of the previous rounds. Furthermore Sundali, Rapoport, and Seale detect excess

volatility, that is the variance of the participation rate is higher than predicted by the game

theoretical solution which is given by the symmetric mixed strategy equilibrium. Other

experiments investigate whether these results are robust to changes of some characteris-

tics of the Sundali, Rapoport, and Seale experimental set-up. Rapoport, Seale, Erev, and

Sundali (1998) repeat the same market entry game for three different absenting payoffs.

Erev and Rapoport (1998) extend the analysis to three different information treatments:

one where agents know only their payoff, one where they know the payoff associated with

both actions and one, called full information treatment, where in addition agents know

the number of players which have chosen each action in the previous round. In a similar

analysis of different information treatments Duffy and Hopkins (2005) consider 100 iter-

ations in order to investigate the long run properties of agents’ interaction. Only in the

case of full information agents are coordinating on the pure Nash equilibrium in the long

run. Zwick and Rapoport (2002) consider an hyperbolic functional form for the payoff for

entering. Even though each of these experiments extends the previous contributions with

respect to its own line of investigation, results from all of them are consistent with the

results of Sundali, Rapoport, and Seale (1995), i.e. the first moment of the participation

rate distribution converges to the prediction given by the symmetric mixed strategy Nash

equilibrium, but the second moment is always larger in the experimental data than in the

prediction. These results are also confirmed by experiments whose underlying structure

corresponds to that of route choice games. In an early paper Meyer, Huyck, Battalio,

and Saving (1992) consider a number of suppliers who face the problem of allocating their

common product between two different locations without knowing the decision of other

suppliers. Their main focus is to investigate history’s role in coordinating decentralized

allocation decisions. Their experiments “provide support for the view that disequilibrium

dynamics are an important source of fluctuations in market prices and quantities” and

“nevertheless, the symmetric equilibrium accurately predicted the average quantity sup-

plied, the average price, and the average market efficiency . . . ” (both in Meyer, Huyck,

Battalio, and Saving 1992 p. 315). Similar results are shown in a forthcoming paper

by Selten, Chmura, Pitz, Kube, and Schreckenberg (2006) who report laboratory experi-

ments where a group of 18 agents have to choose period after period between a main road

and a side road. When the experiment is run as long as 200 periods, fluctuations persist

till the end of the session. A significant correlation between the number of road changes

of each individual and the size of the fluctuations is also detected. Individuals seem to

use four different strategies: to use the main road, to use the side road, to switch roads

after having received a payoff lower than the median of the other agents’ payoffs, or to

not switch roads in that same situation. Nevertheless the aggregate road use is consistent
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with the symmetric Nash equilibrium of the underlying one stage game.

Computational models of participation games with negative feedback also reproduce

the results reported above. An influential contribution in this area is Arthur (1994) where

the El Farol bar problem is introduced. El Farol is a bar close to the Santa Fe Institute

(New Mexico, USA) where a live music show takes place on Thursday evening every week.

There are N persons who want to go to the bar (participating) on Thursday evening but

the El Farol bar is not big enough for all of them. In fact the bar is too crowded when

more than bN persons are there (with b between 0 and 1). In this case it would have

been better to remain at home (abstaining). When less than bN persons are attending

the concert the evening is very pleasant. The El Farol bar problem is thus a participation

game with negative feedback. Interestingly, as we will show later in this chapter, the El

Farol game can be modeled both as a market entry game or as a route choice game. Arthur

introduced the El Farol bar problem as a simple model of the interaction of boundedly

rational agents with heterogeneous deterministic rules and used computer simulations

to replicate the interaction of N = 100 agents relying on different predictors to decide

whether to go to the bar or not. Every agent has a set of predictors and keeps track of

the forecasting performance of each of them. Predictors which perform better are more

likely to be chosen in the future. His simulations show that the average participation rate

converges to the capacity of the bar, even if fluctuations persist in the long run. He also

observes that the interaction of agents using different rules leads to a participation rate

dynamics with no regularities because, using his words, “Where cycles-detector predictors

are present, cycles are quickly ’arbitraged’ away so there are no persistent cycles” (Arthur

1994 p. 409).

In order to explain Arthur’s results, as well as the experimental results discussed

above, other theoretical and computational models have been advanced. A class of them

uses variations of standard game theoretical tools. Goeree and Holt (2005) consider a

model based on the concept of quantal response equilibrium as in McKelvey and Palfrey

(1995). Their general approach deals with participation games with negative and posi-

tive feedback and for the case of market entry games they argue that a quantal response

equilibrium better describes the average aggregate participation rate as the capacity of

the market changes. Zambrano (2004) aims at reproducing the main results of the sim-

ulations in Arthur (1994) using the Nash equilibria of a game that underlies Arthur’s

framework. Zambrano shows that what he calls a prediction game is the game theoretical

representation of the bar problem and that the average participation rate of Arthur’s sim-

ulations coincide with the set of mixed strategy Nash equilibria of the prediction game.

Both contributions are interesting as they manage to perform an equilibrium analysis of

interactions of boundedly rational agents, but they do not aim at justifying the variance
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around this equilibrium. Both contributions ignore the interaction between the dynamics

of the aggregate and the individual choices in a repeated game framework. As a result

both analysis fail to account for the excess variance that is observed in the experimental

data or in Arthur’s simulations.

Other computational contributions try to explain experimental results employing the

reinforcement learning of Erev and Roth (1998). For example Erev and Rapoport (1998)

show that a simple reinforcement learning model provides a good approximation of the

aggregate behavior for a wide setting of experiments with market entry games. More

recently Duffy and Hopkins (2005) show that reinforcement learning predicts agents to be

divided in those always participating and those always absenting, and thus pure strategy

Nash equilibria, in place of mixed strategy Nash equilibria, to prevail in the long run.

Nevertheless, experiments in the same paper show long run convergence to the pure

strategy Nash Equilibrium only when agents are informed not only about the aggregate

and their performance, as assumed in the reinforcement learning model, but also about the

payoff of all the other agents. Another contribution is Franke (2002) using reinforcement

learning to replicate Arthur’s results on the El Farol bar problem. His simulations show

that the long run distribution of the probability to participate can be centered around the

symmetric mixed strategy Nash Equilibrium or can be binomial with two peaks at very

low and very high probabilities to participate. He concludes that the long run outcomes

are rather sensitive to the model specification. Evidence from reinforcement learning is

thus mixed and quite sensitive to its parameters values.

3.1.2 An evolutionary approach

Summing up, previous investigations of both classes of participation games with negative

feedback, market entry games and route choice games, lead to the same conclusions.

Experimental findings show that at the aggregate level coordination on a symmetric mixed

strategy equilibrium of the underlying one stage game occurs, as the first moment of the

participation rate is well predicted by the symmetric mixed strategy equilibrium. At the

individual level however, agents are not randomizing but employ simple rules instead,

such as: always participate, always abstain, or participate conditionally on the outcome

of previous rounds. The interaction of these different rules creates excess volatility for the

participation rate as compared to the symmetric mixed strategy equilibrium, so that the

second moment of the participation rate is always larger than predicted. The variance

is important because it is related to allocative efficiency: the more volatile the series the

more resources are wasted. Simulations of Arthur where agents are using a large number

of forecasting rules to decide whether to participate, reproduce the same results, both

at the aggregate and individual level, but are computationally intensive. Furthermore,
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they suggest that the interaction of ‘deterministic’ rules is able to create informationally

efficient participation rate patterns with no regularities. Theoretical models account for

some of these findings but they do not address questions of informational or allocative

efficiency directly. Moreover both the equilibrium models in Zambrano (2004) and Goeree

and Holt (2005) and reinforcement learning models in Erev and Rapoport (1998) and

Franke (2002) assume that agents are deciding whether to participate or not according

to some probabilities, whereas experimental evidence suggests that a majority of agents

uses simple deterministic rules.

In this chapter we model agents’ interaction in a participation game with negative feed-

back as the evolutionary competition of simple deterministic rules that prescribe when to

participate given past aggregate outcomes. The competition of these different behavioral

modes, or heuristics or rules is embedded in an evolutionary setting so that the rule which

has performed better in the recent past attains a higher number of followers. At this stage

of our analysis this competition is governed by the replicator dynamics (see e.g. Weibull,

1995). Our aim is to obtain a relatively simple analytic model which can replicate the

main experimental and computational findings. A similar approach has been applied in

the study of endogenous fluctuation in financial markets (Brock and Hommes, 1998) in

Cournot competition (Droste, Hommes, and Tuinstra, 2002) or in a cobweb model (Brock

and Hommes, 1997) but, to our knowledge, it is new in participation games. The work

on the cobweb model relates particularly to our setting as it also deals with an economic

system with negative feedback between individual motives and aggregate outcome. In

this area recent experimental results confirm the evidence we have summarized for par-

ticipation games. Hommes, Sonnemans, Tuinstra, and Van de Velden (2007) show that

agents are on average behaving according to the rational expectation equilibrium (the

counterpart of the Nash equilibrium) but are deviating from it at the individual level.

Moreover market price series shows irregular aperiodic fluctuations and excess volatility.

An important dimension of our investigation of participation games with negative

feedback is that we explicitly take into account the size of the participation game, i.e. the

number of players. In particular we are interested in the change of the game dynamics

as the size of the game increases. This an important generalization since a large num-

ber of agents is usually involved at the same time in a participation game. Laboratory

experiments deal with up to 20 − 25 players and natural experiments such as the route

choice problem, with many more. The analysis of the limit of a large number of players

is interesting because if agents were randomizing their action independently according to

the same distribution the law of large numbers would apply and we would fail to observe

fluctuations of the participation rate in the limit. We will see that this is not the case in

our setting, which is therefore consistent with laboratory and natural experiments. An-
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other dimension of investigation is the number of rules used. The evidence from Arthur’s

simulations is that when many rules are used the participation rate series is seemingly

unpredictable. Given a set K of competing rules we measure the linear autocorrelation

of the participation rate and investigate whether it changes as new rules, which try to

exploit the detected linear autocorrelations, are introduced. This part of the analysis is

also related to the notion of evolutionary stability (see e.g. Maynard-Smith, 1974) as

it questions the stability of the original set K of rules against mutation to other rules.

Related issues are how allocative and informationally efficiency change as the size of the

participation game or the number of rules used are increasing.

In Section 3.2 we formalize the participation game with negative feedback and use the

traditional tools of game theory to analyze its equilibria. In Section 3.3 we model the com-

petition between different rules adopted by boundedly rational agents as an evolutionary

process governed by the replicator dynamics. In Section 3.4 we apply this framework to

the competition of two simple rules and we discuss how the participation rate dynamics

changes with the size of the game. In Section 3.5 we investigate how evolutionary compe-

tition is affected by the presence of new rules which try to exploit the regularities of the

participation rate time series. In Section 3.6 we apply the evolutionary framework devel-

oped so far to highlight the differences and similarities between the route choice games

and the market entry games. Section 3.7 concludes. Proofs of all results can be found in

the appendix.

3.2 The participation game

In this section we model the one stage participation game with negative feedback which

corresponds to a market entry game. In market entry games the payoff for participating is

a function of the number of other agents participating whereas the payoff for absenting is

constant. Generalization to the other class of participation games with negative feedback,

route choice games, is considered in Section 3.6. After we model the market entry one

stage game, we use standard game theoretical analysis to characterize its pure and mixed

strategy Nash equilibria and its evolutionary stable strategies. This analysis gives us the

benchmark against which to compare the evolutionary model we develop in Section 3.3.

Consider N agents, each of whom chooses whether or not to participate, that is to

enter a market, to go to a bar, etc. Each agent chooses an action a ∈ {0, 1}, where a = 1

stands for participating and a = 0 for absenting. The action space is given by A = {0, 1}N

and an action profile is given by a ∈ A. The game is thus a N -player game where every

player can choose between 2 actions. We refer to N , which is a parameter in our model,

as the size of the game. A strategy si for player i is the probability in [0, 1] with which
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he chooses action a = 1. As a result, the strategy space is given by S = [0, 1]N and

s ∈ S denotes a strategy profile. Finally, by s−i = (s1, . . . , si−1, si+1, . . . , sN) we denote

the strategies played by all the players but player i. The payoff function of player i is

determined by the strategies played by the N players and is given by

πi : S → IR+.

We assume that all players want to maximize their expected payoffs. Pure strategy payoffs

of the participation game are given as:

πi (0,a−i;Nc) = α,

πi (1,a−i;Nc) =





α+ β − γ

α− γ

if
∑N

j=1,j 6=i aj < Nc,

if
∑N

j=1,j 6=i aj ≥ Nc.

(3.1)

The parameter Nc (the subscript c stands for capacity) defines the capacity of the market

or the bar. Choosing ai = 0 always gives payoff α. Choosing ai = 1 gives payoff α− γ if

Nc or more of the other N − 1 players have chosen a = 1, and α + β − γ if less than Nc

of the other N − 1 players have chosen a = 1. We assume assume that β > γ, otherwise

playing ai = 0 is a dominant strategy. In this formulation α is a payoff which is always

granted, γ corresponds to the cost or effort of participation and β corresponds to the

(uncertain) participation premium. In the present section, the payoff α could be set to

zero without changing the results. Nevertheless, since in the dynamic approach of the

following sections α does play a role, we have decided to introduce it from this earlier

stage.

In many experimental market entry games, the payoff for participating is linearly

decreasing in the number of other entrants. The present formulation, using a step function

as in 3.1 for the payoffs of the entrants, is equivalent with the payoff function for the El

Farol bar game used in Arthur (1994) and Franke (2002). We chose this stylized version

of the market entry game since it facilitates comparing games with different sizes N and

capacities Nc. Note that for N = 2 and Nc = 1, this payoff structure is similar to the

well-known game of Chicken or Hawk-Dove game (see e.g. Fudenberg and Tirole, 1991,

pp. 18-19).

The expected payoff of playing a mixed strategy si is given by

πi (si, s−i;Nc, N) = (1− si)α+ si (α+ βp (s−i;Nc, N)− γ)

= α + si (βp (s−i;Nc, N)− γ) , (3.2)
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where

p (s−i;Nc, N) = Pr {n (s−i) ≤ Nc − 1}
is the probability that the number of other agents participating, n (s−i), is strictly smaller

than Nc. The value of p (s−i;Nc, N) depends upon the strategy profile s−i.

3.2.1 Nash equilibria

The game with payoff structure (3.1) has many pure strategy Nash equilibria (henceforth

PSNE). Any pure action profile a such that exactly Nc players play a = 1 and the other,

N −Nc, players play a = 0 corresponds to a strict PSNE. There are
(

N
Nc

)
of these PSNE.

Note that these PSNE lead to an asymmetric distribution of payoffs.

Now consider mixed strategy Nash equilibria (henceforth MSNE), that is, equilibria

where some players randomize between the two possible actions. We show that there exists

a unique symmetric mixed strategy Nash equilibrium where all players are randomizing

with s∗ ∈ (0, 1) so that s∗ = (s∗, . . . , s∗) is the corresponding strategy profile. If each

agent is playing action a = 1 with probability s∗, the probability that the number of

players participating is strictly smaller than Nc is given by:

p
(
s∗−i;Nc, N

)
=

Nc−1∑

k=0

(
N − 1

k

)
(s∗)k (1− s∗)N−1−k . (3.3)

Notice that p
(
s∗−i;Nc, N

)
is the cumulative distribution function evaluated at Nc− 1 of a

binomial distribution with N −1 degrees of freedom and probability s∗. By the definition

of a Nash equilibrium, s∗ is a best response for player i only when, given s∗−i, agent i is

indifferent between the action a = 1 and action a = 0, which occurs when, using (3.2):

πi

(
1, s∗−i;Nc, N

)
= α +

(
βp

(
s∗−i;Nc, N

)− γ
)

= α = πi

(
0, s∗−i;Nc, N

)
.

Hence the value of s∗ can be derived by solving the following equation:

p
(
s∗−i;Nc, N

)
=
γ

β
. (3.4)

Since we are interested in the case when N becomes large, but where the relative (mar-

ket, bar) capacity remains the same, we define the parameter b ≡ Nc

N
. The following

proposition summarizes the properties of the MSNE.

Proposition 3.1 For any N , Nc < N , α, γ, β > γ, there exists a unique symmetric

MSNE s∗ of the N-person participation game whose payoff function is specified by (3.1).
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The value of s∗ solves (3.4) and does not depend upon α. Moreover we have s∗ → b as

N →∞ for all γ and β, and s∗ = b for all N when b = 1/2 and γ/β = 1/2.

The exact value of s∗ depends on both the threshold value b and on the ratio γ/β.

Figure 3.1 shows (a numerical approximation of) s∗ as a function of N for different values

of γ
β

in the case of b = 0.5. In the Figure, as stated in Proposition 3.1 s∗ → b as N →∞,

for all ratios γ/β. Furthermore s∗ = b for all N when b = 1/2 and γ/β = 1/2. The case

of γ/β = 1/2 is the one where the payoff for absenting is exactly in between the payoffs

of a successful and a non-successful participation. Because of this symmetry and of the

invariance of s∗ with respect to changes in N , we take b = 1/2 and γ/β = 1/2 as the

benchmark values for our analysis.
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Figure 3.1: Every curve shows an approximation of the MSNE s∗, that is a numerical solution
of eq. (3.4), for N up to 100 and b = Nc/N = 0.5. Each curve corresponds to a different value
of γ/β. The MSNE s∗ is in general different from b, but converges to b as the size of the game,
N , increases. From top to bottom: γ/β = 0.3, γ/β = 0.4, γ/β = 0.5 and γ/β = 0.6. In the
benchmark case, that is when γ/β = 0.5 and b = 0.5, s∗ = b for every game size N .

Other MSNE, where players are randomizing with different probabilities, exist. These

equilibria are asymmetric with a number M < Nc of agents always going and the other

N−M agents are randomizing with the same probability. In fact, the players randomizing

are playing the symmetric MSNE of the participation game with the same payoffs, size

N −M and threshold Nc −M . These asymmetric MSNE are thus a combination of the

two other types of equilibria, asymmetric PSNE and symmetric MSNE.

The PSNE has the characteristic that it distributes all available resources but implies

that a symmetric group of players is able to coordinate on an asymmetric outcome, as

Nc players receive α + β − γ and the others receive α. Asymmetric MSNE also share

this characteristics. The only equilibrium which avoids this problem is the symmetric

MSNE. The symmetric MSNE is in fact the only symmetric equilibrium. When players
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play the MSNE, the total number of participating players N (which is a random variable)

has mean Ns∗ and variance Ns∗ (1− s∗). A useful variable to consider is the (random)

variable participation rate, xt = N t

N
, which has mean s∗ and variance s∗(1−s∗)

N
. Observe

that as the size of the game becomes large, xt will be equal to s∗ with high probability

since the variance goes to zero. The symmetric MSNE equalizes the expected payoff

of participating and absenting for all players and thus leads to a lower average welfare

than the pure strategy equilibrium. If a group of players were repeatedly playing the

symmetric MSNE the resulting participation rate sequence, {xt}, would be randomly

distributed around s∗ with variance of the order s∗(1 − s∗)/N . Furthermore the series

{xt} would have zero autocorrelation at all lags as agents participation decision is random

and independent over time.

3.2.2 Evolutionary stability

We now discuss the game in terms of evolutionary stability. Consider an infinite popu-

lation of players meeting randomly to play the N size participation game with threshold

value b. Take the strategy s as the possibly mixed strategy played by all players. Suppose

that a fraction ε of the population “mutates” his strategy, that is a fraction ε switches

to play strategy s′. Will the fraction ε disappears against s∗ or survive? The concept of

evolutionary stability has been developed in connection with this question. In particular

a symmetric strategy profile is called evolutionary stable if it cannot be invaded by any

of these mutations. The original definition of evolutionary stable strategy was introduced

in the context of 2-person games by Maynard-Smith (1974). The extension to N -person

games is quite natural (see e.g. Palm, 1984). It turns out that the strategy s∗ is the

unique evolutionary stable strategy.

Proposition 3.2 For any N , Nc < N , α, γ, β > γ, the symmetric strategy profile s∗,

i.e. the unique solution of (3.4), is the unique evolutionary stable strategy of the N-person

participation game whose payoff function is specified by (3.2).

The concept of evolutionary stable strategy employed here depends on the assumption

of a single infinite population whose players are randomly matched in groups of size N to

play the participation game.

In Section 3.5 we will use the fact that s∗ is an evolutionary stable strategy as the

benchmark case against which to compare the stability of the competition of simple de-

terministic rules when more rules are introduced.
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Figure 3.2: Top left panel: Time series of number of participating players in experimental
group 1. Top right panel: Histogram of the number of participations for the 42 players. The
horizontal axes gives, out of the 50 periods, the total number of times an agent has chosen to
participate, or a = 1. The vertical axes gives the number of agents for each number of total
participations. Bottom left panel: Histogram of the number of switches. The horizontal axes
gives the total number of times an agents has chosen to switch action during the 50 periods.
The vertical axes gives the number of agents for each number total switches. Bottom right
panel: Relation between individual payoffs and total number of participations. For every agent
the number of times he has chosen to participate, a = 1, is plotted against his final payoff.
When everybody plays the MSNE, the expected payoff after 50 rounds is 5000 as given by the
horizontal line.

3.2.3 Some experimental results

We will now briefly describe some experimental results on a negative feedback partici-

pation game from Heemeijer (2006). Our aim is not to provide a full-fledged analysis of

the experimental data, but to illustrate and motivate the model introduced in this paper.



74 CHAPTER 3. PARTICIPATION GAMES

The experiments were conducted in October 2005 and February 2006 at the CREED lab-

oratory of the University of Amsterdam. It involved 6 groups of N = 7 players, which

had to make a participation decision for 50 subsequent periods. Group composition re-

mained the same over the course of the experiment. Capacity was equal to Nc = 4 and

payoff parameters were given by α = 100, β = 50 and γ = 25. Moreover, a stochastic

term εt from a symmetric triangular distribution on [−25, 25] was added to the payoff for

participating in every period. Subjects did know the value of α, but not those of β, γ

and εt. Following the analysis above we have
(
7
4

)
= 35 PSNE. The symmetric MSNE s∗

is implicitly given by p (s∗; 4, 7) = 1
2
. This gives s∗ ≈ 0.5786, which is slightly larger than

b = Nc

N
= 4

7
≈ 0.5714.

The results from this experiment are consistent with the experimental evidence dis-

cussed in the introduction. The upper left panel of Figure 3.2 shows, for the first ex-

perimental group, the dynamics of the number of participating subjects over 50 periods.

Behavior in the other groups was similar. Aggregate participation decisions are unstable

and keep fluctuating until the end of the experiment. Subjects did not coordinate on one

of the PSNE and, at the aggregate level, the symmetric MSNE seems to provide a better

description of the data. The first row of Table 3.1 shows that average participation rates

in all groups are quite close to s∗ ≈ 0.5786, although there seems to be some ‘underpartic-

ipation’: for five of the six groups the average participation rate is somewhat lower than

predicted by the symmetric MSNE.

gr. 1 gr. 2 gr. 3 gr. 4 gr. 5 gr. 6 mean MSNE
1
50

∑50
t=1 xt 0.574 0.594 0.560 0.563 0.571 0.554 0.570 0.579

group switches 25 14 25 25 26 22 22.8 22.9
individual switches 15.7 8.3 15.6 13 17 14 14 23.9
% naivety 0.736 0.741 0.716 0.824 0.689 0.714 0.733 0.2438

Table 3.1: Experimental results. The first row gives the average participation rate for each
group. The second row gives the number of times, per group, that participation changed from
four or less to five or more subjects or vice versa. The third row gives, per group, the number
of individual switches between participating and not participating, averaged over subjects. The
last row gives the percentage of individual switches that follow directly after a negative payoff
experience. The last column gives the same quantities as expected from the symmetric MSNE
solution.

At the individual level, however, the symmetric MSNE is not supported by the data.

The upper right panel of Figure 3.2, for example, shows a histogram of the number of

times each of the 42 subjects participated. Apparently, some subjects participate almost

always, for example 8 subjects have participated at least 40 times in 50 rounds. Others

have almost never participated, for example 7 subjects have participated no more than 10
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times. This suggests that many subjects do not randomize. Further evidence is given by

the second and third row of Table 3.1, which show that, although the number of switches

in aggregate participation are roughly consistent with the symmetric MSNE, individual

subjects change their participation decision much less frequently than predicted by the

symmetric MSNE. The histogram of the number of individual switches, depicted in the

lower left panel of Figure 3.2 also provides compelling evidence that many subjects are

quite reluctant to change. Instead of playing according to the symmetric MSNE, subjects

seem to condition their decision on past payoffs. The last row of Table 3.1 shows that

about 73% of individual switches were preceded directly by a negative payoff signal (i.e.,

start (stop) to participate when that gave a higher (lower) payoff in the previous period).

