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ABSTRACT: We use oxDNA, a coarse-grained model of DNA at the
nucleotide level, to simulate large nanoprisms that are composed of
multi-arm star tiles, in which the size of bulge loops that have been
incorporated into the tile design is used to control the flexibility of the
tiles. The oxDNA model predicts equilibrium structures for several
different nanoprism designs that are in excellent agreement with the
experimental structures as measured by cryoTEM. In particular we
reproduce the chiral twisting of the top and bottom faces of the
nanoprisms, as the bulge sizes in these structures are varied due to the
greater flexibility of larger bulges. We are also able to follow how the
properties of the star tiles evolve as the prisms are assembled.
Individual star tiles are very flexible, but their structures become
increasingly well-defined and rigid as they are incorporated into larger
assemblies. oxDNA also finds that the experimentally observed prisms
are more stable than their inverted counterparts, but interestingly this preference for the arms of the tiles to bend in a given
direction only emerges after they are part of larger assemblies. These results show the potential for oxDNA to provide
detailed structural insight as well as to predict the properties of DNA nanostructures and hence to aid rational design in
DNA nanotechnology.
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DNA has become a leading material of choice for use in
creating complex nanoscale structures for potential
use in drug delivery,1,2 biosensors,3 and molecular

computation.4 In just 30 years since the advent of DNA
nanotechnology,5 a huge range of different structures can now
be made from DNA by using a variety of design and assembly
strategies.6−14 New software also makes designing large
nanostructures with tailored properties easier than ever.15,16

Some of these synthetic structures are static and include
crystals,17−19 polyhedra,12,20−25 wire-frame designs,11,26,27 and
topological structures such as mobius strips,28 while others are
“active” systems that include walkers,29,30 gears and hinges,31

robots,32,33 and crank-sliders.34 However, having total control
over the structural as well as time-dependent properties of self-
assembled DNA nanostructures remains a significant design
challenge. In working toward this goal considerable progress
has been made. For example, the relative flexibility of
components in systems made from DNA duplexes and single
strands can be exploited to create complex structures.12,25,35

One such strategy for building 2D and 3D structures is tile-
based assembly, in which the flexibility of the assembly units

(e.g., the tiles) can often be controlled by making simple
changes to the design sequences.36,37 There are many different
types of tiles for use in creating nanostructures.9,10,12,38−41

Some tiles are rigid, while others possess more flexibility. For
example, the persistence length of double crossover (DX) tiles,
which are structures containing two helices connected together
by two crossover junctions, is about twice that of ordinary DNA
helices.42 Multi-arm star tiles, which are structures that are in
some ways like multiple DX tiles connected together by a
circular strand, can have their flexibility tuned by varying the
sizes of the bulges that are present at the center of the tile.
Figure 1a shows a three-arm tile as represented by the

oxDNA model. Experiments have found that when the bulge
size is small (one or two nucleotides), tile motifs may assemble
into 2D arrays,40 whereas when larger bulges are incorporated
into tile designs, the tiles may assemble into 3D polyhedra as
the bulges significantly increase the amount of flexibility.23
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Structures assembled from identical tiles that have been
experimentally characterized include tetrahedra,22 cubes,24

octahedra,43 dodecahedra,22 icosahedra,23 buckyballs,22 and
nanoprisms.44 Bulge size, the number of arms, the length of the
arms, and the sequence of each arm’s single-stranded sticky
ends are used to control the product. The use of multiple tile
types can further increase the range and complexity of the
polyhedra formed.45−47 A tetrahedron and a dodecahedron are
illustrated in Figure 1b. Similar structures have also been
recently achieved using an “origami”-like approach (i.e., with
scaffold and staple strands rather than tiles) that again uses
bulges to control the flexibility at the vertices in these
structures.27 By contrast, for DNA origami “tripod” tiles
(each tile is a full-size origami), which have been used to
produce a range of very large polyhedra, assembly only occurs
when struts are incorporated into the designs. These struts
stiffen the tiles and give them well-defined interarm angles that
specify the target polyhedron.
The size of the bulges in the star tiles can also be used to

fine-tune the structure of the target polyhedron. For example,
Zhang et al. created a series of triangular nanoprisms with
different degrees of chiral twist between the top and bottom

faces (illustrated in Figure 1c) by adjusting the individual bulge
sizes in the three-arm tiles.44 Based on the experimentally
observed products for different designs, it has been conjectured
that the arms in star tiles may possess a slight tendency to bend
in a preferential direction.40,43,48 This would help explain, for
example, why choosing adjacent tiles to face in the opposite
direction from each other leads to 2D structures being formed
over 3D structures, because the inherent curvature effects
would cancel out.40,49 Similarly, when the tiles are designed to
face the same direction in assemblies, they are observed to close
up into 3D polyhedra, with the hypothesis being that the
cumulative curvature aids closure.22

Detailed analysis of cryogenic transmission electron micros-
copy (cryoTEM) structures of octahedra that form from four-
arm tiles has shown the arms preferentially bend in one
direction in the assembled structure.43 Similarly, the sense of
the twist in the chiral nanoprisms is also consistent with this
direction of curvature. Figure 1a illustrates the two faces of a
three-star tile, which can be distinguished from each other by
comparing the major and minor groove patterns of the double-
helix sections within each tile. We label the two faces the
“front” and “back” face, where the groove pattern of the front
face is equivalent to that which points outward in the
octahedron.
Molecular simulations have the potential to provide insight

into the structure, flexibility, and curvature effects in DNA tiles
and their assemblies. In order to describe these structures, a
model needs to incorporate the relevant physics that is capable
of describing DNA at similar environmental conditions as used
in the experiments. Second, a model needs to be able to
simulate time and length scales that are comparable to those
accessed in experiments, which may be difficult when
simulating large structures. Large DNA origamis and nanocages
have already been simulated using all-atom models,50−53

however they are too computationally expensive to routinely
equilibrate such structures. Coarse-grained models, although
providing less molecular detail, have the potential to achieve
these aims.
The oxDNA coarse-grained model has proven particularly

powerful for understanding basic DNA physics in a variety of
systems,54−57 and it is increasingly being used to study
nanotechnological systems.48,58 The degree of coarse-graining
in the model, which is at the nucleotide level, captures enough
of the details of DNA that are relevant for describing DNA
nanostructures including duplex stability, the relative flexibility
in single and double-stranded DNA, and the flexibility changes
induced in duplexes by bulge loops.48,59−62 When the model is
combined with the computational power of graphical
processing units (GPUs), it becomes possible to comfortably
simulate large systems that may contain thousands of
nucleotides at a microscopic level of detail and for long enough
to generate ensembles of configurations representative of the
equilibrium structure.
In this article, we use oxDNA to model the structural

properties of the three-arm star tiles of ref 44 and the twisted
nanoprisms that they form. We compare our results with
reconstructions of cryoTEM images of the real structures and
monitor how the flexibility and curvature of the tiles evolve as
the prism grows. The results presented here should provide
both a test of oxDNA’s predictive power for modeling DNA
nanostructures and detailed structural insights that will aid the
rational design of nanostructures that use bulges as a way to
control flexibility and therefore global structure.

Figure 1. (a) Three-arm star tiles are composed of one long (L)
circular strand (dark blue), three medium-sized (M) strands of
equal length (green, purple, red), and three short (S) strands of
equal length (orange, yellow, cyan). Two viewpoints of a star-tile
configuration are shown that illustrate its (i) front and (ii) back
face. Li denotes the number of nucleotides in the bulge region. (b)
Examples of symmetric star-tile assemblies include tetrahedra
(L1L2L3 = 555) and dodecahedra (333), which contain four and 20
identical tiles, respectively. (c) Examples of nanoprism assemblies
composed of asymmetric star tiles (from left to right: 762, 744,
726). Each nanoprism contains six identical tiles and exhibits a
chiral twist between the top and bottom faces. Red arrows in (a,ii)
and (c) indicate an example of where the tiles join together at their
sticky ends to form an edge of the polyhedron.
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RESULTS AND DISCUSSION

Experimental Systems and Model. Star-Tile Systems.
Three-arm star tiles are assemblies containing one “long” (L)
circular strand containing 78 nucleotides, three “medium” (M)
strands each containing 42 nucleotides, and three “short” (S)
strands each containing 21 nucleotides. These different strands
are illustrated along with a fully assembled three-arm tile in
Figure 1a. During assembly, sections of the three M strands
hybridize with the L strand to form three duplexes that contain
bulges, where the bulges are at the center of the tile to allow
flexible movement of the arms. At the terminal ends of each tile
arm are two single-stranded “sticky” sequences typically four
bases in length that are complementary and connect tiles
together when assembled. The number of nucleotides in a
bulge region is denoted Li, thus each three-arm tile, and the
prism composed of identical copies of this tile, can be described
with the notation: L1L2L3, as is illustrated in Figure 1.
A three-arm tile possesses 3-fold rotational symmetry when

the M and S strands are identical and the circular L strand is
composed of three repeating sequences. In experiments it was
found that symmetric three-arm tiles can assemble to form
tetrahedra when the bulge size in the L strand is 5, and
dodecahedra and buckyballs when the bulge size is 3,
depending on the concentration of monomer tiles, with higher
concentration yielding the buckyballs.22

The three-arm tiles that we consider here are asymmetric
both in the bulge sizes in the L strand and the sticky ends of the
S strands and were originally designed to form triangular
prisms.44 The edges of the fully assembled prisms are 42 base
pairs long (i.e., four helical turns), which causes the tiles to face
in the same direction in the final assemblies, and may promote
the formation of closed polyhedra during assembly due to tile
curvature effects. The basic triangular prism design involves
L1L2L3 = 744 tiles, where the L1 bulges are at the corners of the
triangular faces and the L2 and L3 bulges at the corners of the

approximately square faces. That triangular prisms formed in
the experiments suggests that the flexibility provided by the L1
= 7 bulges promotes the formation of triangular prisms, as
opposed to, for example, square or pentagonal prisms. When L2
and L3 are not the same, the bulged duplexes at the corners of
the quadrilateral faces of the prisms will possess different
degrees of flexibility, thus giving rise to twisted chiral prism
shapes. The 753 and 735 prisms were designed to twist in
opposite directions with respect to the 744 prism, with smaller
and larger bulges correlating with smaller and larger bend
angles possible in the quadrilateral faces, respectively. The 762
and 726 prisms were observed to behave similarly, but with a
larger magnitude for the chiral twist.44

Coarse-Grained Model for DNA. In oxDNA, a single strand
of DNA is modeled as a chain of rigid nucleotides. Interactions
contributing to the potential energy of a particular config-
uration include stacking, cross-stacking, coaxial stacking,
hydrogen bonding, excluded volume, and backbone chain
connectivity. Base-pairing interactions obey Watson−Crick
specificity (i.e., A-T or G-C pairs), but other interactions
such as Hoogsteen pairs are excluded from the model. Details
of the interactions contributing to the oxDNA potential can be
found elsewhere,48,59 and the simulation code for oxDNA can
be downloaded from the oxDNA Web site.63 For the current
study we use the latest version of the model which includes
different groove widths for the helix (i.e., major−minor
grooving) and fine-tuned structural properties to improve
modeling of DNA origami as well as the relative flexibility of
adjacent TT bases in a sequence, all of which will be important
for studying tiles and nanocages.48