A last observation worth noting is the evidence for a ‘participation premium’ in the lower

right panel of Fig 3.2. Subjects that participated more often did, on average, earn higher

payoffs. We will return to this issue in Section 3.6.

3.3 Evolutionary competition of deterministic rules

The experiment discussed above suggests, together with the earlier experimental evidence,

that our negative feedback participating game is inherently unstable, with persistent fluc-

tuations in the participation rate. Moreover, individual subjects do not seem to random-

ize their decisions and these fluctuations therefore cannot be easily attributed to mixed

strategy Nash equilibria. Instead, subjects seem to base their decisions on deterministic

behavioral rules. The existing behavioral models of negative feedback participation games

are complex computational models, and some of them (such as reinforcement learning)

do assume that agents randomize. In this section we introduce a behavioral model which

is analytically tractable and consistent with the experimental findings.

3.3.1 Behavioral deterministic rules

Consider a population of N̂ boundedly rational agents who play the N -person participa-

tion game repeatedly, but possibly in different groups every period (random matching).

For simplicity, we consider the limit N̂ →∞ so that the law of large number applies and

expected values of random variables can be taken as realized values. Period after period,

each player behaves according to one of K different rules. Each rule specifies, given the

information it uses, whether to participate or to abstain, that is p ∈ {0, 1}. A rule which

performs better in period t is adopted by more agents the next period t+ 1. We assume

that the distribution of agents over the different K rules evolves according to the repli-

cator dynamics mechanism. The replicator dynamics can be motivated in the context of

boundedly rational agents learning and imitating which strategy to play in a strategic
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environment (see e.g. Weibull, 1995; Binmore and Samuelson, 1997). Furthermore, its

simplicity lends it considerable appeal. The distribution of agents across rules at period

t+ 1 lead to a different payoff associated to each rule and possibly to a new distribution.

In what follows, after introducing what we exactly mean by rule, and how the replicator

dynamics works in this context, we investigate the properties of the equilibria of such a

process.

Let xt be the participation rate, i.e. the fraction of agents having chosen to participate

in period t. At every period t, a deterministic behavioral rule k specifies whether to

participate or to absent for a given information set:

pk,t = fk (It−1) . (3.5)

where the information set is given by past participation rates:

It−1 = {xt−1, xt−2, . . . , x1, x0} . (3.6)

and where

fk : [0, 1]t → {0, 1}.
Some examples of simple rules are:

pk,t = 1, pk,t = 0,

pk,t =

{
1,

0,

if xt−1 < b,

if xt−1 ≥ b,

pk,t =

{
1,

0.

if xt−1 ∈ A,
if xt−1 ∈ Ac ≡ [0, 1] /A.

The first rule indicates to always participate, whereas the second specifies to always

abstain. The third and fourth rule are a function of the last participation rate, prescribing

to participate if and only if the previous participation rate is smaller than the threshold

b or lies in a specified set A.

The class of rules we will use most in our analysis can be written in terms of a best

response to predictors of the current period fraction. That is,

pk,t ∈ BR (gk (xt−1, xt, . . . , x0)) , (3.7)

where gk (·) is the prediction of the fraction in the current period. Notice that these

predictor-based rules are a subset of a more general rule fk.

The vector xt represents the distribution of agents over the rules. Each component
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xk,t is the fraction of the entire population that uses rule k in period t. That is Nk,t =

N̂xk,t is the number of players using rule k at time t. Evidently we have xk,t ≥ 0 and∑K
k=1 xk,t = 1, that is xt is in the (K − 1)−dimensional unit simplex, xt ∈ 4K−1 ={

xt ∈ IR+ :
∑K

k=1 xkt = 1
}

. Notice that at time t aggregate participation xt is completely

characterized by xt and pt = (p1,t, . . . , pK,t). The participation rate at time t, xt, is given

by:

xt = xt · pt =
K∑

i=1

xi,tpit.

3.3.2 Evolutionary competition

In the previous subsection we have described a number of rules that agents use to play

the game. Here we characterize how the distribution of agents across these rules evolves

over time. First we define the profit of playing rule fk. The fractions xk,t, the strategies

pk,t and the process of random matching of the N̂ players in groups of N players induce

a probability distribution over payoffs (α− γ, α, α + β − γ), which we denote here by

πk,t = πk (xt,pt (It−1) ;Nc, N) , for k = 1, . . . , K.

Once we take the limit of the number of players of the population to infinity, N̂ →∞, the

realized payoff of the players playing each rule is equal to the ex-ante expected payoff for

playing such a rule. In this case, by using equation (3.2), we can characterize the payoff

associated with each rule k as a function of pk and of the aggregate attendance x as:

πk,t(x, pk,t;Nc, N) = (1− pk,t)π0 + pk,tπ1(xt;Nc, N), (3.8)

where πO = α is the payoff for not participating (the subscript O stands for out, that is,

abstain) and

πI(xt;Nc, N) = α+ βp(xt;Nc, N)− γ (3.9)

is the payoff for participating (the subscript I stands for in, that is, participate). The

function p(x;Nc, N) is the probability that the number of other agents N−1 participating

is less than Nc when the participation rate is x = x · p, that is

p(x;Nc, N) =
Nc−1∑
j=0

(
N − 1

j

)
(x)j(1− x)N−1−j. (3.10)

We have already noticed that p(x;Nc, N) is the cumulative distribution function evaluated

at Nc − 1 of a binomial distribution with parameters N − 1 and x. Notice that since

equation (3.9) establishes a one-to-one correspondence between x and π1, the information
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set It defined in (3.6) is equivalent to {πI,t, πI,t−1, . . . , πI,0}.
Adding all these elements together, we can rewrite equation (3.8) as

πk,t(xt, pk,t;Nc, N) = α + (βp(xt;Nc, N)− γ)pk,t, (3.11)

that is, the payoff of each rule is given by the “granted” payoff α plus pk times the profit

coming from the action of participating.

We use the payoff πk,t to characterize the evolution of the vector x. Given the vector

of expected or population average payoffs πt = (π1,t, . . . , πk,t, . . . , πK,t) at time t, we define

an evolutionary dynamics of the form

xt+1 = H (xt,πt) , (3.12)

where H : 4K−1×[α− γ, α + β − γ]K →4K−1 is a continuous and differentiable function

with ∂Hk

∂πk
> 0 and

∂Hj

∂πk
< 0 for j 6= k. That is, if the average profit of rule k increases the

fraction of the population which uses rule k in the next period increases, and the fraction

of other rules decreases. Note that we can extend the model into different directions by

also including values of xt−τ and πt−τ , for τ = 1, 2, . . . . An equilibrium of the evolutionary

process (3.12) is defined by:

(x∗,p∗) = (x∗1, . . . , x
∗
K , p

∗
1, . . . , p

∗
K) ,

such that:

x∗ = H (x∗,π∗) ,

where the equilibrium participation rate is x∗ = x∗ ·p∗. In this case p∗k = fk (x∗, x∗, . . . , x∗)

and equilibrium profits are given by π∗k = πk (x∗,p∗;Nc, N).

There exist different specifications for Hk in the literature. In this chapter we consider

the replicator dynamics (see e.g. Taylor and Jonker, 1978 and Weibull, 1995) which takes

the following format:

xk,t+1 =
xk,tπk,t∑
j xj,tπj,t

. (3.13)

Such an updating mechanism can be interpreted as a biological reproduction model, where

each period the number of agents using rule k grows proportionally to the performance of

that rule, as measured by its payoff πk. In fact equation (3.13) can be derived by assuming

Nk,t+1 = Nk,tπk,t,

and using that Nk,t = N̂xk,t. Notice that in this formulation, the payoffs πk,t for all

k, and, as a consequence, the parameters α, β and γ, have to be normalized to meet
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the interpretation of a growth rate. In particular πk,t can not be negative, which in our

framework translates into α > γ. Notice that this way of deriving the replicator dynamics

is taken directly from biological replication. Nevertheless equation (3.13) also arises in

imitation processes in large populations of interacting agents, as reviewed in Chapter 4

of Weibull (1995). For this reason the replicator dynamics is a widely used updating

mechanism in evolutionary economic dynamics.

It is useful to use equation (3.11) and equation (3.13) to compute the difference between

today’s and yesterday’s fraction of agents using rule k:

∆xk,t+1 =
xk,t(βp(xt;Nc, N)− γ)(pk,t − xt)

α + (βp(xt;Nc, N)− γ)xt

=
xk,t(πk,t − π̄t)

π̄t

, (3.14)

where we have defined π̄t =
∑

j xj,tπj,t. Equation (3.14) explicitly relates the change in

fractions of agents using rule k to a function of other agents payoffs. A characteristic

of the replicator dynamics in discrete time is that equation (3.13) is not invariant under

addition of a constant to the payoffs. In our formulation this is equivalent to say that

changes in fractions of agents using one rule are not invariant under changes of α1. When

α is small, everything else being equal, fractions are changing faster then when α is large.

Moreover, when α → ∞ trajectories of our discrete dynamical system (3.13) approach

the trajectories of the corresponding continuous time dynamical system (see e.g. Weibull,

1995, Chapter 4). For this reason the parameter α can be refered to as the inverse of the

speed of adjustment of the replicator dynamics.

The condition ∆xk = 0, for all k, gives the equilibria of the replicator dynamics. They

correspond both to corners of the simplex (where all agents use the same rule so that

there exists one k with x∗k = 1) and to interior solutions that satisfy π∗j,t = π∗k,t for all k

and j with both x∗k and x∗j strictly positive. The first type of fixed point of the dynamics

does not correspond to a Nash equilibrium of the underlying one shot participation game.

Among interior equilibria there are those where all rules prescribe the same action, that

is fk(x
∗, . . . , x∗) = p∗ for all k, so that x∗ = p∗. We call these equilibria non-generic,

since they arise only in the special case where the competing rules are all intersecting

at one point x∗ when they are evaluated at that point x∗. Other interior equilibria are

those where βp(x∗;Nc, N) = γ. This last condition is the same as in equation (3.4) which

characterizes the unique symmetric MSNE of the underlying one stage participation game.

In contrast to the other, we call these equilibria generic. An example of the generic case

occurs when the rule that states to always participate and the rule that states to always

abstain are part of the set K of competing rules because these two rules are always

behaving differently. This is the case which will be investigated in more detail in the next

1We remind the reader that the analysis of Section 3.2 is instead independent from changes of α.
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section. The following proposition summarizes these results and characterizes the generic

equilibria.

Proposition 3.3 The system given by K rules as in (3.5), payoffs as in (3.11) and

updating of fractions as in (3.13) has K fixed points for which the whole population uses

the same rule. Other fixed points satisfy the property that π∗k = π∗k′ for all k and k′ that are

being played. In the generic case x∗ = s∗, where s∗ is the symmetric MSNE of Proposition

3.1.

We are interested in the coupled dynamics of the set of rules and their evolutionary

competition. Research questions are: (i) under which conditions will this dynamics lead

to the symmetric Nash equilibrium? (ii) under which conditions does this dynamics lead

to results which are qualitatively similar to the results obtained in the experiments run by,

among others, Sundali, Rapoport, and Seale (1995), and with the computational models

of bounded rationality of, e.g. Arthur (1994)? We address these questions with a concrete

example in the next section.

3.4 Interaction of optimists and pessimists

In this section we study the simplest possible setup that follows from the framework we

have outlined in the previous section. We consider the evolutionary competition between

the following two rules:

p1,t = 1 for all t, (3.15)

p0,t = 0 for all t. (3.16)

The first rule specifies to participate with certainty, we call this the “optimistic” rule.

The second rule specifies to abstain with certainty, which we call the “pessimistic” rule.

As we discussed in the introduction the evidence from most experiments shows that a

large fraction of agents is indeed using one of these rules. The simple rules (3.15) and

(3.16) can also be understood as best reply rules as in (3.7). Rule (3.15) corresponds to a

best reply rule (3.7) where the predictor used predicts a current period participation rate

always below the threshold b; rule (3.16) corresponds instead to a best reply rule with a

prediction of a participation rate always above b.

The value of the payoff associated with each rule can be derived using the general

formula (3.11). As a result π1,t, the payoff gained by the optimistic rule at time t, is a
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function of xt and given by:

π1,t (xt; bN,N) = α− γ + βp(xt; bN,N). (3.17)

The payoff gained by the pessimistic rule at time t, π0,t, is constant and given by πO = α.

Notice that π1 depends also on the parameters b and N . In particular, for fixed values

of b, the functional form of payoff of the optimistic rule with respect to the participation

rate x is different for different value of the game size N . The left panel of Figure 3.3

shows examples of the payoffs of the two rules for different game sizes when b = 1/2.

Given the payoffs, the fraction x1,t of ‘optimistic’ players evolves according to (3.13)

which gives:

x1,t+1 =
x1,tπ1,t

x1,tπ1,t + x0,tπ0,t

.

Notice that since xt = x1,t and x0,t = 1− x1,t, one can rewrite the evolution of x as a first

order nonlinear difference equation of the form:

xt+1 = f (xt; b,N) =
xt(α+ p(xt; bN,N)β − γ)

xt(p(xt; bN,N)β − γ) + α
. (3.18)

The first order difference equation is parametrized by N , the size of the game, by the

relative capacity b = Nc

N
, by the payoff for absenting α, which is the inverse of the speed

of adjustment of the replicator dynamics, by the cost of participating γ and by the return

of a successful investment project β. The right panel of Figure 3.3 shows the function f

for different values of N when the other parameters are fixed.
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Figure 3.3: Left panel: Payoffs of the pessimistic rule (3.16) (horizontal line) and optimistic
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What are the steady states of the dynamics of the participation rate given by (3.18)?
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First notice that, since p1,t 6= p0,t for all t, we are in what we have called a “generic”

case. By applying Proposition 3.3 we know that the steady states are given by the corner

solutions x = 0 and x = 1 and by the the interior solution x = s∗. In fact, at s∗,

π1 (s∗; bN,N) = α = π0,

which is the requirement for the presence of an interior equilibrium. The distribution of

agents which correspond to the symmetric mixed strategy Nash equilibrium we found in

Section 3.3, s∗, is the value such that the two rules yield the same payoff. Notice that

the interior equilibrium is polymorphic, that is, it is characterized by the simultaneous

presence of two types of rules, a fraction s∗ are optimists and the rest are pessimists.

3.4.1 Local stability

In order to characterize whether the equilibria are stable or not, it is convenient to define

δ(x; b,N) =
dp(x; bN,N)

dx
.

Using the fact that p(x; bN,N) can be written using the Beta function, as derived in the

Proof of Proposition 3.4, one obtains:

δ(x; b,N) = −x
N(1−b)−1(1− x)Nb−1

B(N(1− b), Nb)
,

where B(·, ·) denote the Beta function which is defined as B(a, b) = (a+b−1)!/((a−1)!(b−
1)!). Notice that δ(x; b,N) < 0 since an increase in the fraction of agents participating

always decreases Pr {n ≤ bN}. We also define δ∗ ≡ δ(s∗; b,N). This partial derivative is

crucial for the stability of the steady state.

The following proposition describes the stability properties of the steady states.

Proposition 3.4 The dynamics of the participation rate given by equation (3.18) has

three steady states: 0, s∗ and 1. The fixed points 0 and 1 are locally unstable. The

interior fixed point s∗ is locally stable when ψ ≡ s∗ (1− s∗) δ∗β
α
> −2.

The stability condition in Proposition 3.4 depends, through δ∗ and s∗, implicitly on b

and N . We are particularly interested in characterizing this stability of s∗ as a function

of N . Figure 3.3 already suggests that s∗ becomes unstable for N large enough. The

following proposition corroborates that.

Proposition 3.5 For any given value of α, γ < β, and b the dynamics of the participation

rate is locally unstable around s∗ in the limit N → ∞. Moreover, if β = 2γ and b = 1
2
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Figure 3.4: Stability condition. Values of ψ ≡ (1− s∗)(s∗)δ∗β/α as a function of the game size
N for two different values of the participation premium β. When ψ is larger then the dotted
line the steady state s∗ is stable. The other parameters are α = 1, γ = β/2 and b = 1/2.

there exists a unique M such that equation (3.18) is locally stable around s∗ if and only

if N < M .

Figure 3.4 shows that ψ is decreasing in N and crosses −2 when N is larger than some

threshold M . The intuition behind Proposition 3.5 is that as N increases the average

population payoff of the optimistic rule gets closer to the step payoff of the underlying

one shot game (see left panel of Figure 3.3). As a result, for any value of the payoff

parameters, α, β > γ, as N increases (3.18) becomes steeper at the steady state s∗ and

the system looses stability. This dependence of the dynamics upon N is due to the

assumption of random matching. In fact, for N = 2 (with Nc = 1) the expected payoff

function is linear in x, since p (x; 1, 2) = 1−x, which is the probability of meeting a player

using the pessimistic rule. However, the probability of having less than half of the players

participating when each player participates (or, is an optimist) with probability larger

than 1
2

becomes small as N becomes large. That is, as N increases (and for given b) the

function p (x;Nc, N) will look more and more like a step function. We can therefore also

interpret the parameter N as a measure of the shape and steepness of the payoff function

at the steady state. In that case a low value of N would present a payoff function which

decreases slowly as the number of participating players increases, similar to the the linear

one used in the early market entry experiments (see, for example, Sundali et al., 1995).

A high value of N , on the other hand, would represent an expected payoff function close

to the step function used in the El Farol bar game, with payoffs at the symmetric MSNE

dropping rapidly as an extra player participates.

Summarizing, given any value of the payoffs α, β > γ and any value of the threshold

b, there always exists a number of players N , or a size of the game, such that the system

does not converge to the MSNE s∗. This is due to an overshooting effect which triggers
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instability only when the size of the game N is above a certain threshold.

3.4.2 Global dynamics

In this subsection we try to specify the nature of the fluctuations that characterize the

unstable case. We present results primarily for the benchmark case with b = 1/2 and

γ/β = 1/2.

Figure 3.5 shows the participation rate driven by the interaction of “optimists” and

“pessimists” in the case of N = 300 and Nc = 150. The time series (left panel) looks

aperiodic. In fact one can show that there exists a region in the parameter space where

the dynamics is chaotic. The results follows from noticing that this 1-dimensional system

has a 3-cycle (see for example the left panel of Figure 3.7 for β−γ ≈ 0.6) and by applying

the Li-Yorke theorem (see Li and Yorke, 1975). Even such a simple system is able to

produce complicated times series which resembles what has been obtained using the more

complicated simulation models of Arthur (1994) and others. Figure 3.6 shows the effect

of the change of the game size N on the dynamics of the participation rate, for every even

value of N between 2 and 400 when b = 1/2. The bifurcation diagram (left panel) shows

the long run behavior as N increases.time series of x after an initialization period. Notice

that, consistently with our theoretical results, the system is locally stable if and only if

the game size is lower than a certain threshold. With the parameters value used for this

simulation, using Proposition 3.5, one can show that the participation rate s∗ = 1/2 is

locally stable for sizes N ≤ M̃ = 100 (see also right panel of Figure 3.4). For games of size

larger than M̃ , the participation rates fluctuates along a cycle of period 2. The type of

cycles observed for even larger sizes are typical of a period doubling bifurcation route to

chaos. The right panel of Figure 3.6 shows the Lyapunov exponent of the corresponding

participation rate for each game size N . The Lyapunov exponent is used to characterize

sensitive dependence on initial conditions. When the system has a positive Lyapunov

exponent, e.g. when N ≈ 300, there is sensitive dependence on initial conditions and the

system is chaotic. Figure 3.7 shows the dynamics of x and the corresponding Lyapunov

exponent for different values of the granted payoff α, the inverse speed of adjustment of the

replicator dynamics. With small α, which correspond to an high speed of adjustment, the

overshooting effect causes instability. As α increases, the speed of adjustment decreases,

that is, changes in fractions per period becomes smaller and smaller, and the dynamics

stabilizes to the equilibrium s∗. The right panel of Figure 3.7 shows that, also in this case,

there are many values of α for which the dynamics exhibits sensitive dependence upon

initial conditions. Notice that as the dynamics is independent to a rescaling of the payoffs

α, β and gamma, an change in α by a factor ρ, from α to αρ, with β and γ constant, is

equivalent to a change of beta and gamma to β/ρ and γ/rho respectively with α. This
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allows us to interpret the effect of a decrease of α, other things equal, shown in Figure

3.7, also as the effect of an increase of β and γ, other things equal.
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Figure 3.5: Evolutionary competition of optimist and pessimists. Left panel: 100 iterations
of the participation rate. Right panel: autocorrelation diagram of the series shown in the left
panel. The dotted line shows the significance level of a standard autocorrelation test for 100
observations. Parameters values are N = 300, Nc = 150, α = 1, γ = 0.5 and β = 2γ.
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Figure 3.6: Evolutionary competition of optimist and pessimists. Left pane: the bifurcation
diagram with respect to the game size N gives the long run behavior of the participation rate
as N changes. Right panel: Lyapunov exponents for different values of N . Parameters values
are b = Nc/N = 0.5, α = 1, γ = 0.5 and β = 2γ. For every value of N , 100 iterations are used
after a transient period of 100.

In this setting, the left panel of Figure 3.7 suggests that fluctuations increase and thus

allocative efficiency decreases as α decreases. Nevertheless, if one fixes α, the left panel

of Figure 3.6 suggests that the size of fluctuations of the participation rate is constant in

N when more than, say N = 250 agents, are involved. This is an important difference

with respect to the case when agents are playing the mixed strategy Nash equilibrium. In

that case, since agents are randomizing independently, fluctuations of the participation



86 CHAPTER 3. PARTICIPATION GAMES

rate approach zero as the number of agents increases. Laboratory experiments that com-

pare fluctuations when different number of agents are playing participation games with

increasing size and constant threshold level b can shed light on this issue.
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Figure 3.7: Evolutionary competition of optimist and pessimists. Left panel: long run behavior
of the participation rate for values of the granted payoff α. Right panel: Lyapunov exponents
for different values of α. Parameters values are N = 300, Nc = 150, γ = 0.5 and β = 2γ. For
every value of α 100 iterations are used after a transient period of 100.

Another question we want to address is how the dynamics relates to the details of the

competing rules. For this purpose we analyze the effect of the optimistic and pessimistic

rule on the time series properties of the participation rate. The autocorrelation plot in

the right panel of Figure 3.5 shows a rather strong negative first order autocorrelation and

positive second order autocorrelation. The simple rules we have implemented so far are

not able to profit from this structure in the data. In particular the positive second order

autocorrelation is consistent with the presence of a noisy two cycle for the participation

rate historical data. Agents who become aware of the two cycle structure can use this

regularity to forecast when it is advantageous to participate and when not. In other words

the participation rate series produced by the interaction of optimists and pessimists is not

informationally efficient. In the next section, we analyze the change of the participation

rate dynamics when a new rule that exploits the regularities produced by the interaction

of optimists and pessimists is introduced in the evolutionary competition.

3.5 The scope for arbitrage

In the previous section we have shown that when the game size is large and/or when the

net profit for a successful participation is large, the evolutionary competition of optimists

and pessimists leads to ongoing fluctuations of the aggregate participation rate around

the fixed point s∗. In this case the linear autocorrelation plot in Figure 3.5 shows that
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there is a positive autocorrelation between participation rates and (even period) lagged

participation rates. One can argue that agents might try to exploit this regularity in

deciding to participate. The aim of this section is to investigate how the presence of new

rules trying to exploit the information contained in the data affects the participation rate

dynamics. A similar analysis is performed in Hommes (1998) and in Chapter 2 for the

similar negative feedback framework given by the cobweb model.

To start with, consider at time t a best response rule as in (3.7) to the prediction

xt = xt−2. In practice, agents using this rule use:

p2,t = BR(xt−2) =

{
1,

0,

if xt−2 < b,

if xt−2 ≥ b.
(3.19)

where the subscript 2 labels the rule. We call this rule “two lags best reply” since it is the

best reply to the observation made two periods before. Notice that this rule is robust to

a change of the information set from It−1 = {xt−1, xt−2} to It−1 = {πI,t−1, πI,t−2} which

is the payoff for participating awarded up to two periods before. As a result, a rule which

prescribe to go if πI,t−2 > α and to stay at home otherwise is equivalent to the two lags

best reply rule. What is the result of evolutionary competition of optimists and pessimists

when some agents mutate to use the two lags reply best response rule?2

We model evolutionary competition of these three rules along the lines of the previous

section. The participation rate at time t is now given by:

xt = x1,t + x2,tBR(xt−2),

where x1 is the fraction of optimists, x2 the fraction of two lags best responders and the

fraction of pessimists is x0,t = 1 − x1,t − x2,t. Payoff for pessimists is always α, payoff

for optimists is given by equation (3.17), whereas profits for two lags best responders are

obtained using the general formula (3.8):

π2,t = (1−BR(xt−2))πO +BR(xt−2)πI(xt).

Once profits are realized the fractions are updated using the replicator dynamics as in

(3.13) and so on. The resulting dynamical system has dimension 4, two equations govern

the updating of the fraction of agents using two of the three rules and two other equations

specify the lagged and twice lagged value of the participation rate. As explained at the

2The reader might wonder why we do not start this investigation with optimists, pessimists and one lag
best responders who use BR(xt−1). Intuitively, since the interaction of optimists and pessimists generates
a participation rate with strong negative first order autocorrelation, when optimists and pessimists are
present one lag best responders are very often wrong in their prediction, since xt and xt−1 are negatively
correlated. As a result one lag best reply are quickly wiped out. Simulations confirm this intuition.
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end of Section 3.3, due to the presence of optimists and pessimists, the interior equilibrium

of such a system is still non generic, and therefore, according to Proposition 3.3, given by

s∗. When x = s∗ the strategies earn the same payoff so that there are no incentives to

“imitate” other strategies. At s∗ the two lags best responder is not participating because,

having defined in (3.19) p2,t(b) = 0, he behaves like a pessimist. For this reason there is

a continuum of steady state fractions of agents using the three rules where x∗1 = s∗ and

x∗0 + x∗2 = 1− s∗. When is this continuum of steady states stable?
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Figure 3.8: Evolutionary competition of optimists, pessimists and two lags best responders.
Top left panel: long run participation rate for different game sizes N . Top right panel: 100
periods time average of the fraction of two lags best responders for different values of N . The
time average is computed along the iterations shown in the top left panel. Bottom left panel:
participation rate when N = 50. Bottom right panel: fraction of two lags best responders when
N = 50. In all the cases b = 0.5 β = 2γ, γ = 0.5, α = 1.

Given the fact that the rule p2,t is discontinuous and thus not differentiable, we rely

on numerical simulations. The top left panel of Figure 3.8 shows the dynamics of the

participation rates resulting from the interaction of optimists, pessimists and two lags

best responders, for different values of the game size N . As in the case with only optimists

and pessimists, the evolutionary competition produces persistent endogenous fluctuations

of the participation rate when the game size, N , is large. In particular the system loses

stability at the same size, M̃ = 100, as when only pessimists and optimists are present.
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The top right panel of the same figure shows, for every size of the game, the time average

of the fraction of two lagged best responders along the 100 iterations shown in the top

left panel. Interestingly this average fraction is approaching zero for those sizes where the

participation rate converges to s∗ and stays above zero otherwise. The reason is that when

the system converges to the steady state where x = s∗, that is when N < 100, it does so

along a “shrinking” 3-cycle as shown in the bottom left plot of Figure 3.8. A numerical

observation is that along such cycles a two lagged best responder is more often wrong

than right and slowly disappears (see bottom right panel of Figure 3.8). Notice that, even

if x2 is approaching zero, it might happen that the participation rate x settles to s∗ before

x2 is equal to zero. At this point x2 stops decreasing as the system has reached a steady

state. A different participation rate dynamics occurs when the game size is above M̃ . In

this case the dynamics is often non periodic and the two lags best responders survive.

The left panel of Figure 3.9 shows the resulting participation rate when N = 300 and

the three rules are competing. Even if the time series is not periodic, the autocorrelation

plot (right panel of Figure 3.9) shows that the overall linear autocorrelation structure of

the participation rate resembles the one of a noisy 3-cycle: a structure that neither the

original nor the new rule can profit from.
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Figure 3.9: Evolutionary competition of optimists, pessimists and two lags best responders.
Left panel: participation rate for game size N = 300. Right panel: autocorrelation plot for
the series shown in the left panel. The dotted line shows the significance level of a standard
autocorrelation test with 100 observations. Parameters as in Figure 3.8.

The natural question at this point is: what if another rule appears, a rule that best

replies to the presence of a noisy 3-cycle. We define the three lags best responders as

those who use:

p3,t = BR(xt−3),

where the subscript 3 labels the rule. The evolutionary competition of the four rules

(optimists, pessimists, two and three lags best responders) can be formalized along the
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Figure 3.10: Evolutionary competition of optimists, pessimists, two and three lags best respon-
ders. Top left panel: long run participation rate for different game sizes N . Top right panel:
100 periods time average fraction of two lags best responders for different values of game sizes
N . The time average is computed along the iterations shown in the top left panel. Bottom left
panel: participation rate when N = 50. Bottom right panel: fraction of two lags best responders
when N = 50. In all the cases b = 0.5 β = 2γ, γ = 0.5, α = 1.
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Figure 3.11: Evolutionary competition of optimists, pessimists, two and three lags best re-
sponders. Left panel: participation rate for game size N = 300. Right panel: autocorrelation
plot for the series shown in the left panel. The dotted line shows the significance level of a
standard autocorrelation test with 100 observations. Parameters as in Figure 3.10.
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Figure 3.12: Evolutionary competition of optimists, pessimists, two, three, four, five and six
lags best responders. Left panel: participation rate for game size N = 300. Right panel:
autocorrelation plot for the series shown in the left panel. The dotted line shows the significance
level of a standard autocorrelation test with 100 observations. Parameters as in Figure 3.10.

same lines of the previous example and results in a 6 dimensional dynamical system. The

system has 2 dimensions more than the system without three lagged best responders. One

additional dimension is due to the presence of a new rule, and thus of the variable x3,

the other dimension comes from the dependence of a further lag, xt−3, of the aggregate

participation rate. As in the competition of optimists, pessimists and two lags best

responders, there exists a continuum of interior steady states where x1 = s∗ and x0 +

x2 + x3 = 1− s∗, so that x = s∗. Simulations of this case for different values of the game

size N are shown in Figure 3.10. In the top left panel we show the participation rate

resulting from 100 iterations of the four competing rules, and in the top right panel the

average number of two lags best responders and of three lags best responders along these

iterations. As in the competition of optimists, pessimists and two lags best responders,

when N < M̃ = 100 the participation rate converges to s∗ and the fractions of both

types of best responder rules approach zero. When N > M̃ , instead, the dynamics is

unstable and both types of best responders survive. The bottom panels of Figure 3.10

concentrate on the case of N = 50. The participation rate converges to x = s∗ along

4-cycles (left panel) and both fractions of best responders go to zero (right panel). Along

a 4-cycle both best responders are more often wrong than right in their predictions and

their fractions go to zero. This is not the case when the dynamics is more complicated, in

this case, due to non-regular fluctuations, the best responders manage to survive. Figure

3.11 shows 100 iterations of the participation rate with the corresponding autocorrelation

plot, in the case of N = 300. The pattern detected by linear autocorrelation resembles

a four cycle, a structure from which none of the currently present strategies can profit.

We are led to argue that, by adding a rule that exploits this regularity, the four lags best



92 CHAPTER 3. PARTICIPATION GAMES

responders, yet another periodic structure is to be observed in the time series. Figure 3.12

shows the results of the interaction of two lags up to six lags best responders in a game

of size N = 300. In this case a 7th order linear autocorrelation is detected. All other

lags are below the significance level: they are significantly smaller and mostly within

the confidence interval of the standard autocorrelation test when 100 observations are

considered (dotted line).

From this exercise, we learn that in a negative feedback framework, the presence of

a periodic structure in the time series can be linked to the absence of rules that exploit

such a structure. The linear periodic structure which is left in the data is not exploitable

by the present strategies. Another way to look at the same effect is that, using the words

of Arthur, “cycles are quickly arbitraged away” (p. 409 of Arthur, 1994). Moreover,

as we increase the number of competing rules the linear autocorrelation decreases at

mosts lags and informationally efficiency improves. We conjecture that in systems where

many different agents are competing we might even avoid to detect any significant linear

structure in the data without stability emerging.

An unexpected result is that the new rules are surviving only in the unstable region.

When the system is stable at the equilibrium only two rules are effectively present, op-

timists and pessimists. In this case the interaction of optimists and pessimists is thus

“stable” against the introduction of other rules, in the sense that no other rules are

managing to invade the initial population composed of optimists and pessimists. This

situation corresponds to the evolutionary stability result of Proposition 3.2 of Section 3.2.

The only difference is that in this context the mixed strategy has to be interpreted as a

distribution of population fractions between the two actions. The interaction of optimists

and pessimists is not stable against the introduction of other rules when the dynamics

is unstable. In this case the new rules survive and affect the global dynamics. Notably,

the introduction of new rules gives different outcomes in the stable and in the unstable

region.

3.6 The participation premium

Both the market entry experiment discussed in Section 3.2 and the behavioral model from

Sections 3.4 and 3.5 exhibit underparticipation, that is, the average participation rates

are below the steady state value s∗, when this steady state is unstable. This underpar-

ticipation may result in a ‘participation premium’: the lower right panel of Figure 3.2,

for example, shows that subjects in the experiment that participate more often typically

earn higher average payoffs. We conjecture that this participation premium results from

the payoff asymmetry in the payoffs of the two alternatives in the market entry game.
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That is, players choose between a strategically uncertain alternative (participating), for

which the payoff depends upon the actions of the other players and a sure alternative (not

participating), where the payoff is independent of other player’s actions. In this section

we consider route choice games to investigate this conjecture. For the route choice game

both alternatives are subject to strategic uncertainty and payoffs always depend upon the

choices of the other players.

In the route choice game the payoff of player i for participating, action a = 1, is the

same as the payoff for participating in market entry games, that is according to (3.1):

πi (1,a−i;Nc) =

{
α+ β − γ,

α− γ,

if
∑N

j=1,j 6=i aj < Nc,

if
∑N

j=1,j 6=i aj ≥ Nc.

Now also the payoff for abstaining, action a = 0, is decreasing in the number of other

agents choosing a = 0. We consider

πi (0,a−i;Nc) =

{
α− γ,

α+ β − γ,

if
∑N

j=1,j 6=i aj < Nc,

if
∑N

j=1,j 6=i aj ≥ Nc.

Sticking to a context of route choices, action 1 can be seen as choosing route 1 whereas

action 0 corresponds to choosing route 0. Route 1 is preferred when less than Nc agents

are choosing it, otherwise route 0 is preferred. The expected payoff for playing a mixed

strategy si changes from (3.2) for market entry games to:

πi (si, s−i;Nc, N) = α− γ + β(1− p (s−i;Nc, N)) + siβ (2p (s−i;Nc, N)− 1) . (3.20)

There are
(

N
Nc

)
PSNE such that exactly Nc players participate and the other, N − Nc,

players abstain. In contrast to market entry games, these equilibria are not strict. In fact

a player playing a = 0 is now indifferent between a = 0 and a = 1. There are
(

N
Nc+1

)
other

PSNE such that Nc + 1 players use a = 1 and the rest, N − (Nc + 1) players, uses a = 0.

Also these equilibria are not strict. In fact a player playing strategy a = 1 is indifferent

between the two pure strategies. Consequently there is an infinite number of asymmetric

MSNE. Importantly, as for market entry games, there is only one symmetric MSNE. By

equalizing πi(1, s
∗
−i) and πi(0, s

∗
−i) it can be derived that the symmetric mixed strategy

equilibrium is s∗ = (s∗, . . . , s∗) with s∗ satisfying:

p (s∗;Nc, N) =
Nc−1∑

k=0

(
N − 1

k

)
(s∗)k (1− s∗)N−1−k =

1

2
. (3.21)

We now can compare (3.21) above to (3.4) which is the equivalent condition for the market
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entry game analyzed in Section 3.2. The symmetric MSNE does not depend upon the

ratio γ/β anymore. Notice that in the route choice game, for any value of α, and for any

γ < β, the probability s∗ is such that the distribution of the participation rate of N − 1

players playing the MSNE has Nc − 1 as median.

Notice that, our formulation of the route choice game is very close to the minority

game, a game introduced by physicists (see e.g. Challet and Zhang, 1997 and 1998) as a

setting to study coordination of “artificial” agents, using the traditional tools of statistical

mechanics. In particular a minority game is a route choice game as defined in (3.20) with

N odd and Nc = (N−1)/2. A minority game is in fact a participation game with negative

feedback where only the group taking the less popular decision is awarded with a prize.

See also Bottazzi and Devetag (2003) where an analysis of allocative and informational

efficiency of the outcome of an experiment of a minority game with N = 5 players is

performed.

Our route choice game can also be seen as a simplified version of the prediction game

introduced an investigated by Zambrano (2004). In a prediction game every player chooses

a number y in [0, N ]. Every number is awarded with a payoff

πy = −|y − y∗|,

where y∗ is the total number of other players choosing a value y which is below Nc. In

order to maximize his payoff a player has thus to predict how many other players are

choosing a number less than Nc. The route choice game corresponds to the prediction

game when each player has to choose a side, either 0 or 1, and when a player is awarded

α − β + γ only when the total number of other players who have chosen the same side

is lower than respectively N − Nc or Nc. Given the correspondence of the route choice

game with the prediction game in Zambrano (2004), it is not surprising that also in a

prediction game at the symmetric MSNE the median of the distribution of N − 1 players

playing the MSNE is Nc − 1.

3.6.1 Evolutionary competition

Following the approach of Sections 3.3 and 3.4, one can model the evolutionary competi-

tion of optimists and pessimists also when the underlying structure is given by the route

choice game. In this case optimists are those who are always choosing route 1, whereas

pessimists are those who are always choosing route 0. The terminology is less fit than in

the previous example but we hold on to it for ease of comparison. In terms of predictors,

optimists are predicting that route 1 will be the least used, or that less than Nc agents

predict that route 1 will be the least used, whereas pessimists are predicting that route
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0 will be the least used, or that less than N − Nc agents predict that route 0 will be

the least used. As we have shown in Section 3.5 for the market entry game, the anal-

ysis can be extended to incorporate rules that try to exploit the linear autocorrelation

structure of the participation rate time series. In Figure 3.13 we present the dynamics

of the participation rate resulting from the interaction of optimists, pessimists and two

lagged best responders. Also in this case two lagged best responders have an effect on

the global dynamics only when the size of the game is above the local stability threshold.

Notice that the condition for the local stability are different, namely the system loses

stability at a lower N . The exact value where the steady state s∗ loses stability can be

computed as we did in Proposition 3.4 for the market entry game. Also notice that for

route choice games fluctuations of the participation rate around the MSNE s∗ seem to be

symmetrically distributed, and underparticipation indeed disappears.
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Figure 3.13: Evolutionary competition of optimists, pessimists and two lags best responders
in a route choice setting. Left panel: participation rate for different game sizes N . Right panel:
100 periods time average of the fraction of two lags best responders for different values of N .
The time average is computed along the iterations shown in the left panel. Parameters are
b = 0.5, α = 1, β = 2γ, γ = 0.5.

3.6.2 Market entry versus route choice

The following result may help us in understanding the relationship between underpartic-

ipation and the asymmetric payoff structure of the market entry game.

Proposition 3.6 Consider an evolutionary competition between the optimistic and pes-

simistic rule and let b = 1/2 and β = 2γ. Denote by zt = xt − s∗ the deviations of the

participation rate from the MSNE and define ∆zt+1 = zt+1 − zt. For the market entry

game we can write ∆zt+1 = m (zt), where m (z) + m (−z) < 0, for z /∈ {−1
2
, 0, 1

2

}
. For

the route choice game we can write ∆zt+1 = r (zt), where −r (z) = r (−z).
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The left panel of Figure 3.14 shows the functions m (z) and r (z) and illustrates that,

outside the three steady states z = −1
2
, z = 0 and z = 1

2
, we have m (z) < r (z). This,

together with Proposition 3.6 suggests that there is a tendency for zt to be downward

biased in the market entry game, since innovations in z are lower than in the route choice

game (this is corroborated for example in the left panel of Figure 3.7). The origin of

the ‘asymmetry’ of m (z) lies in the denominator of (3.14), the population average payoff

πt =
∑

i xi,tπi,t. The right panel of Figure 3.14 shows that average payoffs π are symmetric

in x around s∗ = 1
2

for the route choice game, but not for the market entry game.
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Figure 3.14: Comparison of the evolutionary competition of optimists and pessimists for market
entry games and route choice games. Left panel: Innovation function for the market entry game
and for the route choice game compared. Right panel: Population average payoffs, π̄, in the two
cases. Parameters are b = 1

2 , α = 1, β = 2γ and γ = 1
2 .

This asymmetry in π leads to underparticipation in the market entry game, and a

participation premium for those agents using the optimistic rule, since the project is

more often profitable. This is illustrated by the left panel of Figure 3.15 which shows the

difference between average payoff of optimists and pessimists for the market entry and the

route choice game. For the route choice game average payoffs of optimists and pessimists

are, due to symmetry, always the same. For the market entry game however, just as in

the experiment discussed in Section 3.2, optimists do better on average, whenever the

steady state s∗ is unstable.

One might expect that this payoff difference in the market entry game disappears

when some “memory” is introduced. In fact when memory plays a role more agents

should imitate the action of the optimists, which are performing better, and thus eliminate

underparticipation. Consider the evolutionary competition of optimists versus pessimists

where evolution is governed by a fitness measure that is a weighted average of past payoffs,

that is, Ft = µFt−1 + (1− µ) π1,t−1. The resulting dynamical system is two dimensional,
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Figure 3.15: Optimists - pessimists time average payoff differences for market entry games and
route choice games. Left panel: Time average payoff difference without memory. Right panel:
Time average payoff difference with memory. Parameters are b = 1

2 , α = 1, β = 2γ, γ = 1
2 and

µ = 1
10 .

with variables xt and Ft, and given by:

xt+1 = f1 (xt, Ft) =
xtFt

xtFt + (1− xt)α
, (3.22)

Ft+1 = f2 (xt, Ft) = µFt + (1− µ) (α− γ + βp (f1(xt, Ft);Nc, N) .)

The following proposition characterizes its behavior.

Proposition 3.7 The dynamics of the participation rate and of the optimists’ payoff

given by the system (3.22) has three steady states: (0, α− γ + β), (s∗, α) and (1, α− γ).

The steady states (0, α− γ + β) and (1, α− γ) are locally unstable. The interior steady

state (s∗, α) is locally stable when ψ ≡ s∗ (1− s∗) δ∗β
α
> −21+µ

1−µ
.

The effect of memory is to stabilize the dynamics. For µ = 0 we retrieve the stability

condition from Proposition 3.4, but as µ increases the critical value of ψ increases. Nev-

ertheless, when the dynamics is unstable the same difference in time averages payoffs as

before emerges. The right panel of Figure 3.15 shows that when the steady state s∗ is un-

stable over time optimists outperform pessimists. Therefore, the participation premium

persists.

Summarizing, the asymmetric payoff-structure of the market entry game is indeed re-

sponsible for underparticipation and the participation premium. Note that if we assume

agents are driven by payoff differences instead of absolute payoffs, the market entry game

transfers naturally into a route choice problem. To see this, consider the payoff func-

tion (3.1 ) and define the payoff difference by φi (ai,a−i;Nc, N) = πi (ai,a−i;Nc, N) −
πi (1− ai,a−i;Nc, N). This payoff difference is equal to β − γ or −γ for participating
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players, and equal to γ − β or γ for players that do not participate, depending on the

number of participating players. Clearly, φi (1,a−i;Nc, N) + φi (0,a−i;Nc, N) = 0 and

choosing not to participate is subject to strategic uncertainty about payoff differences.

Therefore, if players care about payoff differences between the alternatives participation

rate dynamics are less stable and underparticipation is alleviated.

3.7 Conclusion

Many (economic) decision problems can be characterised as negative feedback participa-

tion games and understanding human behavior in these participation games is important.

The experiment from Section 3.2 shows that, although a reasonable description at an

aggregate level, the symmetric mixed strategy Nash equilibrium does not explain individ-

ual behavior very well. In particular, rather than randomizing their decisions, subjects

typically use deterministic rules, possibly conditional on past outcomes. Moreover, the

participation rate is inherently unstable, in all experimental groups. A series of contribu-

tions from computational economics, starting with the famous El Farol bar problem from

Arthur (1994), also shows that complicated dynamics arise naturally in negative feedback

participation games. Other complex and computationally intensive models assume that

agents are randomizing their participation decision. In general, these models are difficult

to study analytically and results from this literature are typically based upon numerical

simulations.

In this paper we introduce an alternative type of behavioral model that is able to

explain the experimental and computational results, but still is sufficiently simple to be

analyzed theoretically. We consider an evolutionary competition between different deter-

ministic behavioral rules, where players switch between these rules on the basis of past

performance. For the simplest possible case, where the only available two rules are those

that specify to always participate, or to never participate, respectively, the participation

rate dynamics evolves according to a nonlinear one-dimensional difference equation. This

difference equation can be studied analytically, and local stability of the symmetric mixed

strategy Nash equilibrium turns out to depend upon the number of players. For a large

number of players this simple model exhibits perpetual fluctuations in the participation

rate, similar to those found in the experiments and the, much more complex, computa-

tional models. A testable prediction of our model is that these fluctuations, in contrast

to the mixed strategy Nash equilibrium, are not vanishing even when a very large group

of players is involved.

The erratic time series of participation rates has two other features. First, the time

series exhibits certain regularities. When agents use rules that try to exploit this struc-
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ture are introduced, this particular structure disappears, but fluctuations around the

symmetric mixed strategy Nash equilibrium do not vanish. Instead, other (higher order)

regularities are introduced. Again, adding more sophisticated behavioral rules drives out

these regularities again, but does not stabilize the fluctuations, which therefore seem to

be quite robust. Secondly, the time series exhibits underparticipation and a premium for

participating. This is consistent with the experimental results. We establish that this is

due to the asymmetry in the strategic uncertainty of the market entry game. This has

interesting economic implications. In our future research we will try to use our behavioral

model to explain certain economic or financial stylized facts, such as excess volatility and

the so-called equity premium puzzle (Mehra and Prescott, 1985). Consider, for example,

the decision to invest money in bonds, or in an index of stocks as an application of our

model. The uncertainty of investing in the stock index is high and may depend on other

agents choices, whereas investing in bonds is relatively safe. Our behavioral model pre-

dicts an excess return to investing in the stock index. This is consistent with the equity

premium puzzle, which refers to empirical evidence that, after adjusting for risk, investing

in stocks indeed is more profitable than investing in bonds.



100 CHAPTER 3. PARTICIPATION GAMES

Appendix

3.A Proofs

Proofs of Section 3.2

Proof of Proposition 3.1 The symmetric mixed strategy equilibrium s∗ of the game

whose payoff for strategy s is given by eq. (3.1) in Section 3.2, solves

πi

(
1, s∗−i;Nc, N

)
= α + (βp (s∗;Nc, N)− γ) = α = πi

(
0, s∗−i;Nc, N

)
,

which is equivalent to:

p(s∗;Nc, N) =
Nc−1∑

k=0

(
N − 1

k

)
(s∗)k (1− s∗)N−1−k =

γ

β
. (3.23)

The function p(x;Nc, N) in (3.23) is the cumulative distribution function (c.d.f.) of a

binomial distribution, with N − 1 degrees of freedom and probability of participating x,

evaluated at Nc−1. This implies that for every Nc < N , it holds true that p(0;Nc, N) = 1

and p(1;Nc, N) = 0. Furthermore dp(x;Nc, N)/dx < 0 as if we increase the probability

of participating the value of the c.d.f. at any fixed value between 0 and N − 1 decreases.

Consequently, since γ/β < 1, p(x;Nc, N) = γ/β has a unique solution s∗ for any value of

N > 1, any Nc ∈ [0, N − 1] and any γ < β. Furthermore, since equation (3.23) does not

depend on α, neither does its solution s∗.