Global Structure. To calculate average properties for both
tiles and prisms, we ran long dynamics simulations while
periodically saving configurations for analysis. Animations of
short trajectories for the 744 tile and the 744 prism are included
in Movies 1, 2, 3, and 4 (see Supporting Information for

Figure 2. (a) Reconstructed 3D maps of prisms obtained from cryoTEM imaging.44 (b) Typical oxDNA configurations for prisms. Top row:
726 prisms, middle row: 744 prisms, bottom row: 762 prisms. In (b), oxDNA configurations with a twist angle that is approximately equal to
the mean twist angle for a prism type are shown, while those shown in (c) are rarer examples of prisms that have become strongly sheared and
which clearly illustrate the effect that shearing may have on prism geometry. Images in (a) have been modified and reproduced with
permission from ref 44. Copyright 2012 John Wiley & Sons, Inc.
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additional explanation). Further details regarding the simu-
lations are discussed in the Methods section. In Figure 2, we
compare the single-particle 3D reconstructed maps of DNA
prisms obtained from cryoTEM images in ref 44 with
representative oxDNA configurations for the 762, 744, and
726 prisms. The chiral twist of these configurations has a twist
value near the mean value for its computed twist angle
distribution p(ω). The comparison between Figure 2a and b
clearly shows that the model predicts equilibrium prism
structures for a variety of designs that are very similar to the
experimentally determined 3D maps. In particular, our
structures reproduce very well the chiral twist seen
experimentally, which is driven by the tendency of bulged
duplexes with smaller bulge loops to bend less. Both the 3D
maps and the oxDNA configurations show that the top and
bottom faces are roughly equilateral triangles and are roughly
perpendicular to the sides of the prisms. The quadrilateral faces
of the 744 prism are close to being square in shape. Prisms
containing bulges of sizes 2 and 3 more clearly have faces
possessing parallelogram shapes. The struts connecting the
vertices together, which are made of two parallel linked double
helices, are also roughly straight.
The twist angle distributions p(ω) for different prism types

are shown in Figure 3. We calculated the twist of a prism

configuration by using a simple scheme which measures the
angular difference between the top and bottom triangular faces
of a prism (see Figures S1 and S2 in the Supporting
Information for more details). The prisms shown in Figure
2b were selected from a set of configurations which all had a
twist angle within 2° of the mean twist value for a particular
prism type. We take 735/726 and 753/762 prisms to have
clockwise (positive) and counterclockwise (negative) twists,
respectively.

Overall, oxDNA predicts that the twist angle distributions for
prisms 735 (726) and 753 (762) are approximately symmetrical
with respect to the distribution for the 744 structure. However,
the 3D maps clearly show that the 744 prism is slightly twisted
in the same counterclockwise direction as the 762 prism. The
finite twist in the 744 structure is also predicted by oxDNA, as
is clear in Figure 3, where we have measured a mean twist of
−2.3°. The 735 and 753 prisms each have mean values
approximately +10° and −10° with respect to the mean value of
the 744 prism, respectively, while the corresponding values for
the 726 and 762 prisms are +16° and −16°. Figure 3 also shows
that the twist angle distribution is sharpest for the 744 pyramid
and becomes slightly wider as the tiles become more
asymmetric. The breadth of these distributions means that
some fraction of the time the prisms will adopt a chiral twist
that is opposite to that of the average structure. For example,
about 16% and 7% of the configurations for the 735 and the
726 prisms, respectively, exhibit twist in a counterclockwise
direction.
In addition to possessing a relatively broad degree of chiral

twist, the triangular faces of the prisms may also be “sheared”
with respect to each other. Example configurations showing a
high degree of shear are illustrated in Figure 2c. To quantify the
degree of shear we use a simple scheme where we project the
centers of mass of the top and bottom faces of the prism onto a
plane defined using vectors normal to the triangular faces and
then measure the distance between these points on that plane
(for more details see Figure S2 and Figure S3 in the Supporting
Information). Most prisms are not as strongly sheared as those
shown in Figure 2c. However, a moderate degree of shearing is
reasonably common (see Figure S3 in the Supporting
Information) and is a significant deformation mode of the
prism away from its mean structure, further highlighting the
degree of flexibility still present in the tiles even when part of a
complete prism. The fluctuations in the twist and shear of the
prisms are also evident in the animation of the 744 prism in
Movies 1, 2, 3, and 4 (see Supporting Information for
additional explanation and Figure S7).

Local Structure. In order to characterize the relative
flexibility at the vertices in the prisms, we focus on the bulged
duplexes within the star tiles, which are illustrated schematically
in Figure 4a. We measure the flexibility of these motifs as
characterized by a bend angle θ between the duplex sections
that come together at the bulge and the relative torsional twist
ϕ−ψ between these sections, each of which have a twisting
degree of freedom around its helical axis. These quantities are
illustrated in Figure 4b for a duplex with a bulge and in Figure
4c for the bulged duplexes in a star tile. Details regarding the
computation of the bend and torsional twist angles are given in
the Supporting Information.