The value of s∗ is in general different from b = Nc/N . We first show that when

b = 1/2 and γ/β = 1/2 then s∗ = b = 1/2. In terms of the eq. (3.23) we have to

show that p(1/2;N/2, N) = 1/2, for all N > 1. We show the equivalent statement

that p(1/2;N/2, N) + p(1/2;N/2, N) = 1. The following chain of equalities proves this

statement

1 =
(

1
2

+ 1
2

)N−1

=
∑N−1

k=0

(
N−1

k

) (
1
2

)k (
1
2

)N−1−k

=
∑N/2−1

k=0

(
N−1

k

) (
1
2

)k (
1
2

)N−1−k
+

∑N−1
k=N/2

(
N−1

k

) (
1
2

)k (
1
2

)N−1−k

= p(1/2;N/2, N) +
∑N/2−1

j=N−1−k=0

(
N−1

j

) (
1
2

)N−1−j (
1
2

)j

= p(1/2;N/2, N) + p(1/2;N/2, N).
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In the last part of this proof we show that for general values of β, of γ < β, of N

and of b = Nc/N ∈ (0, 1) it holds true that s∗ → b as N → ∞. Define the random

variable n = N−1
N−1

, where N− 1 is a random variable with a Binomial distribution with

probability s∗ and N − 1 degrees of freedom. Given the fact that s∗ solves eq. (3.23), the

γ/β percentile of the distribution of n is given by bN − 1/(N − 1) = b− (1− b)/(N − 1).

Also notice that the distribution of n has mean s∗ and variance s∗(1−s∗)/(N−1). Notice

that when N → ∞ the distribution of n is concentrated more and more around s∗. We

reason by contradiction and show that the statement that there exists an ε > 0 such that

when N → ∞, |b − s∗| ≥ ε, leads to a contradiction. Assume there exists an ε > 0 such

that when N → ∞ |b − s∗| ≥ ε. This implies that either s∗ > b or s∗ < b. If it were

s∗ > b, then when N →∞, Pr(n ≤ b− (1−b)/(N−1)) → 0. This contradicts that s∗ has

been chosen such that the γ/β percentile of n, is b− (1− b)/N . On the other hand if it

were s∗ < b, then when N →∞, Pr(n ≤ b− (1− b)/(N − 1)) → 1. This also contradicts

that s∗ has been chosen such that the γ/β percentile of n, is b − (1 − b)/(N − 1). We

conclude that for every ε > 0, |b− s∗| < ε as N →∞. ¤

Proof of Proposition 3.2 We use Proposition 4 in Palm (1984), where the concept of

evolutionary stable strategy is extended to N -person games, to show that s∗ is the unique

evolutionary stable strategy of the game analyzed in Section 3.2. First, for any N , define

the N − 1 dimensional vector x−i as (x1, . . . , xi−1, xi+1, xN). With this notation if player

i plays a strategy si = s and faces opponents playing x−i then, according to eq. (3.2), his

expected payoff is:

πi(s,x−i;Nc, N) = α + s (βp (x−i;Nc, N)− γ) .

Now, since s∗ = (s∗, . . . , s∗) is a mixed strategy Nash equilibrium it holds that

πi(s
∗, s∗−i;Nc, N) = πi(x, s

∗
−i;Nc, N) ∀x ∈ [0, 1].

This holds ∀i since the game is symmetric. This and Proposition 4 of Palm (1984) imply

that the mixed strategy s∗ is an ESS if and only if:

πi(s
∗, s∗,x−i ;Nc, N) > πi(x, s

∗,x
−i ;Nc, N) ∀x ∈ [0, 1] \ {s∗} and ∀i, (3.24)

where the N − 1 dimensional vector s∗,x−1 is defined as (x, s∗, . . . , s∗). Now, since:

πi(s
∗, s∗,x−i ;Nc, N) = α+ s∗

(
βp

(
s∗,x−i ;Nc, N

)− γ
)
,
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and

πi(x, s
∗,x
−i ;Nc, N) = α+ x

(
βp

(
s∗,x−i ;Nc, N

)− γ
)
,

inequality (3.24) becomes:

(s∗ − x)(βp
(
s∗,x−i ;Nc, N

)− γ) > 0.

Consider player i; if one of the other N−1 players increases his probability x of participat-

ing while the other (N −2 use the same probability s∗ then p(s∗,x−i ;N − c,N) decreases. In

differential form dp
(
s∗,x−i ;Nc, N

)
/dx < 0. This, together with the fact that, by definition,

s∗ is the value such that βp (s∗−i;Nc, N) − γ = 0, implies that βp
(
s∗,x−i ;Nc, N

) − γ > 0

when x > s∗ and vice versa when x < s∗. As a result the inequality is always satisfied.

The strategy s∗ is the unique ESS because no other symmetric Nash equilibrium of the

game exist. We notice that this result does not dependent by the size of the game N . ¤

Proofs of Section 3.3

Proof of Proposition 3.3 The equilibrium condition of eq. (3.13) is given by:

x∗k =
x∗kπ

∗
k∑K

j=1 x
∗
jπ
∗
j

. (3.25)

Obviously, any point with structure x∗ = (0, . . . , 0, 1, 0, . . . , 0) satisfies this equation.

These are the K equilibria where all the agents use only one rule. Now suppose that at

least two rules are used by a strictly positive fraction of agents. Define byK∗ ⊂ {1, . . . , K}
the set of indexes of these rules. Then from eq. (3.25) it follows that for any k ∈ K∗ it

should hold π∗k =
∑

j∈K∗ x∗jπ
∗
j , and hence π∗k has to be the same for all k ∈ K∗. According

to eq. (3.8) all the payoffs of the K∗ rule are the same when:

(1−p∗k)πa+p∗kπp(x
∗;Nc, N) = (1−p∗k′)πa+p∗k′πp(x

∗;Nc, N) for any couple of rules k, k′

where x =
∑

j∈K∗ x∗jp
∗
i and p∗k = fk(x

∗, . . . , x∗) for every k. In what we have called the

non-generic case, that is when p∗k = p∗k′ for every k, k′ in K∗ the previous equation is

always satisfied. In the generic case, otherwise, all the solution must have πa equal to

πp(x
∗;Nc, N) which, is only possible when x∗ = s∗. ¤
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Proofs of Section 3.4

To prove Propositions 3.4 and 3.5 the following result is useful.

Lemma 3.2 Define, δ∗ = δ (s∗; b,N, ) = dp
dx

∣∣
x=s∗ then, for a fixed value of b, δ∗ is de-

creasing in N and δ∗ → −∞ as N →∞.

Proof The cumulative distribution of a binomial distribution with parameters x and

N − 1 evaluated at bN − 1 can be written in terms of the Beta-function, B (x, y) =
(x−1)!(y−1)!

(x+y−1)!
, as

p (x; bN,N) = 1−
∫ x

0
tNb−1 (1− t)N(1−b)−1 dt

B (Nb,N (1− b))
. (3.26)

Equation (3.26) implies that we have

δ (x; b,N) =
∂p (x; bN,N)

∂x
= −x

Nb−1 (1− x)N(1−b)−1

B (Nb,N (1− b))
.

The function δ (x; b,N) has a unique maximum at x̂b,N = bN−1
N−2

. The associated minimum

value of δ is given by get

δ̂b,N = δ (x̂b,N ; b,N) = − (N − 1)!

(bN − 1)! (N (1− b)− 1)!
(x̂b,N)bN−1 (1− x̂b,N)N(1−b)−1

= − (N − 1) (N − 2)!

(bN − 1)! (N(1− b)− 1)!
(x̂b,N)bN−1 (1− x̂b,N)N(1−b)−1 .

Taking the logarithm of −δ̂b,N and applying the Stirling approximation formula, log (n!) =

n log (n)− n+ ξ(n) where ξ(n) → 0 as n→∞, we getlog

log
(
−δ̂b,N

)
= log (N − 1) + (N − 2) log (N − 2)− (N − 2)

− (Nb− 1) log

(
Nb− 1

x̂b,N

)

− (N (1− b)− 1) log

(
N (1− b)− 1

1− x̂b,N

)
+ (N − 2) + ξ (N)

= log (N − 1) + ξ (N) ,

which goes to ∞ as N → ∞ with the same speed as log(N) and therefore δ̂b,N → −∞
as N → ∞. For the special case b = 1

2
we have x̂b,N = 1

2
for all values of N and, by

Proposition 3.1, s∗ = 1
2

for all even values of N . This implies that for b = 1
2

we have

δ∗ → −∞ as N →∞. For the general case with b 6= 1
2
, both s∗ and x̂b,N converge to b as
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N goes to infinity. Moreover, δ (x; b,N) is conitnuous in x. Consequently it must be the

case that also then δ∗ → −∞ as N →∞. ¤

Proof of Proposition 3.4 A simple computation shows that the equation f (x; b,N) =

x, with f (x; b,N) given by (3.18) has three steady states: x = 0, x = 1 and x = s∗, where

s∗ is the unique number solving p (s∗; bN,N) = γ/β. The derivative of (3.18) is given by

f ′(x; b,N) =
α ((1− x)xβδ + (α+ βp (x; bN,N)− γ))

(xt (p (xt; bN,N) β − γ) + α)2 . (3.27)

From (3.27) it follows immediately that f ′ (1) = α
α−γ

> 1 and f ′ (0) = α+β−γ
α

> 1 implying

that both steady states x = 1 and x = 0 are locally unstable. Evaluating (3.27) at s∗

gives

f ′ (s∗; b,N) = 1 +
(1− s∗) s∗βδ∗

α
= 1 + ψ,

where

ψ ≡ (1− s∗) s∗δ∗β/α. (3.28)

Notice that the negativity of δ∗ is always negative (see proof of Lemma 3.2) implies that

ψ is also negative and therefore f ′ (s∗; b,N) < 1. The steady state x = s∗ is therefore

stable if and only if ψ > −2. ¤

Proof of Proposition 3.5 First observe that for any value of α, any γ > β and

any b ∈ (0, 1) the derivative of f (x; b,N), as given in (3.27), goes to −∞ as N → ∞.

The latter is true since (3.27) is proportional to δ∗ and from Lemma 3.2 it follows that

δ∗ → −∞ as N → +∞. When β = 2γ and b = 1
2
, we have s∗ = 1

2
(Proposition 3.1) for

every N . As a result (3.27) can be written as

f ′ (s∗; b,N) = 1 +
δ∗Nβ
4α

,

where

δ∗N = −
(

1
2

)N−2
(N − 1)!(

1
2
N − 1

)
!
(

1
2
N − 1

)
!
. (3.29)

Notice that δ∗2 = 1 and that for N ≥ 4 we have δ∗N = −3
2
× 5

4
× · · · × N−1

N−2
. Notice that δ∗N

is monotonically decreasing in N and that δ∗N → −∞ as N → ∞ (by Lemma 3.2). We

then have that ψ = ψN = − β
4α
δ∗N . Thus there exists an integer M such that ψN < −2

when N > M . Since this is the local stability condition of s∗, we have proved that there

exists an integer M such that s∗ is locally stable if and only if N ≤M . ¤
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Proofs of Section 3.6

Proof of Proposition 3.6 Recall that a function f (x) is even when f (−x) = f (x)

for all x and odd when f (−x) = −f (x) for all x. Rewriting (3.14) in terms of z gives

∆zt+1 = m (zt) =
n (zt)

d (zt)
=
β

(
p(zt + 1

2
; N

2
, N)− 1

2

) (
zt + 1

2

) (
1
2
− zt

)
(
zt + 1

2

)
β

(
p
(
zt + 1

2
; N

2
, N

)− 1
2

)
+ α

.

From (3.3) it follows that p
(
z + 1

2
; N

2
, N

)
+p

(−z + 1
2
; N

2
, N

)
= 1 or p

(
z + 1

2
; N

2
, N

)− 1
2

=

− (
p
(−z + 1

2
; N

2
, N

)− 1
2

)
. Together with the fact that

(
z + 1

2

) (
1
2
− z

)
is an even function

of z this implies that n (z) is odd, that is, n (−z) = −n (z). Now consider z ∈ (−1
2
, 0

)
.

We then have

d (z) = β

(
z +

1

2

)(
p

(
z +

1

2
;
N

2
, N

)
− 1

2

)
+ α > 0,

since p
(
z + 1

2
; N

2
, N

) − 1
2

is positive if and only if z is negative. Moreover, we then also

have

d (−z) = −β
(

1

2
− z

)(
p

(
z +

1

2
;
N

2
, N

)
− 1

2

)
+ α > 0,

where the inequality follows from the fact that the d (−z) is bounded from below by

−β
4

+ α, which is positive since α− γ > 0 and β = 2γ. So for z ∈ (−1
2
, 0

)
we have

d (z)− d (−z) = β

(
p

(
z +

1

2
;
N

2
, N

)
− 1

2

)
> 0.

Summarizing, for all z ∈ (−1
2
, 0

)
we have d (z) > d (−z) > 0 and −n (−z) = n (z) > 0

which implies −m (−z) > m (z). Similarly, for z ∈ (
0, 1

2

)
it can be shown that −m (z) >

m (−z). Combining those we find that m (z) +m (−z) < 0, for z /∈ {−1
2
, 0, 1

2

}
.

For the route choice problem straightforward computations from the equivalent of

(3.14) lead to:

∆zt+1 = r (zt) =
2β

(
p
(
zt + 1

2
; N

2
, N

)− 1
2

) (
zt + 1

2

) (
1
2
− zt

)

2ztβ
(
p
(
zt + 1

2
; N

2
, N

)− 1
2

)
+ α

.

Here the denominator is an even function and the numerator is odd, making r (z) an odd

function. ¤

Proof of Proposition 3.7 The steady states of (3.22) solve x = xF
xF+(1−x)α

and F =

α−γ+βp (x;Nc, N). The three steady states (x, F ) are given by (0, α + β − γ), (1, α− γ)
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and (s∗, α), respectively. The Jacobian of (3.22), J (x, π1), is given by

J |(x,F ) =

(
αF
F 2

x(1−x)α

F
2

(1− µ) βδ αF

F
2 µ+ (1− µ) βδ x(1−x)α

F
2

)
,

where F = xF + (1− x)α. It follows immediately that J (0, α− γ + β) has eigenvalues

λ1 = F
α

= α+β−γ
α

> 1 and λ2 = µ ∈ (0, 1) and that J (1, α− γ) has eigenvalues λ1 = α
F

=
α

α−γ
> 1 and λ2 = µ ∈ (0, 1). These boundary steady states are therefore unstable for

any value of µ. The characteristic equation for the Jacobian evaluated at (s∗, α) is

λ2 − [1 + µ+ (1− µ)ψ]λ+ µ = 0, (3.30)

where, as before, ψ ≡ s∗ (1− s∗) δ∗β
α

. When µ ∈ (0, 1) one can show that the eigenval-

ues are complex as long as −(1+
√

µ)
2

1−µ
< ψ < −(1−√µ)

2

1−µ
. If this condition holds then we

have|λ1| = |λ2| = µ ∈ (0, 1) and the interior steady state is locally stable. If the eigenval-

ues are real the local stability conditions are given by λ1 < 1 and λ2 > −1 (where we have

labeled the eigenvalues such that λ1 > λ2). From (3.30) it follows that ψ(1− µ) < 0 im-

plies that λ1 < 1 always holds. On the other hand, λ2 > −1 as long as ψ > ψ∗ = −21+µ
1−µ

.

Moreover, since for ψ ≤ ψ∗ the eigenvalues are real it follows that the interior steady state

(s∗, α) is locallys stable if and only if ψ > ψ∗. ¤



Chapter 4

Informational differences in an asset

market

4.1 Introduction

Since the beginning of the eighties, the validity of the efficient market hypothesis has

been questioned on the basis of empirical evaluation of so-called financial anomalies.

Well-known examples are excess volatility, as described by Shiller (1981) and LeRoy and

Porter (1981), mean reversion of asset prices, as documented by Poterba and Summers

(1988) and Fama and French (1988b), and correlation between returns and lagged returns

or lagged dividend yields, as shown by Shiller (1984) and Fama and French (1988a).

Stimulated by these findings, a part of the scientific community has investigated

whether such anomalies can be explained by assuming that the agents operating in the

market are boundedly rational. Although the exact implication of bounded rationality

varies among the different models, a common characteristic is that boundedly rational

agents act in an economic setting which they do not know in full detail. Furthermore,

agents are often assumed to be able to optimize an objective function under certain con-

straints but unable to optimally anticipate the effect of their and other agents’ actions.

In particular, boundedly rational agents are not assumed to be able to coordinate their

actions such that their beliefs are perfectly self fulfilling. In other words, expectations of

boundedly rational agents need not be rational.

In order to explain fluctuations in prices that are not due to fluctuations in eco-

nomic fundamentals, one class of models with boundedly rational agents concentrates on

the interaction of agents choosing different expectation schemes or different investment

strategies (see e.g. the survey paper of Hommes, 2006). An early example is Chiarella

(1992) where a model of a stylized financial market with fundamentalists and chartists is

shown to generate a number of dynamic regimes which are compatible with the empirical

107
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anomalies reported above. In a more recent paper, Brock and Hommes (1998) assume

that agents do not know whether it is more profitable to predict prices by relying on

fundamental information, or to extrapolate trends. In their model, agents use realized

profits or a similar performance measure to decide which strategy to use. This ongoing

choice for the best strategy leads to complex endogenous price fluctuations. Endogenous

fluctuations can already arise in the absence of exogenous influences such as time-varying

fundamentals. An advantage of this assumption is that the price dynamics can be specified

in terms of deviations from a benchmark fundamental price.

A limitation of models in this class is that they typically do not take into account

the direct effect of news about the economic fundamentals on agents’ behavior thus ex-

cluding one of the most trivial behavioral scenarios one might deem important in asset

price formation — the over- or under-reaction of agents, and hence the market, to new

information. Generally speaking, market models that tend to a stable equilibrium state in

the absence of news can still show fluctuations triggered by the arrival of new information.

Because a priori we do not know if market fluctuations are necessarily self-perpetuating

as in chaotic dynamics, we explicitly wish to examine the role of exogenous noise on

the price dynamics, thus keeping open the possibility of scenarios where ongoing market

fluctuations require repeated triggering by a sequence of exogenous shocks.

In view of this critique, there is another class of models in the literature of asset mar-

kets with boundedly rational agents, which explicitly takes into account the role of news

on fundamentals in the price dynamics. Early examples are Bulkley and Tonks (1989)

and Barsky and De Long (1993) who investigate the effect of agents trying to learn the

growth rate of dividends from movements in the stock price. More recent examples are

Timmermann (1993), Timmermann (1996) and Barucci, Monte, and Renó (2004), who

assume that agents estimate parameters defining the relationship between prices and div-

idends. In all these cases, agents use the rational expectations relationship that would

hold between endogenous variables (prices) and exogenous variables (dividends) as if the

underlying parameters were known. That is, agents do not take into account that their

learning effort is modifying the way dividends feed back into prices and do not take into

account estimation errors. When new information about dividends becomes available,

it influences returns not only directly but also indirectly as it affects the estimates of

the parameters that the agents use to forecast future prices and/or dividends. The ex-

pectations in these models converge to rational expectations when the agents learn the

parameters of the data generating process. A limitation of these models is that they all

assume the presence of a representative agent, so that agents’ interaction triggered by

informational differences or by different expectations does not play a role. Moreover, due

to the stochastic components associated with the incoming news about the fundamentals,
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results are practically always obtained by means of simulations.

The aim of this chapter is to construct a framework for examining markets with

boundedly rational agents where both parameter estimation and interaction of agents

play a role. When we use boundedly rational agents, we do not question that rational

behavior, and especially rational expectations, can be a good approximation to the equi-

librium of agents’ repeated interaction. Rather, we argue that the convergence to such an

equilibrium is worth investigating as it might explain part of the economic fluctuations

we observe in reality. Our objective is to characterize how both parameter estimation and

interaction of agents transform incoming information into realized market prices. Because

it is impossible to carry out this exercise under all conceivable behavioral assumptions,

we limit ourselves to a simple class of agent models, where all agents act upon the in-

formation available to them regarding fundamentals (including that revealed by prices).

The agent interaction is triggered by different expectations, which can be explained by

different degrees of information regarding the future value of dividends. This means that

agents neither extrapolate price trends or use other chartists’ rules per se, nor expect

other agents to do so, so that second or higher-order expectations play no role.

We investigate the extent to which our model is able to explain empirical properties

of asset prices. As it turns out, our price dynamics driven by exogenous noise leads

to a simple econometric model for prices that can account for several well-documented

anomalies such as autocorrelation of returns and large persistent deviations of the market

price from the fundamental price in the short run but convergence to it in the long run.

In fact, in line with the econometric model proposed by Summers (1986), our model leads

to a (log) price which is the sum of a persistent component, proportional to the (log)

dividend, and of a transitory component, proportional to the (log) dividend yield, which

turns out to follow a stationary AR(1) process with a time-varying AR(1) coefficient.

Our analysis shows that, whereas the transitory component follows an AR(1) process

as a direct consequence of agents’ learning the dividend growth rate, the fact that the

AR(1) coefficient is time-varying is due to agent interaction triggered by informational

differences. This offers theoretical support to the empirical evidence that the temporary

component in a mean reversion model is nonlinear and switching between regimes with

different rates of convergence, as documented both by Gallagher and Taylor (2001) and

by Manzan (2003).

A convenient feature of our model is that it contains two important benchmarks as

special cases. The first benchmark is given by the classical asset pricing model: the equi-

librium price we derive coincides with the correct present value price when one discards

both the role of informational differences and of agents learning the growth rate of divi-

dends. In this case log prices follow a random walk process driven by realized dividends.
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The second benchmark is given by the model developed in Barsky and De Long (1993)

where log prices have a persistent component (random walk) plus a stationary component.

Our equilibrium price coincides with the price derived in the model of Barsky and De Long

when we discard the role of informational differences. Our model can thus be seen as an

extension of the Barsky and De Long model, where agents with different information sets

are active in the market.

As we consider an asset market where agents have different degrees of information, our

framework is closely related to that of Grossman and Stiglitz (1980) (henceforth GS). They

investigate whether the price is informationally efficient in a repeated market for a one

period living asset, in which agents can decide between two different degrees of information

about the value of the asset return at the end of the period. As GS, we also assume that

agents operating in the asset market can decide whether or not to be informed about next

period’s dividend. However as Bray (1982), Hellwig (1982) and Routledge (1999), we

consider a dynamic model rather than a static one. Rather than starting off by assuming

that agents have rational expectations, we merely see rational expectations as a possible

long run outcome of a learning process of boundedly rational agents using simpler rules.

Failure of the uninformed agents to learn the relationship between prices and dividends

implies deviations of the price from its fundamental value. Moreover, we assume that

the fractions of informed and uninformed agents are not constant but change over time

based on past performances of both strategies. The fraction of each type of agents is

thus an endogenously determined variable. Another difference with the framework of GS

and the papers mentioned above is that we model a market for an infinitely living asset

rather than of a sequence of identical markets for a single period asset. This implies that

agents need to form expectations not only on the value of the future dividend but also

on the remaining value of the asset. To our knowledge, Goldbaum (2005) is the first to

consider a dynamic multi-period market in a setting where agents have different degrees

of information. Whereas Goldbaum assumes the dividend to be stationary in differences,

in order to stay closer to real data, we assume the asset’s dividend to be stationary in

log-differences. Accordingly, we choose to derive our agents’ demand from mean variance

maximization of a constant relative risk aversion (CRRA) utility function rather than from

a constant absolute risk aversion (CARA) utility function as Goldbaum (2005). Other

papers that model the interaction of agents with CRRA utility function are e.g. Chiarella

and He (2001) and Anufriev, Bottazzi, and Pancotto (2006).

The impact of news in a financial market, where heterogeneous boundedly rational

agents are operating, has also been investigated by Hong and Stein (1999). Their model

reproduces stock prices that are under-reacting in the short run, and over-reacting in the

long run to the arrival of new information. In contrast to our framework, they assume
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that the fractions of agents of each group are constant and that the dividend generating

process is stationary in levels.

Our model shows that financial markets populated by agents with different degrees of

information can be seen as economic systems with negative feedback as those analyzed

in the previous two chapters. This establishes a precise correspondence with the famous

cobweb model, see Ezekiel (1938), and with the literature that originated from it, such as

Muth (1961) and Brock and Hommes (1997). Our equation for the evolution of the divi-

dend yield as a function of the uninformed agents’ expectations has a close correspondence

with the equilibrium price equation in a cobweb model in the case of linear supply and lin-

ear demand. We refer to this literature to justify the expectation formation of boundedly

rational agents. In particular Brock and Hommes (1997) and Chapter 2 in this thesis show

that if rational expectations come at a cost, boundedly rational agents keep switching be-

tween an expensive sophisticated and a cheap simple expectation scheme, thus generating

complicated price fluctuations. Because we want to keep our model as simple as possible,

we do not explicitly model agents’ choice between cheap simple expectations and expen-

sive sophisticated expectations. We concentrate on informational difference and model

expectations as adaptive. An analysis where both informational differences and the role

of expectation scheme choice play a role is performed by De Fontnouvelle (2000). He

shows that if agents are allowed to switch among different types of expectation schemes

and if rational expectations come at a cost, an asset market of the type proposed by GS

leads to similar price fluctuations as Brock and Hommes (1997) found for the cobweb

model. By considering informational differences as well as the choice of an expectation

scheme, even in the simpler case of a one period living asset, De Fontnouvelle arrives at a

rather complicated model, which is analyzed mostly by means of simulation, rather than

analytically.

The chapter unfolds as follows. Section 4.2 introduces the model in terms of its

three founding elements: the asset market, expectation formation and the evolution of

the fractions of informed and uninformed agents. Section 4.3 analyzes the co-evolution

of the market price and of the fractions of informed and uninformed agents in a world

without uncertainty about future growth rates of dividends. That is, we analyze the

deterministic skeleton of the system of difference equations developed in Section 4.2.

Section 4.4 analyzes the full model, i.e. the evolution of the market price and of fractions

of agents when uncertainty about future growth rates of dividends plays a role. There we

also relate the price dynamics generated by our model to the classical asset pricing model

and to the model developed in Barsky and De Long (1993). Section 4.5 concludes with

a discussion of our main results. The appendix at the end of the chapter contains proofs

and a micro-foundation of our model.
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4.2 The model

4.2.1 The asset market

We consider a market where shares of a financial asset are traded repeatedly in discrete

time periods. The market is populated by agents who believe that the discounted sum of

expected future dividends constitutes a “fair” value of the asset. As in GS, every agent

can decide whether or not to buy information about next period’s dividend. As a result,

in every period the population of agents is divided in two groups with different degrees

of information concerning fundamental variables. The current setting differs from GS in

that the asset represents a claim on an infinite sequence of future dividends rather than on

a single dividend, that is, the asset is infinitely lived and does not perish at the end of the

period. As a consequence agents, besides forming expectations on dividends, must also

form expectations on future asset prices. Another important difference with respect to the

GS framework is that in our model agents are boundedly rational. By this we mean that

agents are unable to compute the equilibrium relationship between price and dividends

that should arise in the market where informed and uninformed agents operate. The aim

of this section is to characterize how, in this setting, the market price of an asset/share,

pt, and the fraction of informed agents, λt, co-evolve given agents’ expectations and the

dividend process {dt}. In order to arrive at such a relationship we build up our model

starting from stating its underlying ingredients.

We take a stochastice dividend process, {dt}. In the benchmark case {dt} is given by

a geometric random walk. The dividend payed at time t, dt, is given by:

dt = dt−1(1 + g)ηt, (4.1)

where {ηt} is a sequence of independent, identically distributed (i.i.d.) random variables

with mean 1 and variance σ2
η. The constant g is referred to as the growth rate of dividends.

Agents know that the dividend is growing over time at a certain rate which they

estimate using past dividend realizations. We let ge denote their estimate (beliefs) of the

growth rate of dividends. We assume that this belief is the same across agents and that

agents use it for predictions “as if” it is the true value in the dividend generating process

4.1. For the moment we consider ge as given and constant. In Subsection 4.2.2 we will

discuss how agents actually estimate the growth rate g.

All agents are “fundamentalists” in the sense that they follow the present value model,

i.e. the discounted sum of all future dividends is their “fair” value of the asset. The exact

relationship between today’s price and tomorrow’s expected dividend depends on the

agent’s information about future dividends. The information set of agents contains past
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dividend and price realizations and is different across groups of agents. We denote the

information set at time t for a group H as FH
t . The fair value, i.e. the expected discounted

sum of future dividends, conditional on FH
t is denoted by vH

t :

vH
t = E

[ ∞∑
i=1

dt+i

(1 + r)i

FH
t

]
. (4.2)

The coefficient (1+ r) is the discount rate or required rate of return. We assume that the

discount rate is the same across agents and that agents use the same discount rate for all

future periods. The latter assumption is made because we want to concentrate on price

fluctuations determined by agents’ interaction and learning rather than agents changing

their discount rate. In general, the discount rate can be characterized as the sum of the

risk free rate and the risk premium, which depends on the risk preferences of agents. In

this case, to state that agents use the same constant discount rate means that agents

have the same constant risk preferences. See Appendix 4.A for a derivation of the risk

premium in a context where preferences of the agents are explicitly taken into account.

We also assume that the discount rate is always bigger than the agents’ estimate of the

long run growth rate of dividends.

At any time t, each agent can decide whether to buy information about the value of

dt+1 or not to buy it and thus remain uninformed. As a result, in every period there

are two groups of agents having a different degree of information regarding the next

realization of the dividend process. At time t, the informed agents, group I, are fully

informed regarding dt+1. This implies that their current expectation of the t+1 dividend

is

de,I
t,t+1 = dt+1, (4.3)

where the superscript e, I stands for expectations of the informed agents. We assume that

they pay a fixed cost c > 0 per period for this information. The uninformed agents, group

U , do not know dt+1 but can use public information, available in the form of realized

dividends ds and realized prices ps, s ≤ t, to form their expectations, de,U
t,t+1, about dt+1.

The superscript e, U stands for expectations of the uninformed agents. For example, if

uninformed agents relied solely on the public belief of the dividend growth rate, they

could use de,U
t,t+1 = (1 + ge)dt. The alternative that we consider here, is that uninformed

agents try to get additional information revealed by the demands of the informed agents

through the current market price pt. Uninformed agents consider the relationship between

the dividend and the price to be of the form:

de,U
t,t+1 = yept, (4.4)
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where ye is the agents’ belief, or estimate, of the market dividend yield, that is, the ratio

between future dividend and current price. As for ge, we start with considering ye as

given and fixed. In Subsection 4.2.2 we will discuss how agents actually form their beliefs

of the market dividend yield. We let λ denote the fraction of informed agents, so that

1 − λ is the fraction of uninformed agents. A subscript t is added when we consider a

time dependent λ. We use time varying fractions only from Subsection 4.2.3 where we

describe how λt evolves endogenously.

At each time t, the ex-dividend market price of one share, pt, is given by the following

market equilibrium pricing equation:

pt = λvI
t + (1− λ)vU

t , (4.5)

where vI
t and vU

t denote the “fair” value of the asset conditional on the information of the

informed and uninformed respectively, derived below. Under this assumption the realized

price today is a weighted average, with weights equal to the fraction of each agent type,

of the agent’s estimate of the fair share value. Although this market equilibrium pricing

equation is admittedly stylized, it can be derived by assuming that agents can choose to

invest in a risky asset and in a risk free bond and use a mean variance utility to decide

how much of their wealth to allocate in each investment. If one starts from such a micro-

foundation of demands, equation (4.5) can be derived in a Walrasian framework where λ

(1-λ) is the fraction of wealth of informed (uninformed) agents. See Appendix 4.A for a

derivation of (4.5).

The next step is to derive the implication of agents’ behvaior on the price dynamics

in (4.5). First, we compute the fair value for the informed and for the uninformed agents.

Informed agents We have said that informed agents, like all other agents, know that

the dividend is growing over time at a certain rate, which they assume to be equal to

ge and which they use for predictions “as if” it is the true value of the growth rate of

the dividend process. Expectations of future share values are directly linked to expected

future dividends through equation (4.2). At time t the informed agents know the value

of dt+1 so that their information at time t is given by F I
t = {dt+1, dt, . . . , pt, pt−1, . . . }.

Hence their expectations of future dividends are:

de,I
t,t+j = dt+1(1 + ge)j−1, for j ≥ 1. (4.6)

Notice that agents treat their estimate ge as if it is the true value of the growth rate

of dividends, that is, they do not take into account possible estimation errors in their
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dividend predictions. Plugging expectations (4.6) into (4.2) we arrive at the informed

agents’ estimate of the value of the stock,

vI
t =

dt+1

(r − ge)
. (4.7)

The informed agents’ stock valuation is thus in accordance with the Gordon model (see

e.g. Gordon, 1962). Equation (4.7) implies that informed agents are behaving similarly

to so-called fundamentalists in the interacting agents literature, see Hommes (2006) and

LeBaron (2006) for recent surveys. In fact, the informed agents’ fair value of the asset is

proportional to the dividend payed at time t+1. For this reason, we shall refer to vI
t , the

fair price of the informed agents, as the fundamental price p∗t , that is, we define:

p∗t =
dt+1

(r − ge)
. (4.8)

Notice that the value of the fundamental price depends on ge, the agent’s common belief

of the growth rate of dividends.

Uninformed agents Boundedly rational uninformed agents try to infer the value of

dt+1 from the market clearing price pt. In doing so, they use their model (4.4) concerning

the relationship between the current realized market price pt and expected future divi-

dends dt+1. Combining this with agents being fundamentalists and using ge to estimate

the growth rate of dividends we obtain

de,U
t,t+j = yept(1 + ge)j−1, for j ≥ 1, (4.9)

which, using (4.2), and the uninformed information set FU
t = {dt, dt−1, . . . , pt, pt−1, . . . },

gives the uninformed agents’ valuation of the value of the stock:

vU
t =

yept

(r − ge)
. (4.10)

Notice that also for uninformed agents, there is a correspondence with the literature on

interacting agents. In fact, our “fundamentalists” uninformed agents are behaving “as

if” they are chartists, that is, they use current prices to estimate the value they attach

to the asset. This is an important characteristic of our model and we anticipate some

consequences here. Consider ge and ye as given. If at time t, ye/(r − ge) is bigger than

one, uninformed agents behave “as if” they are trend follower, and can drive prices well

above the fundamental levels. In this case the realized dividend yield, yt+1 = dt+1/pt, will

become lower than (r − ge). The converse happens when ye/(r − ge) < 1. In this case
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the uninformed agents behave “as if” they are contrarian. Summarizing, the uninformed

agents behave “as if” they are chartists but with a different trend coefficient for different

values of ge and ye.

Given the asset valuation for both types of agents, specified in (4.7) and (4.10), and

the market equilibrium pricing equation (4.5) we get,

pt =
dt+1

(r − ge)

λ(r − ge)

(r − ge − (1− λ)ye)
. (4.11)

This equation shows that the realized price is proportional to the fundamental price

p∗t defined in (4.8) – a similar result one gets through the Gordon model – but there

is an additional factor due to the presence of the uninformed agents trying to extract

information from the market price. One can consider this as a generalization of the

Gordon equation to a simple setting where agents have different degrees of information.

Moreover, when λ = 1, i.e. all agents are informed, the realized prize pt in (4.11) is equal

to the fundamental price p∗t in (4.8), as in the Gordon model. On the other hand when

λ = 0, i.e. all agents are uninformed, either pt = 0 or, if ye = r − ge, pt is indeterminate.

Thus, when λ = 0 our pricing equation (4.11) is not well defined, as the price contains no

information about the dividend.

Equation (4.11) can be rewritten as a relationship between the realized dividend yield

yt+1 = dt+1/pt, agents’ beliefs ge and ye, and the fraction of informed agents’ λ:

yt+1 =
(r − ge)

λ
− (1− λ)

λ
ye := f(ye, ge, λ). (4.12)

We call the map f an expectational feedback map because, given a fraction of informed

agents λ and common beliefs about the growth rate of dividends ge, it establishes a

feedback between expectations of uninformed agents of the dividend yield and dividend

yield realizations. Using the expectational feedback map (4.12), it can be easily derived

that, for any λ ∈ (0, 1], if ye = r−ge then yt+1 = r−ge. When this is the case, the agents’

belief regarding the dividend yield is self-fulfilling and r − ge is thus the expectational

feedback equilibrium or rational expectation dividend yield. Notice that when ye = r−ge,

using equation (4.11), one finds that the market price equals the fundamental price p∗t ,

which we have defined in (4.8) as the fair value of the informed agents. For this reason

we denote

y∗ = r − ge (4.13)

as the fundamental dividend yield. The rational expectations dividend yield is thus equal
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to the fundamental dividend yield and, as we will specify later, it gives approximately

the same price process as derived by Timmermann (1993) or by Barsky and De Long

(1993) who also consider a model where agents update their estimate of the dividend

growth rate g. The novelty here is that, due to the presence of informed and uninformed

agents, yt+1 may fail to be equal to y∗. In particular the presence of uninformed agents

can generate a price that differs from the fundamental price. In fact, equation (4.12)

establishes a negative feedback system between the realized dividend yield yt+1 and its

belief or estimate ye, since ∂f/∂ye = −(1−λ)/λ < 0. This implies that positive (negative)

deviations of ye from y∗, lead to negative (positive) realized deviations of yt+1 from y∗.

This observation links our model to the classical cobweb model (see e.g. Ezekiel, 1938, for

an early treatment). In fact equation (4.12) for the price dividend ratio is the same as

the equilibrium price equation in a cobweb model with linear supply and linear demand.

The general asset price dynamics will be more complicated however, since, according to

(4.12), asset prices will be also driven by the learning of the growth rate of the dividend

process and by the evolution of agents’ fractions as we shall see.

4.2.2 Expectation formation

Here we consider how agents form expectations on the growth rate of dividends and on the

dividend yield. As far as the growth rate of dividends is concerned we have assumed that

both informed and uninformed agents have homogeneous expectations on the dividend

growth rate. We follow Barsky and De Long (1993) and assume that agents use adaptive

expectations to estimate its long run value. Adaptive expectations are characterized by

ge
t,t+1 = γge

t−1,t + (1− γ)

(
dt

dt−1

− 1

)
, (4.14)

where ge
t,t+1 denotes the time t belief or estimate of the long run growth rate for period

t + 1, and where we refer to γ as the memory coefficient specifying the rate at which

agents discount past information. Naive expectations are obtained in the special case

γ = 0, whereas ge
t,t+1 is the mean of all past observations of y when γ = (t − 1)/t.

Notice that when the growth rate is time-varying, one has to update the definition of the

fundamental price and of the fundamental dividend yield from expression (4.8) and (4.13)

to, respectively:

p∗t =
dt+1

r − ge
t,t+1

, (4.15)

y∗t+1 = r − ge
t,t+1. (4.16)
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The same expectation used for the estimation of the future growth rate of dividends is

assumed to be used for the estimation of the value of the future dividend yield ye. Notice

that only uninformed agents need to form expectations about tomorrow’s dividend yield,

as informed agents already know the value of dt+1. Adaptive expectations for the dividend

yield are specified by:

ye
t,t+1 = αye

t−1,t + (1− α)yt, (4.17)

where, as before, ye
t,t+1 denotes the belief or estimate of the dividend yield of time t + 1

based on the information up to time t, and the parameter α ∈ [0, 1] is, as γ, the memory

parameter, which specifies the rate at which agents discount past information.

Substituting the time varying expectations of the growth rate of dividends and of the

dividend yield into the expectational feedback map (4.12) one obtains:

yt+1 = f(ye
t,t+1, g

e
t,t+1, λ) =

(r − ge
t,t+1)

λ
− (1− λ)

λ
ye

t,t+1. (4.18)

This equation evaluated at time t together with (4.17) explicitly gives the dynamics for

the expectations of the dividend:

ye
t,t+1 =

(1− α)(r − ge
t−1,t)

λ
+
α + λ− 1

λ
ye

t−1,t.

This dynamic equation can also be written in terms of the realized dividend yield, y, using

the feedback map (4.12), which gives:

yt+1 =
r − ge

t,t+1

λ
− α(r − ge

t−1,t)

λ
+
α + λ− 1

λ
yt := h(yt, g

e
t,t+1, g

e
t−1,tλ). (4.19)

The map h establishes the dependence of the realized dividend yield yt+1, on its lagged

value yt, on agents’ beliefs of the growth rate of dividends at two subsequent dates, ge
t,t+1

and ge
t−1,t, and on the fractions of informed agents λ. We study this linear map in Section

4.3.

Notice that, given the negative expectational feedback map (4.12), adaptive expec-

tations for the dividend yield are not rational in the sense of Muth (1961). We assume

that boundedly rational agents use them for two reasons. First, empirical support in

favor of the use of adaptive expectations for the dividend yield in present values mode

has been given by Chow (1989). Second, Brock and Hommes (1997) and Chapter 2 of

this thesis show that with endogenously determined variables as price or dividend yield,

if rational expectations come at a cost, agents may switch continuously between costly

rational expectations and simpler expectations at no cost. As a result, when one models

this expectation choice, convergence to a rational expectations equilibrium is not ensured.
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In order to keep the structural form of our model simple, we do not model agent’s choice

of its expectation framework and assume that boundedly rational agents use adaptive

expectations. In fact adaptive expectation gives a reasonable trade-off between simplicity

of use and consistency with the outcomes of the models.

4.2.3 Evolution of the fraction of informed agents

So far we have assumed that the fractions of informed and uninformed agents are fixed.

In this subsection we model how these fractions change over time. The driving force

behind these changes is the trade-off between the costs of information and the precision

of the dividend yield estimator based on public information. Intuitively, given the costs of

information, the more precise the estimate of the dividend yield, the bigger the fraction

of uninformed agents. Or, given the precision of the dividend yield estimate, the higher

the costs of being informed, the smaller the fraction of informed agents.

The evolution of the fraction of informed agents λ is modeled by the replicator dynam-

ics mechanism, the same updating mechanim we have assumed in Chapter 3. We remind

here that the replicator dynamics can be motivated in the context of boundedly rational

agents who are learning and imitating which strategy to play in a strategic environment

(see e.g. Weibull, 1995 and Binmore and Samuelson, 1997). Furthermore, in this case

the replicator dynamics arises naturally in a framework where the equilibrium pricing

equation (4.5) is derived from the maximization of a mean variance utility function. In

fact, in this framework, as outlined in Appendix 4.B, λ is related to the fraction of the

total wealth possessed by the informed agents. Although it is beyond the scope of this

chapter to consider other specifications of the dynamics of λ, we believe the results to

be valid more generally than just for the replicator dynamics discussed here. Since the

objective of the agents is to gather information about future dividends, we assume that

the success of a strategy is given by the squared forecast error of the dividend predictor.

Informed agents have zero forecast error. Uninformed agents try to forecast future divi-

dends by estimating the dividend yield, so their squared forecast error for the realization

yt is (ye
t−1,t − yt)

2. The costs of information are c > 0 per time step for the informed

agents, and 0 for the uninformed. In addition, we assume that agents are granted a fixed

payoff ρ. As a result, we can define the fitness πt of the strategies at time t. The fitness

of the strategy to buy information is:

πI
t = ρ− c, (4.20)
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while the fitness of the strategy of remaining uninformed is

πU
t = ρ−

(
ye

t−1,t − yt

y∗t

)2

. (4.21)

Tecnically, the fixed payoff ρ assures that both (4.20) and (4.21) are always positive and

can be taken as fitnesses in a replicator dynamics framework. In fact, only when fitnesses

are positive, the replicator dynamics produces fractions in the interval [0, 1]. Notice that

in the case of (4.20) a positive fitness requires ρ > c.

The time-varying fundamental dividend yield y∗t defined in (4.16) is introduced in the

denominator of πU
t for normalization. Given that dividend yield yt has y∗t as reference

value, this choice is convenient because it implies that the two fitness measures coincide

when, given c, a forecasting error of (100
√
c)% is made. For example, if c = 0.1, the two

fitness measures are equal when errors of approx. 30% around y∗t are made.

In the presence of a time varying fraction λt, (4.18) becomes:

yt+1 = f(ye
t,t+1, g

e
t,t+1, λt) =

r − ge
t,t+1

λt

− (1− λt)

λt

ye
t,t+1. (4.22)

We can use this relation between yt+1 and ye
t,t+1 and rewrite the fitness of the uninformed

agents (4.21) as:

πU
t = ρ−

(
y∗t − ye

t−1,t

λt−1y∗t

)2

. (4.23)

Given the fitness measure of both strategies we can now specify the dynamics for λ.

Under replicator dynamics the fraction λt of informed agents evolves according to

λt = (1− δ)
λt−1π

I
t

λt−1πI
t + (1− λt−1)πU

t

+
δ

2
, (4.24)

where the parameter δ is to be interpreted as a mutation or experimentation parameter

(see e.g. Young and Foster, 1991; Droste, Hommes, and Tuinstra, 2002). The parameter δ

is related to what we call evolutionary (or selection) pressure in the following way. When

δ = 0 the updating of the fractions is determined only by the selection mechanism. On the

other hand when δ = 1 the evolutionary pressure reaches its minimum and both fractions

are 1/2, independently on the fitness of the two strategies. Intermediate values of δ result

in a convex combination of selection pressure and experimentation. Based on expressions

(4.20) and (4.23), the replicator dynamics (4.24) gives,

λt = (1− δ)
λt−1(−c+ ρ)

λt−1(−c)− (1− λt−1)
(

y∗t−ye
t−1,t

λt−1y∗t

)2

+ ρ
+
δ

2
. (4.25)
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The parameter ρ regulates the speed of adjustment of the replicator dynamics. When

ρ is large changes in λ are smaller, everything else being equal, than when ρ is small.

Moreover, in the limit ρ → ∞ the trajectories of 4.25 approach the trajectories of the

corresponding continuos dynamical system (see e.g. Weibull, 1995, Chapter 4). For this

reason we will refer to rho as to the inverse of the speed of adjustment. In Appendix

4.B we present an interpretation of this formula starting from wealth evolution of agents’

maximizing a mean variance CRRA utility function.

4.2.4 Market returns

To summarize, for every shock ηt such that dt = dt−1(1 + g)ηt, the full model developed

so far is given by the following four equations

ge
t,t+1 = γge

t−1,t + (1− γ) ((1 + g)ηt − 1) , (4.26)

ye
t,t+1 = αye

t−1,t + (1− α)yt, (4.27)

yt+1 =
r − ge

t,t+1

λt

− (1− λt)

λt

ye
t,t+1, (4.28)

λt = (1− δ)
λt−1(−c+ ρ)

λt−1(−c)− (1− λt−1)
(

y∗t−ye
t−1,t

λt−1y∗t

)2

+ ρ
+
δ

2
. (4.29)

Equation (4.26) gives the common expectation formation regarding the growth rate of

dividends ge as defined in (4.14), taking into account of the dividend process defined in

(4.1). Equation (4.27) gives the expectation formation of the dividend yield ye by the

uninformed traders as defined in (4.17). Equation (4.28) is the time varying expectational

feedback map (4.22). Equation (4.29) expresses the dynamics of the fraction of informed

agents λ as in (4.25). The shocks and parameters are:

• g, the (unknown) dividend growth rate;

• ηt, the shocks on the dividend growth rate;

• γ, the memory agents use to estimate the dividend growth;

• α, the memory agents use to estimate the future dividend yield;

• r, the required rate of return;
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• δ, the experimentation or mutation rate;

• c, the costs of information per time step;

• ρ, the inverse speed of adjustment of the replicator dynamics.

Whenever yt converges to its steady state value, that is, whenever ye
t,t+1 converges to the

rational expectations value y∗t = r−ge
t,t+1 as in (4.16), the price follows p∗t = dt+1/r−ge

t,t+1

as in (4.15). Notice that the fundamental price depends on the changing estimates of the

growth rate of dividends, and that it is the same price which has been derived by Barsky

and De Long (1993). If, moreover, ge
t,t+1 → g, i.e. beliefs about the dividend growth rate

converge to its true value, the fundamental price converges to the “correct” present value

price, that is y∗t → r− g and p∗t → dt+1/(r− g). In that case the price follows a geometric

random walk. If yt fails to converge to r − g, deviations of the price from fundamental

price can have two origins. The first is the failure of the deterministic skeleton of the

system specified in (4.26–4.29) to converge to its fixed point, or equivalently adaptive

expectations do not converge to rational expectations. This is related to the work of GS

and to the fact that prices are not fully informative. The second possible reason is that,

even if the system converges to the fixed point, it could approach an equilibrium where

ge 6= g. This is a situation where the fundamental price p∗ is not equal to the “correct”

present value price dt+1/(r− g). This is specifically relevant when the estimate ge is time

varying so that the system in (4.26-4.29) is stochastic. In what follows, we analyze these

effects separately as well as their interplay. First, in Section 4.3, we analyze the conditions

of convergence of the deterministic system dynamics of y and λ to their equilibrium values.