Bulged Duplex Structure Classes. We classify the bulged
duplexes in the tiles into two main structural classes, namely
“stacked” and “unstacked” depending on whether the stack
opposite the bulge (cyan circles in Figure 4b) is intact or
broken, respectively. The details of the criterion used to define
these states are given in the Supporting Information. Previous
investigations of bulged duplexes with oxDNA have identified
two subclasses of stacked configurations:62 (a) the stack across
the bulge remains intact (red in Figure 4), the two duplex arms
meeting at the bulge are roughly straight, and the twist between
the two duplex sections is approximately equal to the rise per
base pair in the oxDNA model, which is roughly 32°; (b) the
stack across the gap is broken and some of the bases from the

Figure 3. Probability distributions for the twist angle ω between the
top and bottom triangular faces are shown for the five nanoprisms
simulated. Solid blue lines are Gaussian fits to the raw data
obtained from oxDNA. Dashed green lines in each plot serve as a
reference for 0° of twist. Also listed in each plot is the mean twist
value ⟨ω⟩, the standard deviation σ, and the relative amplitude Ak/
A744, for each of the Gaussian distributions.
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bulge loop may be inserted into the duplex. Base insertion
causes the two duplex sections to bend slightly away from the
bulge, and the relative twist at the gap is increased due to the
extra bases. For the unstacked configurations where the stack
opposite to the bulge is broken, the bulge acts somewhat like a
hinge between the two duplex sections. Thus, the duplex can be
strongly bent with a maximum angle determined by the bulge
size. The degree of twisting also markedly increases in
unstacked configurations.
In Figure 5, we illustrate and analyze these structural classes

in configurations of star tiles and prisms. These snapshots are
complemented by the animations of the 744 tile and prism
provided in the web-enhanced content, and the analyses of the

trajectories in terms of the stacking states of the bulged
duplexes, and the bend angles in Figures S5 and S6 in the
Supporting Information. In particular, these show that the
bulged duplexes fluctuate between stacked and unstacked states
on nanosecond time scales.
For example, Figure 5a illustrates a 744 configuration where

all three bulged duplexes are stacked with a small static bend at
the two bulges that have bases inserted into the gap and a
roughly straight duplex at the other bulge. Instead, the bending
required by the overall tile geometry is spread out through the
duplexes. This form most resembles the idealized schematics of
the tile with a roughly flat structure and the two duplexes at the
ends of each arm not far from parallel. By contrast, Figure 5b
shows a configuration for the 744 tile where all of the stacks
opposite to the bulge regions are broken, and the overall
structure is much less well-defined with different bend and twist
angles at each bulge. This unstacking allows the tiles to adopt a
wide range of structures facilitated by the relative freedom in
the orientations of the duplex sections on either side of the
bulges when in an unstacked state. In particular, the two helices
that pass through the four-way junctions in each arm have more
freedom to adopt the twisted “X-like” configuration that is
favored in isolated four-way junctions.64

Similar characteristics are evident in the configurations in
Figure 5c and d which shows tiles possessing different
combinations of stacked and unstacked bulged duplexes
where the unstacking again allows the tile to exhibit greater
flexibility. Overall, Figure 5a−d clearly shows that the individual
tiles can adopt a diverse of range of structures facilitated by the
flexibility provided by the bulged duplexes in the tiles, and this
conclusion is further confirmed by the animation of a 744 tile in
the web-enhanced content.
Figure 5e−h illustrates these classes in complete prisms. The

tiles now have a much more well-defined structure as the
helices in each arm are now constrained to be parallel by the
intertile bonding. The remaining freedom is mainly in the
angles between the arms, but the global structure of the prism
can play a significant role in further constraining the flexibility
of the bulged duplexes. For example, those in the triangular

Figure 4. (a) The locations of the bulged duplexes in a single star
tile are illustrated with the sizes of the bulges denoted L1, L2, and
L3. (b) A schematic representation of the bulge region within a
bulged duplex. The stack between bases (circles) opposite the bulge
is represented in cyan and is drawn intact, whereas the coaxial stack
between bases (squares) that are adjacent to the bulge (red) is
drawn as broken. The duplex arms meeting at the bulge are bent at
an angle θ and have a torsional twist with respect to one another of
angle ϕ−ψ, where ϕ and ψ are the twist angles for each duplex
section. (c) Bulged duplexes in star tiles are represented with
cylinders. Bend and torsional twist angles for each bulged duplex
are denoted in the illustration. In (b) and (c) we use the same
convention for the bend angle as used in ref 62.

Figure 5. Top panels show different conformations of free star tiles with varying bulge size: (a) and (b) 744, (c) 753, (d) 762. The bottom
panels show different conformations of prisms: (e) 744, (f) 753, (g) and (h) 762. The bulge size of each bulged duplex is indicated in the
panels with the color of the number indicating stacked bulged duplexes with no inserted bases (black) or inserted bases (cyan) or unstacked
bulged duplexes (red).
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faces are always unstacked and bent at large bending angles
(Figure 5e−h). By contrast, the bulged duplexes at the vertices
of the quadrilateral faces can be stacked or unstacked with a
wider variety of possible bend angles. When unstacked the
bending is mostly localized at the bulge, whereas when stacked,
the bending is distributed along the duplex as is evident in the
744 configuration in Figure 5e, for which both 4-nucleotide
bulged duplexes are stacked.
Figure 5g and h shows configurations for 762 prisms which

have chiral twist angles close to the mean value shown in Figure
3. These configurations illustrate the tendency for the smaller
bulge to adopt a stacked configuration with a smaller bend
angle that in part underlies the tendency of the prism to adopt a
twisted structure. However, even when both are unstacked, as is
the case in Figure 5f, the prism can still exhibit twist because
the shorter bulge somewhat restricts the bend angle that can be
achieved.
Average Structure Properties. We can further quantify some

of the trends we have identified from inspection of individual
configurations by statistically analyzing the geometric proper-
ties of the bulged duplexes in the tiles. First, we calculate the
probability that bulged duplexes in free tiles and in prisms are
stacked or unstacked for different bulge sizes, and the average
bend angle as a function of bulge size. These quantities are
shown in Figure 6a and b, respectively.
Similar to the free bulged duplexes studied using oxDNA in