Thereafter, in Section 4.4, we complement this analysis by investigating the effect of a

time varying stochastic ge and how the two sources interact.

4.3 Informational differences

In this section we analyze the impact of informational differences alone on the dynamics

of asset prices assuming that ge
t,t+1 ≡ ge, without learning of the divided growth rate.

Technically, we analyze the system of equations (4.26–4.29) when the memory parameter

γ = 1. Without loss of generality we consider only the case ge = g. The generalization to

ge 6= g is straightforward and implies only a shift of the level of the steady state dividend

yield from r − g to r − ge. To simplify the notation, throughout the rest of the chapter

we write ye
t,t+1 ≡ ye

t+1 for the forecast of yt+1 made at time t.

When ge
t,t+1 = g, the system (4.26–4.29) reduces to a two dimensional (2-D) system in
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the variables ye
t+1 and λt:

ye
t+1 =

(1− α)(r − g)

λt−1

+
α+ λt−1 − 1

λt−1

ye
t , (4.30)

λt = (1− δ)
λt−1(−c+ ρ)

λt−1(−c)− (1− λt−1)
(

(r−g)−ye
t

λt−1(r−g)

)2

+ ρ
+
δ

2
. (4.31)

Given the dynamics of (ye
t+1, λt) specified by (4.30–4.31), the dynamics of the dividend

yield yt+1 can be derived by using the expectational feedback map f defined in (4.12).

Before investigating the full dynamics of (4.30–4.31) it is instructive to consider the 1-D

system obtained when the fraction λt of informed agents is fixed to a constant value λ.

Proofs of all the propositions can be found in Appendix 4.C.

4.3.1 Dividend yield dynamics

Taking λt ≡ λ, (4.30) becomes:

ye
t+1 =

(1− α)(r − g)

λ
+
α + λ− 1

λ
ye

t . (4.32)

Given the linearity of (4.32), the analysis of the dynamics is straightforward and it is

possible to compute the general solution of the difference equation. That is, given ye
0 one

can compute the value of ye
t , for all t. The following proposition summarizes the results.

Proposition 4.8 Given the memory parameter α ∈ (0, 1), the fraction of informed agents

λ ∈ (0, 1], and the required rate of return r > g, we have:

(i) The solution of the difference equation (4.32) with initial condition y0 is given by:

ye
t = (ye

0 − y∗)
(
α+ λ− 1

λ

)t

+ y∗,

where

y∗ = r − g.

(ii) If

λ > λ̄ ≡ 1− α

2
, (4.33)

ye
t converges to the steady state y∗, otherwise ye

t diverges to ±∞.

Notice that whenever the expected dividend yield ye
t+1 converges to its steady state y∗,

also the realized dividend yield yt converges to y∗ through the feedback map (4.12). At

the steady state y∗ the price equals the fundamental price p∗t in (4.8) and thus fully reveals
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the information concerning the future dividend. The shaded area in Figure 4.1 shows the

stability region of (4.32) in the parameter space, (α, λ), whereas the white area shows

the unstable region. The shaded area is divided in two gray scales. In the lighter region,

the convergence of the expected dividend yield to its the steady state y∗ is oscillatory,

whereas in the darker, the convergence is monotone. Notice that the border between the

stability and the instability region is characterized by oscillatory behavior of the expected

dividend yield ye
t , and thus of the realized dividend yield yt. This implies that failure

of the price to fully reveal the fundamental information should be characterized by price

fluctuations with negative autocorrelation.
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Figure 4.1: Left panel: Stability region for the 1-D dynamical system in (4.32). The expected
dividend yield converges to the steady state y∗ = r − g only for values of (α, λ) in the shaded
area. In the darker region the convergence to y∗ is monotone, whereas in the lighter region
the convergence is oscillatory. Right panel: Stability region in the 2-D dynamical system in
(4.30-4.31) as a function of the mutation rate δ and memory α, when k = ρ/c = 10. As in the
left panel, the solid line marks the border of the stability region, while the dotted line marks
the border of the region where the convergence of the expected dividend yield to y∗ is monotone
(darker region) or oscillatory (lighter region).

4.3.2 Dividend yield and fractions dynamics

In general, the fraction of informed agents λt is time dependent and the dynamics of the

dividend yield and of the fraction of informed agents is given by the nonlinear system

(4.30–4.31). We use local stability analysis to characterize the behavior of the state

variables (ye
t , λt) near the steady state of (4.30–4.31).

First consider the case of zero information costs. The following proposition character-

izes the steady states of the system and their local stability.

Proposition 4.9 Consider zero information costs, c = 0. Given the memory parameter

α ∈ (0, 1), the inverse speed of adjustment ρ > 0 and the required rate of return r > g, we
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have:

(i) When δ ∈ (0, 1), the unique steady state of the system (4.30–4.31) is the point (y∗, λ∗),

where

y∗ = r − g and λ∗ =
1

2
.

This steady state is globally stable for every parameter combination.

(ii) When δ = 0, every point (y∗, λ∗) with y∗ = r− g and λ∗ ∈ (0, 1] is a steady state. For

a given α ∈ (0, 1) the set of steady states such that λ∗ > λ̄ = (1 − α)/2, as in (4.33), is

globally stable.

Thus, with zero information cost, the expected dividend yield ye
t converges to the funda-

mental value y∗ defined in (4.13) and the fraction of informed agents is either 1/2, when

δ > 0, or any value that satisfies (4.33) when δ = 0. As a consequence the expectational

feedback map (4.12) converges to the rational expectations equilibrium and prices are fully

informative in the long run. This is not the case when one considers positive information

costs:

Proposition 4.10 Consider positive information costs, c > 0. Given the memory pa-

rameter α ∈ (0, 1), the experimentation level δ ∈ (0, 1), the ratio k between ρ, the inverse

speed of adjustment and c, the cost of being informed, such that k = ρ/c > 1 and the

required rate of return r > g, we have:

(i) The unique steady state of the system (4.30–4.31) is the point (y∗, λ∗) where

y∗ = r − g

and

λ∗ =
2− δ + 2kδ −

√
−8kδ + (2− δ + 2kδ)2

4
. (4.34)

Moreover, λ∗ ∈ (0, 1/2).

(ii) The Jacobian of (4.30–4.31) at the steady state is diagonal and given by

J|(y∗,λ∗) =




α + λ∗ − 1

λ∗
0

0 (1− δ)
k(k − 1)

(k − λ∗)2


 . (4.35)

If

δ > δ̄ ≡ (1 + α)

1 + 2αk
(1−α)

=
(1 + α)

1 + 2αρ
(1−α)c

, (4.36)

the steady state (y∗, λ∗) is locally stable. This condition corresponds to the stability condi-

tion (4.33) of the 1-D dynamical system (4.32). That is the condition δ > δ̄, and λ∗ > λ̄

are equivalent.
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The local stability condition (4.36) is represented in terms of the parameters (α, δ) in

the right panel of Figure 4.1 for k = ρ/c = 10. In the white area the steady state (y∗, λ∗)

is unstable, while in the shaded area the steady state is stable. Recall that when the

expected dividend yield ye
t converges to y∗, the realized dividend yield yt also converges

to y∗. Therefore, stability of the steady state (y∗, λ∗) implies convergence of the price to

the fundamental price p∗t and thus to a fully informative price.

Notice the steady state is well defined and locally stable, i.e. prices are fully informa-

tive, only when the experimentation rate δ is not too small, δ > δ̄. Under this condition

there always exists a fraction of agents that are prepared to buy fundamental informa-

tion. It can also happen that the steady state is well defined but not locally stable, that

is prices are not fully revealing. In fact, for any α ∈ (0, 1) there exists a sufficiently small

mutation rate 0 < δ < δ̄ such that the prices are not fully revealing and the system is

unstable. In particular, the definition of δ̄ in eq. (4.36) of Proposition 4.10 shows that,

for a given α, the stability region of the system (4.30–4.31) shrinks, when the cost of in-

formation c increases, or when the speed of adjustment 1/ρ increases. In the limit case of

no experimentation rate, δ = 0, from (4.34) one would get λ∗ = 0 so that the steady state

y∗ is not even defined. Summarizing, for a positive information cost, the price are not

always fully informative in the long run, dependently on the size of the experimentation

rate as compared to δ̄ in (4.36). Moreover, prices are never fully informative when the

experimentation rate δ = 0.

What happens to the dynamics of the expected dividend yield and of the fraction

of informed agents when the steady state is unstable and prices do not converge to be

fully informative? In order to answer this question we analyze the global dynamics of the

system (4.30–4.31) for small experimentation levels, δ < δ̄. Whereas in the 1-D system

the expected and realized dividend yield diverge unboundedly and unrealistically, when

the stability conditions (4.33) and (4.36) do not hold, in the 2-D system our simulations

show the emergence of bounded aperiodic cycles. The top left and top right panels of

Figure 4.2 show a typical evolution of the uninformed agents’ expected dividend yield,

ye, and of the fraction of informed agents, λ, respectively. At time t = 0, the fraction

of informed agents is above the dotted line, which marks the value λ̄ in (4.33) and gives

the stability condition for the steady state of the ye
t dynamics. As a result, at t = 0

both the value of ye
t and, through (4.12), the value of yt, are close to their steady state

value, y∗. This implies that the price is close to being fully informative, there is no

advantage in buying information so that the fraction of informed agents decreases. This

process continues until the fraction of informed agents is smaller than the value λ̄. At this

moment there are so few informed agents that the asset price starts to diverge from the

fundamental. The dynamics of the expected dividend yield ye
t is unstable and ye

t starts to
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Figure 4.2: Top panels: time series for the expected dividend yield ye
t (left panel) and the

fraction of informed agents λt (right panel) from (4.30-4.31). In the top right panel the dotted
line corresponds to λ̄ in (4.33), that is to the critical stability border, whereas the solid line
corresponds to the steady state λ∗ in (4.34). The bottom left panel shows the state space
representation (ye

t , λt). In the bottom right panel, the log price dynamics derived form the
dynamics of ye

t and λt . Fundamental prices are given by the dotted line and realized prices by
the continuous line. Notice that the two price series levels should be read using two different
scales. The left scale gives the value of log prices whereas the right scale gives the value of
fundamental log prices. The dividend process is characterized by ση = 0.02. Parameter values
are α = 0.99, c = 0.1, ρ = 1 (so that k = ρ/c = 10), r = 0.1, g = 0 and δ = 0.000575.

diverge from the steady state y∗. The fraction of informed agents continues to decrease

until the price carries so little information about p∗ that informed agents are better off.

Eventually, paying the cost of being informed leads to a higher fitness than using a freely

available estimate with a large error. As a result, the fraction of informed agents grows

sharply, see e.g. the top right plot around period t = 50. The fraction of informed agents

reverts to a region where the price is sufficiently informative so that ye
t returns to values

close to y∗. As time continues the process repeats, with λ decreasing again, and so on and

so forth. The left and right bottom panels of Figure 4.2 show, respectively, the dynamics

we have just illustrated in the (ye, λ) space and the corresponding dynamics of the log



128 CHAPTER 4. INFORMATIONAL DIFFERENCES IN AN ASSET MARKET

price compared to the log fundamental price.
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Figure 4.3: Phase plots of the expected dividend yield ye
t and the fraction of informed agents

λt produced by the system of difference equations (4.30-4.31). Parameter values are α = 0.99,
c = 0.1, ρ = 1 (so that k = ρ/c = 10), r = 0.1 and g = 0. Top left panel: δ = 0.000675, top
right panel: δ = 0.00066. Bottom left panel: δ = 0.000625, bottom right panel: δ = 0.000575.

The phase plots shown in Figure 4.3 suggest that the fluctuations of ye
t and λt, are

associated with a so-called homoclinic bifurcation. Similar phenomena are encountered

in other multidimensional nonlinear systems and emerge from the interplay between local

instability and global stability of the dynamics. Brock and Hommes (1997) and Droste,

Hommes, and Tuinstra (2002) present other economic frameworks where homoclinic bi-

furcation arise. They also offer detailed discussions of the mathematical aspects behind

these interesting phenomena.

Before turning to an economic interpretation of the results of this section and to

comparison with the results of GS, it is instructive to characterize the convergence of the

fraction of informed agents in the stability region. Close to the equilibrium λ turns out

to change very slowly.

Proposition 4.11 Given a memory parameter α ∈ (0, 1), an experimentation rate δ ∈
(0, 1) and a inverse speed of adjustment larger than the cost of information, ρ > c, if we
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call ν2 the eigenvalue characterizing the dynamics of λ in a neighborhood of (y∗, λ∗), we

have

1 > ν2 > (1− δ)

(
1− c

ρ

)
.

This proposition shows that when the experimentation rate δ is small and the ratio be-

tween the inverse of the speed of adjustment and the cost of information, k, is large, the

value of ν2 is very close to one. As a result, when the system is stable, changes in the

value of the fraction of informed agents λ are very slow, and hence λ is very persistent.

We will find confirmation of this statement in the next section, when we appraise the

effect of agent learning the growth rate of dividends on the dynamics.

4.3.3 Economic interpretation

In a financial market, when agents face informational differences, the use of homogeneous

rational expectations poses puzzling consequences. This is the paradox as found by GS,

they consider an asset pricing model where agents can either buy information on funda-

mentals or try to extract such information from the asset price. In a repeated single period

model with fully rational agents, they show that an equilibrium value of the fraction of

informed agents for which the price fully reveals the information about future dividends

can not exist. If an equilibrium existed then nobody would pay for the information and

prices could not possibly reveal any information. In order to resolve this paradox, GS

need two key assumptions: (1) the supply of shocks is noisy (this is equivalent to saying

that there are noise traders in the market) and (2) the informational content of the divi-

dend signal is not perfect. Under these assumptions a rational expectations “equilibrium

degree of disequilibrium”, where informed and uninformed agents coexist and prices fail

to be fully informative, exists.

The model analyzed in this section is inspired by that of GS, but there are three

important differences. First, our agents are not rational but boundedly rational, that is,

they do not use rational but adaptive expectations. Second, we consider a multi period

model where future returns are determined by capital gains in addition to dividends, and

agents form expectations about both future prices and dividends. Third, the fraction of

informed and uninformed agents are dynamic variables in our model. The results from our

model are as follow. When the experimentation rate is positive, δ > 0, there are enough

agents willing to buy information, even if they could extract it from prices, so that an

equilibrium where prices are fully informative is well defined. This equilibrium is (locally)

stable only when the experimentation rate is big enough, δ > δ̄. In this case, prices

converge to fully informative prices and the GS paradox is resolved by experimentation (or



130 CHAPTER 4. INFORMATIONAL DIFFERENCES IN AN ASSET MARKET

noise), as in GS. On the other hand, when δ < δ̄ fluctuations around the fully informative

equilibrium price arise. This is also the case for a zero experimentation rate (δ = 0).

In this case, an equilibrium is not even defined, and fluctuations of prices and agents’

fractions are observed. How do these two cases, δ = 0 and δ < δ̄, relate to the GS

paradox? The dynamics is now responsible for resolving the GS paradox, as, even if no

equilibrium emerges in the long run, orbits of the system are still well defined. Along these

orbits prices fluctuate between being close to fully informative and being non informative.

By assuming that agents are boundedly rational and that fractions are endogenously

determined, the learning process of the uninformed boundedly rational agents balances the

cost of information and the informational content of the price, resolving the GS paradox.

In our framework we thus obtain a “dynamic equilibrium degree of disequilibrium” due to

endogenous price fluctuations produced by the interaction of boundedly rational agents.

De Fontnouvelle (2000) and Goldbaum (2005) are earlier contributions where bounded

rationality and learning offer an explanation for the existence of an equilibrium degree of

disequilibrium. Their framework differs from ours in many ways, most importantly in that

they consider a dividend process which follows a random walk rather than a geometric

random walk as we do here. Furthermore, their resulting systems of the joint evolution

of the asset price and the fractions of agents is fairly complicated so that their analysis is

performed only via simulations.

4.4 Informational differences and parameter learning

In the previous section we have assumed that the agents’ estimate of the growth rate

of dividends is constant. As a result, the equation for the dividend yield is fully deter-

ministic. In this section we analyze the simultaneous impact of informational differences

and of agents’ learning of the growth rate of dividends as new information about the

fundamentals becomes available. As a result we have to deal with a stochastic system.

A similar analysis has been performed by Barsky and De Long (1993) and Timmermann

(1993), among others, in a context where there are no informational differences among

agents. In particular Barsky and De Long (1993) also assume that agents use adaptive

expectations to estimate g. Recalling the results from Section 4.2, adaptive expectations

are specified by (4.14) which, when the dividend follows a geometric random walk with

innovations (1 + g)ηt gives:

ge
t+1 = γge

t + (1− γ) ((1 + g)ηt − 1) .

This stochastic equation, together with the evolution of the dividend yield, its expecta-

tions, and the fraction of informed agents as specified in (4.26-4.29), lead to a stochastic
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version of the deterministic skeleton (4.30-4.31) namely

ge
t+1 = γge

t + (1− γ) ((1 + g)ηt − 1) , (4.37)

ye
t+1 =

(1− α)(r − ge
t )

λt−1

+
α + λt−1 − 1

λt−1

ye
t , (4.38)

λt = (1− δ)
λt−1(−c+ ρ)

λt−1(−c)− (1− λt−1)
(

(r−ge
t )−ye

t

λt−1(r−g)

)2

+ ρ
+
δ

2
. (4.39)

Shocks {ηt} on the growth rate of dividends are the stochastic component that drives the

co-evolution of agents expectations of the growth rate of dividend, of the dividend yield,

and of the fraction of informed agents. Given the evolution of the expected growth rate

of dividend, ge
t+1, of the expected dividend yield, ye

t+1, and of the fraction of informed

agents, λt, the dividend yield itself, yt+1, is set by the feedback map (4.22). Before we

start with the analysis of the impact of shocks on the dynamics of (4.37-4.39), we show

that our model contains two important benchmarks as special cases.

Classical Asset Pricing model The first benchmark is the classical asset pricing

model, which assumes that all agents know the dividend growth rate g, and that agents

use rational expectations. In this case, if only few agents are informed about dt+1, the

other can correctly extract this information from prices, and the market price and the

market dividend yield are given by:

p∗∗t =
dt+1

r − g
, y∗∗t+1 = r − g. (4.40)

As before, the price p∗∗t denotes the “correct” present value price as given by the Gordon

model (see e.g. Gordon, 1962). Our model boils down to the classical asset pricing model

when at every time t all agents are informed, λt = 1, and use the correct dividend growth

rate, ge
t = g. In fact taking λt = 1 and ge

t = g in equation (4.38) and using the feedback

map (4.22) to transform the expected dividend yield ye
t+1 into realized dividend yield yt+1,

gives yt+1 = r − g which corresponds to y∗∗t+1 defined in (4.40).

Barsky and De Long model The second benchmark is the model proposed by Barsky

and De Long (1993). They consider agents without informational differences who have to

form expectations about the growth rate g. In their case the price and the dividend yield

are given by:

p∗t =
dt+1

r − ge
t+1

, y∗t+1 = r − ge
t+1, (4.41)
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where ge
t+1 is given by adaptive expectations as in (4.37). These are respectively the

fundamental price and the fundamental dividend yield defined in (4.15) and (4.16). Our

model corresponds to the model of Barsky and De Long (1993) under the assumptions that

all the agents that at every time t all agents are informed, λt = 1. In fact by substituting

λt = 1 in (4.38) and using the feedback map (4.22) one retrieves yt+1 = r − ge
t+1, with

ge
t+1 defined in (4.37), which corresponds to y∗t+1 defined in (4.41).

A way of evaluating the differences between our model and the two benchmarks is to

write an evolution equation for the dividend yield as a function of lagged dividend yields

and shocks on the growth rate of dividends for each model. In the classical asset pricing

model the dividend yield is constant and given by y∗∗ = r − g. In the Barsky and De

Long model, one can use y∗t+1 = r − ge
t+1 to rewrite (4.37) as:

y∗t+1 = (1− γ)(1 + r) + γy∗t − (1− γ)(1 + g)ηt. (4.42)

That is, the dividend yield follows an AR(1) process with shocks given by the shocks {ηt}
on the growth rate of dividends. The memory parameter γ is related to both the AR(1)

coefficient and the variance of the innovations, (1−γ)2(1+g)2σ2
η. The mean of the process

is independent of the memory parameter and equal to the constant classical asset pricing

dividend yield y∗∗ = r − g.

In our model, fixing for the moment the value of λ, the map h defined in (4.19), i.e.

the dynamic equation (4.38) for the expected dividend yield ye
t+1 rewritten in terms of

the realized dividend yield yt+1 using the feedback map (4.22), gives:

yt+1 =
(rt − ge

t+1)− α(rt−1 − ge
t )

λ
+
α + λ− 1

λ
yt. (4.43)

This equation expresses that, when the fraction of informed agents is fixed at λ, the

dividend yield follows an AR(1) process with shocks that are correlated with the shocks

of the growth rate of dividends. As for the dividend process implied by the Barsky and

De Long model in (4.43), the long run mean of the dividend process implied by our model

is given by the classical asset pricing dividend yield y∗∗. When γ = α, that is, when

agents use the same memory parameter to estimate the growth rate of dividend and the

dividend yield, (4.43) has a simple appealing formulation:

yt+1 =
(1− γ)((1 + r)− (1 + g)ηt)

λ
+
γ + λ− 1

λ
yt.

If we define

γ̃ = γ̃(λ) ≡ 1− (1− γ)/λ = γ − (1− γ)
1− λ

λ
, (4.44)
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we can rewrite (4.43) as

yt+1 = (1− γ̃(λ))(1 + r) + γ̃(λ)yt − (1− γ̃(λ))(1 + g)ηt. (4.45)

The result is that, when γ = α, our model specified by (4.45) and the model of Barsky

and De Long (1993) specified by (4.42) differ only in the value of the memory parameter

γ. Since γ is the real memory agents use to discount new information, we can refer to

γ̃(λ) as the effective memory. The definition (4.44) shows that the effective memory has

two components, one given by the real memory and the other related to the presence of

uninformed agents. This second effect becomes less important as more informed agents are

present in the market. The general result is that γ̃(λ) in (4.44) is an increasing function

of λ with γ̃(λ) ≤ γ for all λ, and γ̃(1) = γ. That is, the presence of uninformed agents is

equivalent to all agents being informed and using an effective memory which is lower then

the real memory. The value of γ̃ determines both the AR(1) coefficients and the variance

of the shocks but not the long run mean which is always y∗∗ = r − g. In particular the

lower is the effective memory, the higher is the impact of the shocks on the dynamics of

the dividend yield and the faster is the reversion of the process to its mean. That is,

a lower effective memory creates a bigger short run effect and a smaller long run effect.

Also, since the effective memory γ̃ is a function of λ, our model allows for variation of

the memory parameter as the fraction of informed agents λ varies. Changes in λ have an

impact on γ̃ and thus on the variance of shocks and on the speed of convergence. In what

follows we explore the importance of both the effective memory being lower than the real

memory and the effective memory being time varying on the dynamics of the dividend

yield implied by our model (4.45) compared to the two benchmarks in (4.40) and (4.43).

4.4.1 Nonlinear mean reversion

Our model (4.45) clearly differs, both structurally and regarding parameter values, from

that of Barsky and De Long in (4.42) when the fraction of informed agents is time varying.