ref 62, smaller bulges of sizes 2 and 3 clearly prefer to adopt a
stacked configuration in both tiles and prisms because it is free-
energetically more favorable for them to either flip out the
bulge bases or incorporate them into the helix rather than to
unstack and stretch out the bulge. Figure 6a shows that as bulge

size increases, there is an increasing likelihood that the bulged
duplex will be unstacked. The likelihood of being unstacked is
greater for the bulged duplexes in a tile than individual bulged
duplexes,62 because the tile structure imposes a bending
requirement favoring the unstacked state. Similarly, the bulged
duplexes that are in tiles that are part of a complete prism are
even more likely to be unstacked because of the additional
bending required by the prism geometry. The sharp jump in
unstacking for the 7-nucleotide bulges in prisms is because they
are at the corners of the triangular rather than quadrilateral
faces.
The values for the average bend angles for tiles and prisms,

plotted in Figure 6b, clearly reflect the stacked to unstacked
ratio of bulged duplexes. For the smallest bulges, the average
bend angle is equal to the that of the stacked configurations,
which tends to remain small. For large bulge sizes, the average
bend angle tends toward that for the unstacked configurations,
which may be strongly bent. For both tiles and prisms, the
average bend angle for a stacked configuration is roughly
constant, whereas the average bend angle for a configuration
and the average bend angle for an unstacked configuration
increase as bulge size increases. The latter increase reflects the
greater freedom to open up to large bend angles for longer
bulges.62 It is also clear from Figure 6b that the bend angles are
slightly larger in the complete prisms than the individual tiles,
again due to the geometric requirements on the interedge
angles in the prisms.

Distributions for Bending and Torsional Twisting Angles.
To get a more complete pictures of the flexibility introduced
into the tiles by bulges and the changes in tile flexibility caused
by the prism structure, in Figure 7 we compare the distributions
for the bend and twist angles defined in Figure 3c as the bulge
size varies. Of course, the tendency for greater unstacking in
prisms and the trends in bend angle noted above are again
evident, however the distributions also provide a detailed
picture of how the angular flexibility of the tiles changes on
assembly.
For bulged duplexes in the stacked state, apart from a

reduced tendency to bend into the bulge (i.e., negative θ) and a
small increase in bend angle, both the bend and twist
distributions do not change much when tiles are incorporated
into prisms, because the continuity of the stacking provides a
strong structural constraint. The double peak structure of the
twist angle distributions reflects the two possible types of
stacked states, namely those that have all the bulge bases
flipped out of the helix and have a twist difference similar to
that of a base pair step in a duplex (i.e., ∼35°), and those that
have one or two bases inserted and consequently have a larger
twist difference.
By contrast, for the bulges adopting an unstacked geometry,

the angular distributions change considerably for the prisms,
first moving to larger bend and twist angles, and second
becoming much narrower and more symmetric about the mean.
These changes reflect the angular restrictions that are imposed
and the flexibility that is lost when the tile arms become fixed
into place within the prism structure. The distributions are also
significantly narrower for the 7-nucleotide bulges at the vertices
of the triangular faces.

Characterization of Tile Curvature. Lastly, we character-
ize the intrinsic curvature of the three-arm star tile. As noted
earlier, in experiments involving four-arm tiles, the arms are
observed to bend away from the front face of a tile when
assembled into octahedra.43 The observed chirality of the

Figure 6. (a) Probability of unstacked-to-stacked configurations of
bulged duplexes in free star tiles (dashed lines) and in prisms (solid
lines) for the different bulge sizes used in the structures. (b)
Average bend angle (black triangles), the average stacked bend
angle (blue circles), and the average unstacked bend angle (red
squares) for a bulged duplex of varying size are shown for free star
tiles (dashed lines) and prisms (solid lines). In prisms, bulge sizes
2−6 are found in quadrilateral faces, while bulges of size 7 are
found in triangular faces.
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prisms considered here also implies the same direction of
curvature, as the inverted forms of the prisms would have the
opposite twist. The inverted prism forms are the prisms that
would result if the tile had the opposite curvature, that is, the
back faces of the star tiles all would point outward from the
structure. We denote the inverted form of the 744 prism as
“r744”. Figure 8b shows the prism when the front faces of the
tiles all point outward as well as its inverted counterpart in
Figure 8d. Additionally, Figure 8 highlights the major−minor
groove patterns of the struts for the two types of prisms (which
can be used to identify the prism types). We have previously
shown that the latest version of the oxDNA potential predicts
that the remaining free arms of three-arm tiles incorporated
into triangular-shaped trimers also have a clear preference for
pointing away from the front face of the tile, with the
incorporation of different groove widths (e.g., major−minor
grooving) being key to reproducing this experimentally
observed preference.48

Bend Angle Distributions for Tile Curvature. To test for this
preference in free tiles, we constructed a simple way to measure
an angle χ between the helices in the tile arms and a tile normal
vector, n, that is detailed in the Supporting Information. Figure
9a,i illustrates the tile normal vector, two helices within an arm
(denoted L and R in the figure), and the bend angle χ. Figure
9a,i−iii also shows example configurations of the tile bending in
different directions. In our measurements, angles are >90° if the
arms bend away from the front face and <90° for bending away
from the back face.
Figure 9b−e shows distributions p(χ) for the free 744 tile,

dimers, and trimers made from 744 tiles and the experimentally

observed form of the 744 prism in which the arms in all tiles
point away from their front faces. The distribution for this
prism structure serves as a reference to compare with the other
structures. The distribution for this form of the prism is
symmetric, sharply peaked, and centered at 124°. Although this
angle is clearly considerably constrained by the overall structure
of the prism, there is still significant variation (σ = 17°) due to
the thermal fluctuations in the local and global structure of the
prism.
Figure 9b shows that monomeric free tiles have a much