If this is the case, our model implies an AR(1) process for the dividend yield where both

the rate of convergence of the dividend yield to its mean and the variance of shocks are time

varying. This consideration links our model to the econometric analysis of nonlinear mean

reversion that has recently been proposed to characterize fluctuations of stock indices. By

using the fact that p∗∗t ≡ dt+1/(r− g), i.e. the price implied by model (4.40), and defining

xt = yt+1/(r − g), given the definition of the dividend yield one can write:

log(pt) = log(dt+1)− log(yt+1) = log(p∗∗t )− log(xt).
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If xt is close to its long run average of 1 one can rewrite the previous expression and

expand the logarithm around one. Using the variable zt = 1− xt one gets

log(pt) ≈ log(p∗∗t ) + zt, (4.46)

where the dynamics of zt can be easily derived using its definition in terms of xt, the

definition of xt and (4.45). The resulting dynamics of the component zt of the log price

is given by:

zt = γ̃(λt)zt−1 +
(1− γ̃(λt))(1 + g)

(r − g)
(ηt−1 − 1). (4.47)

This equation shows that we have a model whose realized log price in (4.46) is the sum

of a persistent component log(p∗∗t ), which follows a random walk with drift, and of a

temporary component, zt, which follows a stationary autoregressive process (4.47) with

a time-varying AR(1) coefficient γ̃(λt). Empirical investigation of the properties of stock

prices are in accordance with this statement. Both Gallagher and Taylor (2001) and Man-

zan (2003) reject the null hypothesis that the temporary component in a mean reversion

model follows a stationary process with fixed parameters. In particular Gallagher and

Taylor (2001) show that quarterly data of the logarithm of the dividend yield of the index

SP500 are well fitted by an ESTAR(4) (Exponentially Smooth Transition AR) ARCH(1)

model whose two regimes have AR(1) coefficients equal to 0.72 and 0.20 respectively. As

the model of Barsky and De Long (1993) suggests, the fact that the dividend yield follows

an autoregressive process might be related to the agents’ learning of the model parameters.

In addition to this effect, our model suggests that changing “learning” coefficients and

heteroskedasticity can be related to agent interaction. In fact, both the AR(1) coefficient

and the shocks variance in (4.47) are a function of γ̃(λt) which is a nonlinear function of

the time varying fraction of informed agents λt.

4.4.2 Simulation study

In presenting the qualitative effect of the shocks on the growth rate of dividends on the

dividend yield and fraction dynamics, we proceed by analyzing the impact of a single

shock ηt, and then by analyzing the cumulative impact of a sequence of shocks {ηt}. We

present results not only for dividend yields and prices generated by our model, but also

for dividend yields and prices generated by the classical asset pricing model (4.40) and by

the model of Barsky and De Long (4.41). In addition we also present results for a model

similar to that of Barsky and De Long with the difference that real memory is taken as

the average memory of the time varying effective memory generated by our model. We

refer to this model as the “modified” Barsky and De Long model and its series of prices
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and dividend yields by p∗γ̃ and y∗γ̃. We use the “modified” Barsky and De Long model

to appraise the role of time variability of effective memory. We simulate all models with

dividends generated according to (4.1), that is, dt+1 = dt(1 + g)ηt+1, where {ηt} is a

sequence of i.i.d. log normal shocks with mean zero and variance ση.

It is instructive to start the analysis by comparing the effect of a single shock on the

dividend growth rate g. We perform this analysis for the four different models, namely for

our model, the model of Barsky and De Long, the “modified” Barsky and De Long model,

and the classical asset pricing model. Figure 4.4 shows the resulting price dynamics. In

all the cases there is an initial overreaction followed by convergence to the equilibrium

value, which is given by p∗∗, the price implied by the classical asset pricing model.
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Figure 4.4: Effect of a single shock on the growth rate g. Before and after the shock, g = 0.
The shock is η31 = 0.01. Left panel: log prices as a function of time. The time series p∗∗ gives
the value of the log price as implied by the classical asset pricing model (4.40). The time series
p∗ and p give respectively the value of the log price as implied by Barsky and De Long model
(4.42) and by our model (4.37-4.39) respectively. The time series p∗γ̃ gives the log price implied
by the “ modified” Barsky and De Long model (4.42) when γ = γ̃(λ0), where λ0 is the fraction
of informed agents before the shock. Right panel: evolution of the effective memory γ̃. The
parameter values are γ = α = 0.99, δ = 0.02, c = 0.1 and ρ = 1.0.

Since, for λ < 1, the effective memory γ̃ is lower than the real memory γ, the variance

of the shocks is larger in our model than in the model of Barsky and De Long, so that

the overreaction is more pronounced. At the same time, when γ̃ < γ, the value of the

autoregressive coefficient is closer to zero so that convergence is faster. The overall effect

is that the shock has a higher short run impact but a shorter half life for p than for p∗.

The right panel of Figure 4.4 shows the response of the effective memory γ̃ to changes

in λ. From the Jacobian of the 2-D system (see Proposition 2) we know that changes in

y only have second order effects on λ, and as a result changes in λ are negligible in the

short run. But, from Proposition 3, we also know that the eigenvalue ν2 is close to one

so that changes in λ are very persistent. Both results are confirmed by the changes in γ̃

shown in the right panel. A confirmation of the fact that one shock has no considerable
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consequence on changes of γ̃ comes from the time series for p∗γ̃ shown in the left panel.

The price p∗γ̃ is the price obtained using the “modified” Barsky and De Long model, that

is equation (4.42) with γ = γ̃(λ0), where λ0 is the value of the fraction of informed agents

before the shock. The overall comparison of the dynamics of p, p∗ and p∗γ̃ shows that in

the single shock case the fact that the effective memory is lower than the real memory

plays an important role whereas the fact that the effective memory is time varying is

negligible, i.e. p is close to p∗γ̃. Notice also that with informed agents in the market, the

price anticipates the shock on the dividend, i.e. the price takes into account the change in

the dividend before such a change is realized and much before such change has an effect

on the value of the effective memory.

We now turn to investigating the effect of a sequence of shocks. Figure 4.5 shows the

impact of a sequence of 500 i.i.d. shocks {η}. The growth rate of dividends, g, and the

variance of the growth rate shocks, σ2
η, are taken in accordance with historical quarterly

data of the S&P500 index for the period 1880-2005 (source: Shiller database available

from R. J. Shiller’s homepage). The discount rate r is taken such that y∗∗ = 0.05, that is

the price implied by the present value model is 20 times the value of the dividend. If we

think of quarters, 500 dividends correspond to 125 years. The top left panel shows the

time series of the dividend yield y generated by our model whereas the right panel shows

the time series of y∗ generated by the model of Barsky and De Long. In both cases the

horizontal line represents the long run mean y∗∗ = r− g. The same results as for a single

shock emerge: the dynamics of the dividend yield is less persistent in our model where

the fraction of informed agents is time varying and smaller than in the model of Barsky

and De Long (1993). Also, deviations from y∗∗ are larger. The central and bottom rows

offer a comparison of the systems in terms of log prices.

How important is the fact that the effective memory is time varying? The left panel of

Figure 4.6 shows the changes in the effective memory for the same simulation run. These

changes are due to changes in the fraction of informed agents λ via the transformation

γ̃(λ) defined in (4.44). As a confirmation of our previous results and of our theoretical

analysis, changes in γ̃ (that is, changes in λ) are rather persistent. The right panel of

Figure 4.6 shows deviations of log prices generated by our model and log prices generated

by the “modified” Barsky and De Long model. We call this last series y∗γ̃. Notice that

deviations of up to more than ten percent arise. Our conclusion is that when subsequent

shocks are present, both the fact that the effective memory is lower than the real memory

and that the effective memory is time varying play an important role. Naturally, these

properties are dependent on the choice of updating mechanism for λt and hence of the

fitness measures as presented in Subsection 4.2.3. We do not claim that the mechanism

we propose here to characterize the changes in the fraction of informed agents is more
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Figure 4.5: Top left panel: time series of the dividend yield yt generated by our model (4.37-
4.39) (solid line) compared with the benchmark y∗∗ (4.40) (horizontal dotted line). Top right
panel: time series of the dividend yield y∗ as in Barsky and De long (4.42) (solid line) compared
with y∗∗. Middle left panel: logarithm of price corresponding to y, log(p) (solid line), and
logarithm of the price corresponding to y∗∗, log(p∗∗) (dotted line). Middle right panel: logarithm
of price corresponding to y∗, log(p∗) (solid line), and logarithm of the price implied corresponding
to y∗∗. The bottom panels give the deviations of the log prices series shown in the middle panels.
Values of parameters are α = γ = 0.99, ρ = 1, c = 0.1, δ = 0.02 (these three parameters imply
λ∗ ≈ 0.09), ση = 0.04, µ = 0.003. The discount rate is r = 0.05 + g.

realistic than others. We merely offer a qualitative argument to show that time varying

informational differences might explain the nonlinearity in the mean reversion that has

been shown to exist in the empirical literature.

Another way of comparing the various models is to check for correlation in the time

series of returns produced by the evolution of y∗ and y. The left panel of Figure 4.7 shows
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Figure 4.6: Left panel: values of the effective memory γ̃. Right panel: deviations of the two
series of log prices generated by our model y and by the ”modified” Barsky and De Long model
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as in Figure 4.5, in particular the real memory is γ = 0.99.
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Figure 4.7: Left panel: autocorrelation of the log return time series for a typical run
of our model (4.37-4.39). Right Panel, variance test of log lagged returns. v(∆t) =
(σ2(q∆t)/∆t)/(σ2(q4y)/4) where σ2(q4y) = 0.00355) and q∆t is the total return over a period
∆t generated by the model in system (4.37-4.39). In both plots three lines refer to data gener-
ated with our model, y, to the model of Barsky and De Long in (4.42), y∗, and to the “modified”
Barsky and De Long model. Parameters are the same as for Figure 4.5. Both panels refer to a
simulation of 200, 000 periods.

the autocorrelation of the asset log return series qt,

qt = log(pt + dt)− log(pt−1), (4.48)

for a typical run of our model (4.37-4.39). The autocorrelation of returns shows that our

model and the “modified” Barsky and De Long model have higher short term autocor-

relation and lower long term autocorrelation. Such results are in accordance with the

results shown in the left panel of Figure 4.4: if the effective memory is lower than the real

memory, shocks have a higher short run impact but a shorter half life for p then for p∗.

A test that has been used in the literature to evaluate the statistical importance
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of departure of the models from a random walk with drift is the variance ratio test.

The variance ratio has been used by Poterba and Summers (1988) to appraise the mean

reversion properties of stock prices. Under the null hypothesis that log prices follows a

random walk (possibly with drift) the variance of the series of returns in (4.48) is a linear

function of the return time span. Results of the variance ratio test for our model and for

its restrictions are given in the right panel of Figure 4.7. The results suggest that both

the fact that the effective memory is lower than the real memory and but also that the

effective memory γ̃(λ) is time varying affect the statistical time series properties of lagged

returns. Further research will be devoted to investigating these issues in greater detail

and relate them to the statistical properties of empirical market returns.

4.5 Discussion and conclusion

We have investigated the combined effect of informational differences and learning in a

stylized asset market model where agents are boundedly rational. As far as the theoretical

guidelines behind our model are concerned, we have shown that our model naturally and

parsimoniously extends and links many other contributions in this fields. In particular,

we refer to papers that concentrate on informational differences, such as Grossman and

Stiglitz (1980), that analyze the impact of learning, such as Barsky and De Long (1993),

and that investigate the interaction of agents who are using different predictor schemes

or different strategies, such as Brock and Hommes (1998).

In Section 4.3 we have analyzed the impact of informational differences alone and we

have given a dynamic solution of the GS paradox. We have shown that our model results in

a “dynamic equilibrium degree of disequilibrium”, with a pattern of a-periodic oscillations

where prices are not fully informative. Moreover, the informational content of the price is

time varying and switches repeatedly between being nearly fully informative and hardly

informative. The economic intuition behind this is quite clear: when the fraction of

informed agents is sufficiently high, we are in a region where the adaptive expectations

of boundedly rational uninformed agents are converging to rational expectations and the

price is close to being fully informative. This pushes down the fraction of informed agents.

As a result, with only few agents being informed, the uninformed agents using adaptive

expectations do not converge to rational expectations anymore and the price starts to

diverge from its fundamental value and, as a consequence, carries little information. This

creates incentives to buy information and pushes the fraction of informed agents up again,

and the story repeats. This trade-off between local instability (when too few agents are

informed) and global stability (when many agents are informed) leads to complicated

dynamic behavior. In our model, the “dynamic equilibrium degree of disequilibrium” is
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therefore a time-varying learning equilibrium where prices fluctuate between being close

to fully revealing and being uninformative, and agents switch between costly information

gathering and free riding.

In Section 4.4, using the insights gained from the analysis of Section 4.3, we have

investigated the role of informational differences in a model where boundedly rational

agents are learning the growth rate of dividends. We have compared our model to that

of Barsky and De Long (1993), who have studied a similar framework without taking

informational differences into account. Both models lead to mean reversion behavior of

stock prices, i.e. in both cases the log price is given by the sum of a persistent component,

which follows a random walk with drift, and of a temporary component, which follows a

stationary AR(1) process. The innovative contribution of our model consists in showing

that including the effect of informational differences has an impact on the parameters of

the temporary component. In particular, both the linear coefficient and the variance of

the shocks become time-varying, as they are both dependent on the time-varying fraction

of informed agents. As a result, our model has the same features of recent empirical

investigations of mean reversion conditions for stock prices, such as Gallagher and Taylor

(2001) and Manzan (2003) where time varying parameters of the transitory component

have been detected.

It is beyond the scope of this chapter to calibrate our model to reproduce the stock

price evolution given the historical dividend process. Our theoretical model is based on

several simplifying assumptions. Nevertheless we find it instructive to note that time

varying parameters in a mean reversion model can be related to what in general may

be referred to as agents’ interaction, which, in our case, is triggered by informational

differences. That agent interaction can be responsible for nonlinearity in the behavior

of stock prices is also argued by Boswijk, Hommes, and Manzan (2007), who estimate a

modified version of the model of Brock and Hommes (1998) using yearly data of the index

SP500. Further efforts to characterize the effect of informational differences, for example

by linking it to other observable characteristics such as the volume of transactions, might

provide a basis for the design of new econometric tests for structure in financial time

series.
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Appendix

4.A Derivation of the equilibrium price equation

This appendix provides a micro-foundation of the equilibrium price equation (4.5). Con-

sider a group of agents choosing at every time t whether to invest in a risk free asset,

whose single period return is rf , or to invest in a risky asset, whose single period return

rate, rt+1, depends on dividend payed at time t+ 1, dt+1, and on the price (or remaining

value) of the asset at time t+ 1, pt+1:

rt+1 =
pt+1 + dt+1 − pt

pt

. (4.49)

At every time t, we assume that each agent maximizes a CRRA mean variance utility

function in order to decide which fraction xt of his wealth to invest in the risky asset. The

CRRA utility function to be maximized is

U(xt) = Et[xtrt+1 + (1− xt)rf ]− β

2
Vt[xtrt+1],

where Et and Vt denote, respectively, the mean and the variance conditional on the

information available at time t and β is the coefficient of risk aversion which we assume

constant across agents. Assume also that for each agent Vt[rt+1] = σ2. The solution of

the maximization of U(xt) gives:

xt =
Et[rt+1 − rf ]

βσ2
, (4.50)

as the fraction of wealth to be invested in the risky asset at time t. Consider now the

case where assumptions (i) − (iv) of Section 4.2 hold. Since informed and uninformed

agents have different information, they have different expectations Et[rt+1] and therefore

different demands for risky assets. Call xI
t (xU

t ) and wI
t (wU

T ), respectively, the fraction

of wealth to be invested at time t and the wealth at time t of the informed (uninformed)

agents. Assume a net positive supply of shares st and call pt the price of each share at

time t. The Walrasian equilibrium equation at time t is given by:

stpt = xI
tw

I
t + xU

t w
U
t . (4.51)

Now, define λt as the fraction of wealth, or market power, of the informed agents at time

t. This implies λt = wI
t /wt with wt = wI

t + wU
t . Call θt the average proportion, at time

t, of wealth invested in the risky assets, i.e. θt = stpt/wt. The Walrasian equilibrium



142 CHAPTER 4. INFORMATIONAL DIFFERENCES IN AN ASSET MARKET

equation (4.51) becomes

θt = λtx
I
t + (1− λt)x

U
t ,

which, given the expression for x in (4.50) and rearranging terms, becomes

rf + θtβσ
2 = λtE[rt+1|F I

t ] + (1− λt)E[rt+1|FU
t ], (4.52)

where the informed and uniformed agents condition their expectations of the return of

the risky asset on different information sets. Eq. (4.52) shows that θt is related to the

risk premium required by the community of traders to hold the risky asset.

If we assume that both informed and uninformed agents are fundamentalists, their

expectations of the future price is equal to the discounted sum of all future dividends,

i.e., as specified in equation (4.2),

E [pt+1| FH
t ] = vH

t+1 = E

[ ∞∑
i=1

dt+1+i

(1 + r)i

FH
t

]
.

for the general information set FH
t . This implies that the informed agents use:

E[rt+1|F I
t ] =

dt+1(1 + r)

(r − ge)pt

− 1, (4.53)

whereas the uninformed agents use:

E[rt+1|FU
t ] =

pty
e
t+1(1 + r)

(r − ge)pt

− 1. (4.54)

As a result the equilibrium equation (4.52) becomes:

pt
1 + rf + θtβσ

2

1 + r
= λt

dt+1

(r − ge)
+ (1− λt)

pty
e
t+1

(r − ge)
. (4.55)

At this point, by fixing r − rf = θtβσ
2, that is by imposing that the asset excess return

required by the agents, which is an exogenous variable of the model, is equal to the

endogenous variable θtβσ
2, we get Eq. (4.5) which solved for pt gives Eq. (4.11).

By fixing r − rf = θtβσ
2 we are implicitly assuming that the endogenous expected

equilibrium return of our model is given by the exogenous parameter r. In fact, when

the price is informationally efficient, the resulting expected and realized dividend yield

are equal to y∗ = r − ge so that using Eq. (4.54), or equivalently (4.53), to compute the
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expected equilibrium asset return we get:

E[rt+1|FU
t ] = E[rt+1|F I

t ] =
ye(1 + r)

(r − ge)
− 1 = r.

In order to derive the asset return, rt, endogenously as a function of the exogenous pa-

rameters rf , σ
2, β, st and of the discount rate r, one should solve the equilibrium price

equation (4.55), without fixing stpt/wt proportional to r − rf . Levy, Levy, and Solomon

(1994) are, to our knowledge, the first to perform this kind of analysis. They use com-

puter simulations to investigate the evolution of wealth and prices in an asset market

where, as in our framework, agents are using CRRA utility function and the underlying

dividend process follows a geometric random walk. In a recent paper Anufriev and Dindo

(2006) offer analytic support of their simulations. Other analytic models where agents

are using a CRRA utility function are Chiarella and He (2001) and Anufriev, Bottazzi,

and Pancotto (2006). Here, having assumed that Et[rt+1] = r, we are fixing the long run

asset return and we concentrate on the properties of the fluctuations induced by agents

interaction around this long run equilibrium level.

4.B Derivation of the dynamics of fractions

The micro-foundation of the equilibrium price equation (4.55) offers an appealing inter-

pretation of λt as the fraction of wealth of the informed agents, and a natural way to

endogenize its evolution. In fact the wealth fraction at time t, λt, is endogenously deter-

mined as a function of the fraction at time t− 1, λt−1, the fraction of wealth invested in

the risky asset by both groups of agents at time t, xI
t−1 and xU

t−1, and of the return of

the market at time t, rt in (4.49). Using the definition of the fraction of wealth of the

informed agent λt = wI
t /(w

I
t + wU

t ) and wealth evolution

wH
t = wH

t−1(1 + rf ) + wH
t−1(rt − rf )x

H
t−1, for H = I, U,

one can derive the equation that governs the evolution of the fraction of wealth of the

informed agents λt:

λt =
λt−1π

I
t

λt−1πI
t + (1− λt−1)πU

t

, (4.56)

where

πI
t = (1 + rf ) + (rt − rf )x

I
t−1, (4.57)

and

πU
t = (1 + rf ) + (rt − rf )x

U
t−1, (4.58)
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are the realized excess profit per unit of wealth for informed and for uninformed agents

respectively. When the realized single period return of the asset rt+1 is higher than rf ,

if the informed agents invest a higher (lower) share of their wealth compared to the

share of uninformed agents, their fraction of wealth increases (decreases) compared to the

fraction of wealth of the uninformed agents. Equation (4.56) corresponds to the replicator

dynamics equation given in Eq. (4.24) when δ = 0. To obtain exactly (4.24) one has to

further assume that (4.20) and (4.21) can be used as proxies of the realized profits per unit

of wealth for respectively the informed agent, as (4.57), and for the uninformed agent,

as (4.58). In fact one has to assume that the dynamics of the fractions is driven by the

forecasting error of the uninformed compared to the costs of information for the informed,

rather than by their realized profits. Investigation of this second framework would lead

to a more complicated system due to the presence of rt, and thus of both yt and pt/pt−1,

in the expression of agents’ profits. To conclude the correspondence between Eq. (4.56)

and Eq. (4.24) we have to discuss the case δ 6= 0. Assume that, in every period, a number

of agents which holds a fraction δ of total agents’ wealth exits the market and is replaced

by new agents with the same amount of wealth. Also assume that these new agents split

evenly between being informed and being uninformed. This would mean that at period t

the total fraction of informed agents is given by:

λt = (1− δ)
λt−1((1 + rf ) + πI

t )

(1 + rf ) + λt−1πI
t + (1− λt−1)πU

t

+
δ

2
, (4.59)

which is as (4.24) in Subsection 4.2.3 for every δ ∈ [0, 1]. Notice that irrespectively of the

fitness measure, realized profits or forecasting errors, both expressions (4.24) and (4.59)

for the fraction of informed agents λt have the same dependence on the previous fraction

of informed agents λt−1.

4.C Proofs

Proofs of Section 4.3

Proof of Proposition 4.8 Given the linear difference equation in (4.32), that is

ye
t =

r − g

λ
+
α + λ− 1

λ
ye

t−1,

and the initial condition y0, from the theory of linear systems follows that

ye
t = (ye

0 − (r − g))

(
α+ λ− 1

λ

)t

+ (r − g),
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is the unique solution. The solution converges to y∗ = r − g as long as λ > (1 − α)/2

otherwise it diverges to ±∞. ¤

Proof of Proposition 4.9 When c = 0 and δ > 0 solving for the fixed point of (4.30-

4.31) leads to y∗ = r − g and to λ∗ = 1/2. When c = 0 and also δ = 0, solving for the

fixed point of (4.30-4.31) leads to y∗ = r − g and to any λ∗ ∈ (0, 1]. For global stability

we proceed by showing that for every initial condition the dynamics converges to (y∗, λ∗).

Rewrite equation (4.30) in deviations from the fixed point y∗ = r − g and get:

ye
t+1 − y∗ =

α + λt−1 − 1

λt−1

(ye
t − y∗). (4.60)

Whenever λt−1 > (1 − α)/2 = λ̄, ye → y∗ as the linear coefficient of equation (4.60)

is always lower then one. Since α ∈ (0, 1), the condition λ > λ̄ is always satisfied when

λt−1 ≥ 1/2. We show that, in the long run, it always holds λ ≥ 1/2. Take first λt−1 ≥ 1/2,

by using equation (4.31) one can derive that:

λt − 1

2
= (1− δ)

λt−1ρ− (1− λt−1)

(
ρ−

(
(r−g)−ye

t

λt−1(r−g)

)2
)

2

(
−(1− λt−1)

(
(r−g)−ye

t

λt−1(r−g)

)2

+ ρ

) ≥ 0, (4.61)

if one assumes that fractions are always positive, i.e. that

ρ−
(

(r − g)− ye
t

λt−1(r − g)

)2

> 0.

As a consequence when λt−1 ≥ 1/2 also λt ≥ 1/2. If, on the other hand, λt−1 < 1/2, one

can similarly show that the condition (λt− λt−1) > 0 holds, implying that λ converges to

one point of the set [1/2, 1]. As a consequence also when λt−1 < 1/2, λ ≥ 1/2 in the long

run. To conclude the proof of global stability notice that when ye → y∗ also λ → λ∗ via

equation (4.31). ¤

Proof of Proposition 4.10 When c > 0, solving for the fixed point of (4.30-4.31) leads

to y∗ = r − g and to λ∗ solution of the following second order equation

cλ2 + (cδ/2− c− δρ)λ+ δρ/2 = 0,
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which can be shown to have two real roots. Take α ∈ (0, 1), δ ∈ (0, 1) and k = ρ/c > 1.

From:

2− δ + 2kδ − 1 > 0,

it follows that
2− δ + 2kδ +

√
(2− δ + 2kδ)2 − 8kδ

4
> 1.