broader distribution than those incorporated into prisms,
showing that the helices in the arms of the free tiles are able to
fluctuate considerably in their orientation. The distribution is
also clearly not symmetric, with a maximum value at around
100°. However, the mean bend angle for the arms is roughly
90°, indicating that a typical tile configuration is relatively flat
(Figure 9a,ii) and that as monomers the tiles exhibit no intrinsic
curvature. One contributing factor to the width of the
distribution is that the two helices in an arm have somewhat
different orientational preferences with the L helix in Figure 9a
preferring to bend more toward the front face, while the R helix
prefers to bend in the opposite direction. This reflects the
tendency of the two helices in the stacked conformation of a
free four-way junction to exhibit a chiral twist with respect to
each other. In the monomeric tiles, there is sufficient flexibility
in the structures for the L and R helices to exhibit substantial
differences in their χ values (∼40°), but as the arms of the tiles
join together to form edges of the prism, the two helices are
constrained to be virtually parallel, and this source of variation
in χ is dramatically reduced. Note though that for oxDNA the

Figure 7. Probability distributions for the bend angle θ (top panels) and the torsional twist angle ϕ−ψ (bottom panels) for bulges of different
size. In all figures, solid and dashed lines refer to bulged duplexes in prism and free tiles, respectively, while blue and red colors refer to
stacked and unstacked populations, respectively. The label i in, for example, p(θi) refers to the bulge size.

Figure 8. (a) 744 tile configuration with double-helix sections L (cyan-purple helix) and R (cyan-red helix) highlighted for one arm. (b)
Experimentally observed 744 prism with the front face of tiles pointing away from the prism. (c) Close-up view of a strut for the 744 prism.
(d) Inverted counterpart to the 744 prism where the back face of the tiles points away from the prism. (e) Close-up view of a strut in the r744
prism.
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helices in a free four-way junction prefer to have a left-handed
twist, while experiments suggest that real DNA prefers a right-
handed twist.64

Although one of the three arms in each tile of the dimer is
now more structurally well-defined due to the formation of a
prism edge (Figure 9c), the p(χ) distribution for the dimer is
still very similar to that for the monomer and, in particular,
again shows no preference for a particular curvature; the dimer
is on average flat. For the trimer with two of the three arms of
each tile now constrained in an edge of the triangle, the p(χ)
distribution begins to narrow somewhat. More interestingly, the
trimer shows a significant shift toward bend angles >90°. The
peak in this distribution occurs near 110°, while the average
value is approximately 98°.

Our analyses of both the bending at the bulges and the tile
curvature show that once a tile has been incorporated into a
larger assembly, it loses considerable flexibility. That an intrinsic
curvature to the tiles only emerges as they assemble into larger
structures is more subtle and must be due, in some way, to a
tightening of the coupling between the arms as they become
both more rigid and more orientationally constrained by the
completion of polygonal faces of the target polyhedron. The
resulting preference for the experimentally observed 744 prism
(Figure 10a) over its inverted counterpart “r744” (Figure 10b)
is clear from the potential energies of the two structures in the
oxDNA model. The experimentally observed prism is lower in
potential energy by ∼56 kBT at a temperature of 20 °C.

Potential Energy Considerations. To get further insight into
this preference, we compare the contributions from different
terms in the oxDNA potential for the two forms of the 744
prism in Table 1 and in Figure S8. Clearly the stacking is the
dominant contributor to the energetic preference for the
experimentally observed structure with an approximately 65
kBT difference between the two forms, although this is partly
offset by a higher coaxial-stacking energy (about 16 kBT).
To identify from where in the prisms this difference in

energy arises, we computed the relative energies of each
nucleotide in a tile for the two forms, considering each type of
interaction in turn. The results in Figure 10 clearly show that
the dominant contribution to the lower stacking energy of the
preferred form comes from the nucleotides in the three bulges
in the L strand. Given the importances of the bulges, we also
computed the probability that a bulge adopts a stacked
configuration for the two forms. First, we consider the 7-
nucleotide bulge which is invariably unstacked in both cases.
For this bulge, as well as the better stacking energy in the 744
prism, the bases on either side of the bulge are also able to
better hydrogen bond to each other. Thus, not only does the
detailed geometry of the bulge in the observed form allow
better stacking in the bulge, it does so while imposing less stress
on the surrounding structure.
Due to the smaller angle imposed on the bulges at the

corners of the square faces, both stacked and unstacked
configurations are observed for the 4-nucleotide bulges.
However, the bulged duplexes in the inverted prism now
have a significantly higher probability of being in a stacked
configuration (57% for r744 compared to 35% for 744, see
Figure S9 and Figure S10 in the Supporting Information),
presumably due to greater stress in the unstacked config-
urations for this form already noted for the 7-nucleotide bulges.
Consequently, the stacking energy even more favors the
observed form for the 4-nucleotide bulges, because of the
additional loss of stacking at the junction between the duplexes
and the bulge. But this shift away from the unstacked
configuration does lead to a reduction in stress in the nearby
duplex sections, and so the hydrogen-bond energy of the base
pairs next to the bulge is now lower for the inverted form and
there is better coaxial stacking at the nearby four-way junctions.
However, even though we know that including the

asymmetry of the helix associated with the major and minor
grooves is vital to reproducing the preference for the observed
form,48 and having narrowed down both which parts of the
structure and which energy terms favor the observed form, the
structural complexity of these prisms means that it has still not
been possible to pinpoint the precise geometric reasons for this
preference. Although slightly disappointing, in some ways, this
provides further justification for using models such as oxDNA.

Figure 9. (a) Configurations for a 744 tile illustrating the range of
the tile bend angle χ. (i) A tile with all the arms bent with angles χ
>90°; (ii) a roughly flat tile with χ approximately equal to 90° for
the three arms; and (iii) a tile bent opposite to that in (i) where χ is
<90° for the three arms. Like in Figure 8, the labels L (green-
orange) and R (purple-orange) denote the two helices at the end of
a tile arm. From top to bottom, the histograms show the range of
angle χ in (b) monomers, (c) dimers, (d) trimers, and (e) prisms.
The i in probability distributions, p(χi), refers to the number of tiles
in the assembly. In each plot a vertical red line indicates the average
value of the measured curvature.
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The complexities of large DNA nanostructures are such that
simple geometric arguments and rules of thumb are likely to be
insufficient for the rational design of ever more complex
structures.

CONCLUSIONS
Here, we have used the oxDNA coarse-grained model and
molecular simulations to characterize the structural properties
of exemplar large DNA polyhedral nanostructures in
unprecedented detail. One important aspect of our results is
that they showcase oxDNA’s ability to reproduce the relevant
experimental results, in this case the overall structure of the
prisms as revealed by cryoTEM, remarkably well. In particular,
first we are able to reproduce the variation of the chiral twist of
the top and bottom faces as the sizes of the bulges (in the
centers of the tiles) are varied, even including the slightly
nonzero average twist for the “symmetric” 744 tiles. Second, we
are able to reproduce the preference for the experimentally
observed structure rather than its inverted isomer. This
reproduction of, in some cases, quite detailed and subtle
features gives us confidence in the model’s utility for structural
prediction of DNA nanostructures.
But more than this, our simulations are also able to provide

information that is not straightforwardly available from
experiment. First, our simulations not only provide a picture

of the average structure of the prisms but also allow a statistical
characterization of the fluctuations that are possible. Although
the prisms have well-defined structures, there is still significant
flexibility as evidenced by the fluctuations in the relative
orientations (i.e., twisting) and position (i.e., shearing) of the
top and bottom triangular faces.
Second, the oxDNA model can provide greater physical

insight into the underlying causes of the observed behavior. For
example, although it is perhaps unsurprising that bulges with
more nucleotides are more likely to lead to larger bend angles
(and hence can be used to control the chiral twist of the
prisms), our simulations reveal that this behavior arises from a
combination of two effects. First, bulged duplexes with smaller
bulges prefer to adopt a straighter “stacked” geometry where
the stacking opposite the bulge is maintained thus allowing only
modest angular deviations in the duplex. Second, the more
hinge-like “unstacked” state of the bulged duplex is able to open
up to larger bend angles when the connecting bulge loop is
longer.
Third, our simulations allow us to characterize how the

structure of the components, in this case the three-arm tiles,
evolves as the target structure is assembled. In particular, we
found that the individual tiles can adopt a wide diversity of
structures facilitated both by the flexibility due to the bulge
loops and the relatively mild additional constraint provided by
the single four-way junction in each arm on the relative
orientations of the two helices that make up the arm. However,
in the prisms the tiles have a much more well-defined and rigid
structure because of the additional constraints provided both by
the individual interarm bonds, which make the prism edges stiff
and straight, and by the overall structure of the prism, which
restricts the relative orientations of the arms.
Furthermore, we also found that certain properties of the

tiles only became evident once assembled. In particular, the
individual tiles are, on average, basically flat, with a preferred
curvature only appearing and becoming more pronounced as

Figure 10. (a) Illustration of a 744 tile configuration. (b) The contributions to the difference in potential energy between the two prism forms
for the ith nucleotide in a tile are plotted for different terms in the oxDNA potential. The relative locations of the L, M, and S strands, which
are color coordinated with the schematic picture of a 744 tile in (a), are listed. Note that the energies were averaged over the six tiles in a
nanoprism. In (a) and (b) circles denote base(s) that are in the vicinity of or located at a four-way junction. Similarly, squares denotes base(s)
that are near or part of a bulge. Circles and squares are drawn only when the absolute magnitude of the energy difference is ≥0.05 kBT.

Table 1. Difference in the Potential Energy Between the 744
and r744 Prisms at 20°C Broken down into the
Contributions from Different Terms in the oxDNA Potential

interaction type ΔV/kBT

stacking, Vstack −64.6
hydrogen bonding, VHB −7.9
cross-stacking, Vcr.stck. −1.0
coaxial-stacking, Vcx.stck. 15.8
total potential energy, V −55.6
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the polygonal faces of the prism are formed. This developing
curvature means that the self-assembly pathway will naturally
lead to the formation of the experimentally observed form of
the prism rather than its inverted isomer.
Our simulations also help us to deduce more general

principles about the structure of DNA polyhedra. First, we have
provided mechanistic insights into the empirically deduced
design rules for multi-arm star tiles, namely the effect of bulge
size on average bend angle, and the preference for tiles to
assemble with a preferred curvature. Second, for a system where
the number of polyhedral edges Ne is less than the degrees of
freedom associated with the polyhedral vertices (3Nv − 6,
where Nv is the number of vertices), significant flexibility in the
polyhedron should be expected, because the star tiles only
provide a mild constraint on the bend angle at the vertices. For
the current case, 3Nv − 6 = 12, whereas Ne = 9 and the three
remaining unconstrained degrees of freedom correspond to the
twisting and shearing modes of deformation. For fully
triangulated DNA polyhedra, such as the tetrahedron,22

octahedron43 and icosahedron,23 where 3Nv − 6 = Ne, the
structures are expected to be much more rigid, whereas
structures like the dodecahedron22 (3Nv − 6 = 54 and Ne = 30)
are expected to be very flexible. The origami tripod tiles provide
an interesting contrast to the star tiles considered here, as struts
between the arms constrain the interarm angles, both rigidifying
the tiles and the resulting polyhedra, as well as allowing a
variety of polyhedral nanoprisms to be assembled by varying
the interarm angles.44