That is one real root is always larger then 1 and thus not in the co-domain of our state

variable λ. The other solution can be shown to be always in the interval [0, 1/2]. In fact

0 < λ∗ =
2− δ + 2kδ −

√
(2− δ + 2kδ)2 − 8kδ

4
<

1

2
,

reduces to

0 < 8kδ and − 4(1− δ) < 0.

Both inequalities ara always satisfied. The Jacobian follows from evaluating the deriva-

tives of (4.30-4.31) at the fixed point (y∗, λ∗). For the stability condition notice that

the matrix is diagonal and the second eigenvalue, ν2 ∈ (0, 1). In fact since δ < 1,

k > 1 > 0.5 > λ∗ one has:

0 < ν2 = (1− δ)
k(k − 1)

(k − λ∗)2
<

k(k − 1)

k(k − 1) + (0.5)2
< 1. (4.62)

The value of the first eigenvalue, ν1, depends upon the value of λ∗. This eigenvalue is the

same as the linear coefficient of equation (4.19), that is, it is ν1 < 1 given α ∈ (0, 1) and

λ∗ ∈ (0, 1) and ν1 > −1 as long as

λ∗ >
(1− α)

2
.

Given the value of λ∗ one can check that the previous inequality is satisfied if and only if

δ >
(1 + α)

1 + 2αk
(1−α)

.

¤

Proof of Proposition 4.11 The matrix J|(y∗,λ∗) in (4.35) is diagonal. As a result the

dynamics of y and λ around (y∗, λ∗) can be linearized along the orthogonal basis with

eigenvalues given by the diagonal entries of the matrix. Thus the eigenvalues that governs

the dynamics of λ, (4.62), is given by the entry (2, 2) of the matrix (4.35). We recall from
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the previous proof that

ν2 = (1− δ)
k(k − 1)

(k − λ∗)2
,

and we have already shown that ν2 < 1. The lower bound, ν2 > (1− δ)(1− 1/k), follows

from the previous expression and λ∗ > 0 for all δ > 0 and for all α. ¤





Chapter 5

Summary

In this thesis we aim at appraising the effect of modeling human decision making as

boundedly rational in a number of economic settings. In particular we concentrate on

cases where a large number of individuals or firms compete to use the same limited

resource, being it a market, a highway, a bar or the information of profitability of a

firm. A characteristic of all these frameworks is that agents’ participation produces some

negative externalities on the utility of profitability of other participating agents. In these

systems, if agents were rational, they would account for the effects due to their interaction

and coordinate their actions to the equilibrium level where they would all gain the same

profit. The nature of this equilibrium will depend upon the exogenous variables that

characterize the fundamentals of the model. Convergence to the equilibrium need not a

priori take place when agents are boundedly rational. In this case the interaction of agents

may or may not settle down to the equilibrium. Modeling agents as boundedly rational

could thus help explaining the observed size and variability of fluctuations of economic

variables, such as prices or profits, even when no changes of the underlying fundamentals

occurs.

Boundedly rational agents can be specified as using simple rules of thumb in their

decision making. An important aspect is that the population of agents is heterogeneous,

that is, agents can choose from different rules to solve the same problem. The set of

rules is disciplined by a selection mechanism, where the best performing rule, measured

according some fitness rule, attracts the most number of agents. This feature implies that

our models are dynamics, with agents switching among the different rules at different

periods of time.

In departing from the traditional approach where a representative rational agent is

present, we have two main goals. First, we appraise when a frequently used argument in

favor of rationality, namely that rationality is the outcome of the repeated interaction of

heterogeneous boundedly rational agents, is justified. This part of the analysis has thus
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a theoretical motivation. Second, having shown in what respect our results differ from

the rational benchmark, we characterize whether our interacting agents framework can

reproduce empirically observed phenomena in the specific economic settings we consider.

An important role in triggering the switching of rules is played by the feedback between

agents’ expectations of some relevant economic variables and their realizations. This

feedback system, which we call expectational feedback, translates agents’ interaction into

a mutual dependence between choices of economic actors and the environment against

which these choices are evaluated. Having to do with this feedback, rational agents

are usually assumed to have rational expectations, that is, to find actions such that

expectations and realizations are consistent and the system is at equilibrium. Boundedly

rational agents, instead, are not assumed to be aware of the expectational feedback so

that their interaction may or may not settle down to an equilibrium. It is the dynamics

that tell us when convergence is observed and when not. In this respect, as the functional

dependence of fractions of agents in terms of economic variables and previous fractions

is typical nonlinear, our systems are nonlinear so that a number of different types of

behavior other than convergence and divergence can be observed, such as bounded erratic

fluctuations. For the systems we analyze the most common outcome is given by irregular

fluctuations where agents keep switching between different rules, each rule being most

chosen at different periods of time and no rule dominating in the long run.

Inside this framework, in chapter 2, we concentrate on the cobweb model and we

analyze the impact of increasing deliberation costs as the sophistication of a decision rule

increases. In a cobweb model producers of a perishable consumption good have to decide

how much to produce at every period. In order to do so they rely on expectations of

next periods prices. The characteristic of this model is that high (low) expected prices

trigger high (low) producers output which clears the market at a low (high) expected

prices. Agents with rational expectation are able to detect this effect and set an output

level such that ex-ante and ex-post prices are the same. In our framework we assume that

agents who use this rational expectations rule face a high deliberation cost. An alternative

is to use simpler rules such as naive expectations, that is, the price of today is taken as

the predictor of the price of tomorrow. This rules are available at a lower deliberation

cost. We investigate the effect on prices on agents switching between the two prediction

strategies.

In previous contributions it is assumed that agents are backward looking in the sense

that strategy selection is based on

experience measured by past realized profits. In particular, Brock and Hommes (1997)

show that when the selection pressure to switch to the more profitable strategy is high,

instability and complicated chaotic price fluctuations arise. Brock and Hommes call this
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phenomenon a rational route to randomness. In Chapter 2, we develop a cobweb model

with strategy switching, where strategy selection is based upon expected profits rather

than realized profits. When the deliberation cost is high enough, we find that the same

local instability of the equilibrium price. Nevertheless, this time, the amplitude of price

fluctuations is dampened. In particular the route to randomness result of Brock and

Hommes is not always observed. Our conclusion is that key elements of the route to

randomness result are unanticipated errors of agents using rational and naive strategies.

We show that when these unanticipated errors are not present the rational route to ran-

domness disappears.

In Chapter 3 we analyze the interaction of boundedly rational agents using heteroge-

neous rules all repeatedly competing to use the same limited resource when no market

institutions are present. We formalize this general interaction structure as a participa-

tion game. We concentrate on participation games for which the payoff for participating

decreases as the number of participating agents increases. Well-known examples of these

type of participation games analyzed in the literature are market entry games, where

firms have to decide whether to enter a market and compete, or stay out of it. Another

example is given by route choice games, where a group of commuters repeatedly choose,

between two routes, the fastest way from their homes to their offices. A third example is

give by the El Farol bar problem of Arthur (1994).

Our aim is to obtain a simple analytic model that can replicate the main experimental

and computational findings in the area of participation games with negative feedback.

We set up an analytic model with heterogeneous boundedly rational agents choosing

between simple rules. Fractions of agents using each rule are endogenous and evolve

according to the past performance of each rule as described by the replicator dynamics. We

concentrate on the evolutionary dynamics produced by the competition between different

deterministic rules that condition the participation decision on the outcome of the previous

rounds. We characterize the resulting participation rate dynamics as the number of

players increases. The interaction of a large number of players leads to complicated

participation rate patterns and we argue that the average participation rate along these

patterns is consistent with the symmetric Nash equilibrium and the existing experimental

and computational evidence. We also investigate how agents’ interaction is affected by the

presence of agents choosing rules that try to exploit the linear autocorrelation structure of

the past participation rates. Agents who try to exploit past inefficiencies of the aggregate

to improve their performances, act as some kind of arbitrageurs and we show that their

behavior does not affect the stability of the system and the size of the fluctuations.

In Chapter 4 we study a market for a financial asset populated by boundedly rational

agents and we concentrate on the role of informational differences. The starting point
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is an asset pricing model in which agents can choose among two different degrees of

information on fundamentals. At the same time agents are also learning the growth rate

of the dividend generating process.

After having developed and analyzed the full model, we investigate the extent to which

our model is able to explain empirical properties of asset prices such as excess volatility,

clustered volatility, correlations of returns, persistent deviations from fundamental values.

In particular we offer theoretical support to the empirical evidence that the log price of a

financial asset is the sum of a persistent component and a nonlinear temporary component,

which switches between two different regimes. The empirical evidence for this so-called

nonlinear mean reversion is documented in the literature, see e.g. by Gallagher and Taylor

(2001) and Manzan (2003).

This chapter is closely related to the work on informational efficiency by Grossman

and Stiglitz (1980) who show that when agents can choose between being informed or

not, there is no rational expectation equilibrium. This result has been referred to as

the Grossman-Stiglitz paradox. In order to solve it Grossman and Stiglitz assume an

exogenous noise process. In this case, the model of Grossman and Stiglitz leads to a

static equilibrium degree of disequilibrium, where agents’ fractions and price distribution

are constant over time and a function of the exogenous noise parameters.

In our analysis we relax the assumption of agents’ rationality. We also endogenize

the dynamics of the fraction of agents choosing to buy costly information or to extract

information about future dividends from the price. We show that the interaction of

boundedly rational agents, triggered by informational differences, can act as a source of

endogenous noise to the price dynamics and can offer a different solution to the Grossman-

Stiglitz paradox. Since our approach is dynamics, we offer a dynamic equilibrium degree

of disequilibrium, in contrast with the static solution of Grossman and Stiglitz.

Since all the models we consider are related to the same economic framework, the

repeated exploitation of a limited resource, they all share the same type of expectational

feedback. In particular, we can call it a negative expectational feedback as positive

(negative) deviations from the equilibrium at one time results in a negative (positive)

deviations at the other time. The case where positive (negative) deviations are followed

by positive (negative) relations is instead called positive expectational feedback.

Theoretical results of this thesis show, for systems with negative feedback, that overall

convergence to the rational equilibrium is on average correct. Nevertheless, we also show

that boundedly rational agents’ interaction and adaptation trigger ongoing fluctuations

around such an equilibrium. This is consistent with experiments of systems with negative

feedbacks as reported for market entry games and in route choice games. This is also

consistent with excess volatility in financial markets. In general, these endogenous fluc-
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tuations can be characterized as irregular cycles along which rules perform better than

others in different periods of time, but no rule is “dominating” the scene for every period.

In this respect our results also support the observation that within systems with negative

feedback incentives work in the direction of heterogeneity, that is, agents are better off

if they do not imitate each other. In fact, such incentives explain why the persistence of

heterogeneity, and consequently of endogenous fluctuations, is a robust characteristic of

our models.
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Samenvatting (Summary in Dutch)

In dit proefschrift stellen we ons tot doel om de gevolgen te evalueren van het modelleren

van menselijke beslissingen in termen van begrensde rationaliteit in verschillende eco-

nomische situaties. We concentreren ons in het bijzonder op gevallen waarin een groot

aantal individuen of bedrijven wedijveren om dezelfde schaarse goederen, of dat nu be-

trekking heeft op de aandelenmarkt, een snelweg, het aantal vrije plaatsen in een café of

op informatie omtrent de winstgevendheid van een bedrijf. Al deze voorbeelden delen de

eigenschap dat de keuze van een agent om het schaarse goed te benutten negatieve ex-

ternaliteiten heeft voor de overige aanwezige agenten. Binnen dergelijke systemen zouden

rationele agenten rekening houden met de effecten van hun interactie, en hun acties zo

coördineren dat er een evenwichtssituatie zou onstaan waarin alle agenten even goed af

zouden zijn. De aard van dit evenwicht zal afhangen van de details van de effecten van

exogene variabelen op de fundamentele variabelen van het model. Convergentie naar een

evenwicht treedt niet altijd op in het geval dat agenten begrensd rationeel zijn. Het model-

leren van agenten als begrensd rationeel kan dus een mogelijke verklaring bieden voor de

grootte en de veranderlijkheid van waargenomen fluctuaties van economische variabelen,

zoals prijzen of winsten, zelfs als de fundamentele variabelen niet veranderen.

Begrensd rationele agenten kunnen worden gespecificeerd door middel van een aantal

vuistregels met behulp waarvan zij beslissingen nemen. Een belangrijk aspect is hete-

rogeniteit van de populatie van agenten, wat inhoudt dat agenten verschillende regels

kunnen kiezen om hetzelfde probleem op te lossen. De verzameling regels is onderhevig

aan een selectiemechanisme, waarbij de regel die, volgens een bepaalde norm, het best

heeft gepresteerd, het grootste aantal aanhangers onder agenten krijgt. Deze eigenschap

zorgt ervoor dat onze modellen dynamisch gedrag vertonen waarin agenten hun regelkeuze

vaak herzien.

Met het verlaten van de traditionele aanpak met een representatieve agent beogen we

twee hoofddoelstellingen. Ten eerste evalueren we wanneer een veel gehoord argument

voor rationaliteit, namelijk dat rationaliteit de uitkomst is van herhaalde interactie van

heterogene begrensd rationele agenten, gerechtvaardigd is. Dit deel van de analyse heeft

dus een theoretische motivatie. Ten tweede bekijken we, nadat we hebben laten zien in
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welke zin onze resultaten afwijken van de rationele standaard, of modellen met inter-

agerende agenten in staat zijn empirisch waargenomen fenomenen te reproduceren in de

specifieke economische situaties die we beschouwen.

Bij het bepalen van de regelkeuze door agenten is er een belangrijke rol weggelegd

voor de terugkoppeling van verwachtingen omtrent economische variabelen van agenten,

door middel van gerealiseerde waarden van deze variabelen. Deze terugkoppeling van

verwachtingen vertaalt de interactie tussen agenten naar een wederzijdse afhankelijkheid

tussen enerzijds de keuzen van de agenten, en anderzijds de omgeving waarin deze keuzen

worden geëvalueerd. Voor rationele agenten zou dit inhouden dat hun verwachtingen en

bijbehorende acties zodanig zijn dat zij consistent zijn met toekomstige realisaties, en het

systeem in evenwicht is. Begrensd rationele agenten, daarentegen, hoeven zich niet bewust

te zijn van de terugkoppeling van verwachtingen, en dientengevolge hoeft hun interactie

niet tot evenwicht te leiden. De resulterende dynamica zal bepalen of er evenwicht onstaat

of niet. Omdat de fractie van agenten die kiest voor een bepaalde strategie typischerwijs

geen lineaire functie is van voorgaande fracties en waargenomen economische variabelen,

verkrijgen we een niet-lineair systeem waarin een verscheidenheid aan gedrag kan optre-

den, waaronder chaotische fluctuaties. Voor de systemen die wij analyseren bestaat het

gedrag typisch uit begrensde onregelmatige fluctuaties waarin agenten voortdurend hun

regelkeuze blijven aanpassen, met als gevolg dat verschillende regels op verschillende tij-

den het meest gekozen worden, en het lange termijn gedrag niet door één regel wordt

bepaald.

Binnen dit raamwerk concentreren we ons in hoofdstuk 2 op het spinnewebmodel en

analyseren de gevolgen van toenemende afwegingskosten voor meer geavanceerde beslis-

singsregels. In een spinnewebmodel moeten de producenten van een niet-houdbaar goed

in elke periode beslissen hoeveel ze in de komende periode willen produceren. Deze keuze

hangt af van hun verwachtingen omtrent toekomstige prijzen. In dit model leiden hoge

(lage) verwachte prijzen tot hoge (lage) productie en daarmee tot lage (hoge) gerealiseerde

toekomstige prijzen. Rationele agenten zijn in staat om dit effect te detecteren en zullen

precies zoveel produceren dat de ex-ante en ex-post prijzen met elkaar overeenkomen.

Wij zullen hier aannemen dat agenten die dergelijke verwachtingen hebben daar hoge

afwegingskosten voor moeten betalen. Het alternatief is om eenvoudige regels te ge-

bruiken zoals näıeve verwachtingen waarvoor de verwachte toekomstige prijs gelijk is aan

de huidige prijs. Dergelijke regels zijn te gebruiken tegen veel lagere afwegingskosten.

We onderzoeken de gevolgen voor het gedrag van prijzen wanneer agenten herhaaldelijk

tussen deze twee voorspellers kunnen kiezen.

In eerder werk werd vaak aangenomen dat agenten terugkijken, waarmee wordt bedoeld

dat de gekozen strategie gebaseerd is op in het verleden gerealiseerde winstgevendheid van



de strategieën. In het bijzonder hebben Brock en Hommes (1997) laten zien dat wanneer

de gevoeligheid van agenten voor het maken van een onjuiste keuze toeneemt, instabiliteit

en complexe chaotische prijsfluctuaties kunnen ontstaan. Brock en Hommes noemen dit

fenomeen een rational route to randomness (rationele weg tot willekeurige fluctuaties). In

hoofdstuk 2 beschouwen we een spinnewebmodel waarin de strategiekeuze gebaseerd is op

verwachte winsten in plaats van gerealiseerde winsten. Als de afwegingskosten voldoende

hoog zijn, vinden we een soortgelijke lokale instabiliteit van de evenwichtsprijs. Dit keer

blijft de amplitude van de prijsfluctuaties echter begrensd. In het bijzonder treedt de

‘route to randomness’ van Brock en Hommes hier niet altijd op. Onze conclusie is dat

de belangrijkste ingrediënten van de ‘route to randomness’ onvoorziene fouten van zowel

rationele als näıeve agenten zijn. We tonen aan dat in de afwezigheid van dergelijke fouten

de ‘rational route to randomness’ niet optreedt.

In hoofdstuk 3 analyseren we de interactie tussen heterogene, begrensd rationele,

agenten die herhaaldelijk om hetzelfde schaarse middel wedijveren in afwezigheid van

marktregulerende instanties. We formaliseren deze algemene interactiestructuur als een

deelnamespel. We concentreren ons op deelnamespelen waarin de winst van deelname

afneemt naarmate meerdere agenten besluiten om deelenemen. Bekende voorbeelden van

dergelijke spelen die in de literatuur beschreven zijn, zijn markttoetredingsspelen, waarin

bedrijven moeten besluiten om toe te treden tot een bepaalde markt en daarbinnen te

gaan concurreren, of afzijdig te blijven van die markt. Een ander voorbeeld is dat van

routekeuzespelen, waarin een forensen herhaaldelijk kiezen tussen twee mogelijk routes

met als doel om zo snel mogelijk van hun huis naar hun kantoor te komen. Een derde

voorbeeld bestaat uit het El Farol bar probleem van Arthur (1994).

Ons doel is om een eenvoudig analytisch model op te stellen dat de belangrijkste em-

pirische en numerieke resultaten kan reproduceren op het gebied van deelnamespelen met

negatieve terugkoppeling. We stellen een analytisch model op met begrensd rationele

heterogene agenten die tussen eenvoudige regels kiezen. De fracties van agenten die elk

van de regels gebruiken is endogeen en ontwikkeld zich op grond van prestaties uit het

verleden volgens de replicator dynamica. We concentreren ons op de evolutionaire dy-

namica die voortkomt uit de competitie tussen een aantal deterministische regels die de

keuze voor deelname laten afhangen van de uitkomsten in vorige ronden. We bestuderen

de resulterende dynamica van de fractie deelnemende agenten als het aantal spelers toe-

neemt. De interactie tussen een groot aantal spelers leidt tot ingewikkelde patronen in de

deelnamefractie, en we maken aannemelijk dat de gemiddelde deelnamefractie consistent

is met het symmetrische Nash evenwicht en met bestaand experimenteel en numeriek

bewijs. We onderzoeken tevens hoe de interactie tussen agenten wordt bëınvloed door

de aanwezigheid van agenten die de lineaire autocorrelatiestructuur van deelnamefrac-



ties uit het verleden proberen uit te buiten. Agenten die proberen om gebruik te maken

van dergelijke inefficiënties gedragen zich in feite als arbitrageurs, en we laten zien dat

hun aanwezigheid noch de stabiliteit van het systeem noch de grootte van de fluctuaties

bëınvloedt.

In hoofdstuk 4 bestuderen we een model voor een aandelenmarkt die bevolkt wordt

door begrensd rationele agenten, en concentreren ons op de rol van informatieverschillen

onder agenten. We gaan uit van een model voor aandelenprijzen waarin agenten kunnen

kiezen tussen twee gradaties van informatie omtrent toekomstige dividenden. Tevens is

de gemiddelde mate van groei van het dividend genererende proces niet bekend bij de

agenten, maar dienen zij deze te achterhalen uit gerealiseerde dividenden.

Nadat we het model hebben opgezet en geanaliseerd, bekijken we in welke mate het

model in staat is om empirische eigenschappen van aandelenprijzen te reproduceren, zoals

‘excess volatility’ (bovenmatige beweeglijkheid), volatiliteitsclustering, autocorrelaties en

de persistentie van afwijkingen van fundamentele waarden. In het bijzonder leiden we

een theoretisch model af dat een verklaring biedt voor het empirische bewijs dat de lo-

garitme van aandelenprijzen bestaan uit een som van een persistente component en een

niet-lineaire vergankelijke component. Het empirische bewijs voor dergelijke beweging-

en rondom de fundamentele prijs is beschreven in de literatuur door, onder anderen,

Callagher en Taylor (2001) en Manzan (2003).

Dit hoofdstuk is nauw verwant aan het werk op het gebied van informationele efficiëntie

door Grossman en Stiglitz (1980) die aantonen dat wanneer agenten kunnen kiezen tussen

al dan niet gëınformeerd worden, er geen rationele verwachtingen evenwicht bestaat. Dit

resultaat staat bekend als de Grossman-Stiglitz paradox. Grossman en Stiglitz lossen

dit op door een exogeen ruisproces te veronderstellen. In dat geval leidt hun model tot

een statisch evenwicht van uit-evenwicht-zijn, waarin zowel de fractie van gëınformeerde

agenten als de prijsverdeling constant zijn over de tijd, met eigenschappen die bepaald

worden door die van de exogene ruisbron.

In onze analyse laten we de aanname van rationaliteit los. Verder laten we de fracties

agenten die willen betalen voor informatie en die informatie uit prijzen willen achterhalen,

zich endogeen ontwikkelen. We tonen aan dat de interactie van begrensd rationele agen-

ten sich in dit geval gedraagd als een endogene ruis op de prijsdynamica, die zodoende

een alternatieve oplossing biedt voor de Grossman-Stiglitz paradox. Omdat onze opzet

dynamisch is, leidt dit tot een dynamisch evenwicht van uit-evenwicht-zijn in plaats van

de statische oplossing van Grossman en Stiglitz.

Omdat de behandelde modellen alle gerelateerd zijn aan hetzelfde economische raam-

werk, het herhaaldelijk exploiteren van een schaars goed, hebben al deze modellen een-

zelfde type terugkoppeling van verwachtingen. We noemen dit een een negatieve terugkop-



peling van verwachtingen omdat positieve (negatieve) afwijkingen van evenwicht op het

ene moment leiden tot negatieve (positieve) afwijkingen op het volgende moment. In

het geval van positieve terugkoppeling van verwachtingen, daarentegen, worden positieve

(negatieve) afwijkingen gevolgd door positieve (negatieve).

De theoretische resultaten in dit proefschrift tonen aan dat voor modellen met een

negatieve terugkoppeling gemiddeld gesproken convergentie naar het rationele evenwicht

optreedt. Het blijkt echter ook dat de interactie en aanpassingen van begrensd rationele

agenten aanleiding geven tot voortdurende fluctutaties rond dit evenwicht. Dit is consis-

tent met experimenten met negatieve terugkoppeling zoals die beschreven zijn voor spelen

voor markttoetreding en routekeuze. Dit is ook consistent met bovenmatige beweeglijk-

heid in financiële markten. Over het algemeen kunnen deze endogene fluctuaties worden

gekarakteriseerd als onregelmatige banen waarlangs bepaalde regels soms beter presteren,

en andere weer op andere tijden, maar er geen regel “dominant” is in elke periode. In

die zin ondersteunen onze resultaten de waarneming dat binnen systemen met negatieve

terugkoppeling prikkels in de richting van heterogeniteit werken. Dat wil zeggen dat

agenten beter af zijn als ze elkaar niet imiteren. Dit is de reden dat de persistentie van

de heterogeniteit en de endogene fluctuaties een robuuste karakteristieke eigenschap van

onze modellen vormen.
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