The DNA multi-arm tiles considered here can be considered
as an example of a “patchy” particle. The synthesis of “patchy
particles” has been a particular recent focus for the colloidal and
nanoparticle community in order to increase the range of
structures that can be created,65,66 and there have also been
many simulations studies exploring the finite and extended
structures that could be created from such patchy particles.67,68

Interestingly, there is considerable overlap between the
structures experimentally observed for the multi-arm DNA
tiles and those obtained in simulations of patchy particles with
the same numbers of patches as arms in the tiles.69−71

However, so far the structures formed by the tiles have been
restricted to 2D arrays40 and polyhedral shells.22,23,43,44,72 To
obtain 3D extended structures, such as the diamond lattices
observed in simulations of four-patch particles,73,74 would
require greater control of the 3D arrangement of the tile arms
than is possible in the flexible star-tile motifs, but may be
possible in four-arm analogues of the origami tripod tiles.
Overall, our results illustrate the power of coarse-grained

modeling and of oxDNA, in particular, to characterize large
DNA nanostructures. This success stems both from the model’s
ability to accurately capture the relevant biophysical properties
of DNA and from its computational efficiency. Combined with
the parallelization available through GPU computing, such
studies have the potential to become routine, in a way that
would be impossible for all-atom models for the foreseeable
future. For example, we are currently applying the model to
characterize a wide range of DNA origamis.
We also believe that the physical insights available from

oxDNA simulations can play an important role in the rational
design of future DNA nanostructures. Furthermore, the
predictive power of the model could be used to prescreen
potential designs to test whether they exhibit the required
properties prior to experimental realization.

The oxDNA model can also be used to go beyond structural
characterization to study the self-assembly mechanisms of DNA
nanostructures. For example, for the current nanoprisms one
might ask why triangular rather than square (or for that matter
pentagonal) prisms are the dominant product when all would
be maximally base paired. To address this question we are
currently studying how the relative flexibility of tiles induced by
different bulge sizes controls the rates of closure of trimers of
tiles to form triangular faces.

METHODS
We ran long molecular dynamics (MD) simulations to generate
representative sets of configurations for each star tile and nanoprism
considered. Typical total simulation lengths for both tile and prism
systems were at least 5 × 109 simulation steps. Each set consisted of
thousands of configurations, where the total energy and the bend
angles for the bulged duplexes were decorrelated from that of any
other configuration in the set. The sets of configurations are then used
to measure the equilibrium structural properties reported in earlier
sections. Errors for the quantities measured were estimated by
computing the standard error of the mean value from multiple
independent simulations for each system. In most cases, the error bars
in the figures are smaller than the point sizes.

In the MD simulations, an Andersen-like thermostat was used,
which generates diffusive motion of particles beyond an extremely
short time scale.75 Running the simulations on GPUs rather than
CPUs speeds up typical MD simulations by roughly a factor of 25.
Additionally, all simulations were performed at Tsim = 20−25 °C, the
temperature range from which the cryoTEM quenching likely took
place, and with [Na+] = 0.5 M. The experiments were also performed
in this high-salt regime, where the electrostatic repulsion between
charged nucleotides is highly screened by the ionic solution. Further
details pertaining to the oxDNA model can be found in ref 48, while
additional information regarding the simulations performed in this
article can be found in the Supporting Information.
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(8) Liedl, T.; Högberg, B.; Tytell, J.; Ingber, D. E.; Shih, W. M. Self-
Assembly of Three-Dimensional Prestressed Tensegrity Structures
from DNA. Nat. Nanotechnol. 2010, 5, 520−524.
(9) Ke, Y.; Ong, L. L.; Shih, W. M.; Yin, P. Three-Dimensional
Structures Self-Assembled from DNA Bricks. Science 2012, 338, 1177−
1183.
(10) Wei, B.; Dai, M.; Yin, P. Complex Shapes Self-Assembled from
Single-Stranded DNA Tiles. Nature 2012, 485, 623−626.
(11) Han, D.; Pal, S.; Yang, Y.; Jiang, S.; Nangreave, J.; Liu, Y.; Yan,
H. DNA Gridiron Nanostructures Based on Four-Arm Junctions.
Science 2013, 339, 1412−1415.
(12) Iinuma, R.; Ke, Y.; Jungmann, R.; Schlichthaerle, T.;
Woehrstein, J. B.; Yin, P. Polyhedra Self-Assembled from DNA
Tripods and Characterized with 3D DNA-PAINT. Science 2014, 344,
65−69.
(13) Gerling, T.; Wagenbauer, K. F.; Neuner, A. M.; Dietz, H.
Dynamic DNA Devices and Assemblies Formed by Shape-
Complementary, Non-Base Pairing 3D Components. Science 2015,
347, 1446−1452.
(14) Cademartiri, L.; Bishop, K. J. M. Programmable Self-Assembly.
Nat. Mater. 2015, 14, 2−9.
(15) Douglas, S. M.; Marblestone, A. H.; Teerapittayanon, S.;
Vazquez, A.; Church, G. M.; Shih, W. M. Rapid Prototyping of 3D
DNA-Origami Shapes with caDNAno. Nucleic Acids Res. 2009, 37,
5001−5006.
(16) Benson, E.; Mohammed, A.; Gardell, J.; Masich, S.; Czeizler, E.;
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