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abstract: Waterborne pathogens cause many possibly lethal human
diseases. We derive the condition for pathogen invasion and subsequent
disease outbreak in a territory with specific, space-inhomogeneous
characteristics (hydrological, ecological, demographic, and epidemio-
logical). The criterion relies on a spatially explicit model accounting
for the density of susceptible and infected individuals and the pathogen
concentration in a network of communities linked by human mobility
and the water system. Pathogen invasion requires that a dimensionless
parameter, the dominant eigenvalue of a generalized reproductive ma-
trix J0, be larger than unity. Conditions for invasion are studied while
crucial parameters (population density distribution, contact and water
contamination rates, pathogen growth rates) and the characteristics of
the networks (connectivity, directional transport, water retention times,
mobility patterns) are varied. We analyze both simple, prototypical test
cases and realistic landscapes, in which optimal channel networks
mimic the water systems and gravitational models describe human
mobility. Also, we show that the dominant eigenvector of J0 effectively
portrays the geography of epidemic outbreaks, that is, the areas of the
studied territory that will be initially affected by an epidemic. This is
important for planning an efficient spatial allocation of interventions
(e.g., improving sanitation and providing emergency aid and
medicines).

Keywords: spatially explicit models, hydrological transport, human
mobility, stability analysis, incidence map, dominant eigenvalue.

Introduction

Diarrheal waterborne diseases are caused by pathogenic
microorganisms that are transmitted when contaminated
water (or food contaminated by water) is consumed and
are thus directly or indirectly hydrologically controlled.
The pathogens include protozoa (e.g., Entamoeba hysto-
litica), bacteria (e.g., Vibrio cholerae and Shigella dysenter-
iae), and viruses (e.g., Rotavirus gastroenteritis). These dis-
eases are among the major causes of death in the world
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(World Health Organization 2008). Cholera is possibly the
best-known lethal diarrheal disease, although other infec-
tions, such as rotavirus, cause more casualties (about
500,000 in 2004 alone, according to the World Health
Organization).

To understand, control, and predict epidemics, devel-
opment of appropriate mechanistic models is fundamen-
tal, as they can play an important role in devising appro-
priate intervention measures (Bertuzzo et al. 2011; Tuite
et al. 2011; Mari et al. 2012a; Rinaldo et al. 2012). After
the seminal model proposed by Capasso and Paveri-Fon-
tana (1979), Codeço (2001) developed a system of three
ordinary differential equations where, in addition to the
compartments of susceptible (S) and infected (I) that char-
acterize traditional microparasitological models, one equa-
tion accounts for the population dynamics of bacteria (B)
in the water reservoir. Subsequently, refinements have been
introduced to account for, for example, hyperinfectivity
(Hartley et al. 2006) or the prey-predator interaction be-
tween bacteria and their specific phages (Jensen et al.
2006). Also, seasonal and climate forcings have been an-
alyzed (Colwell 1996; Lipp et al. 2002; Pascual et al. 2002;
Koelle et al. 2005; Akanda et al. 2011; Reiner et al. 2012)
to include the influence of different hydrometeorological
regimes on the time course of the disease. All these models,
however, have relied on mean-field approximations, with-
out considering that very often epidemics display spatially
inhomogeneous patterns. The spatial component must be
explicitly accounted for to develop realistic policies, which
have to be specifically linked to the territory where public-
health measures are implemented.

While some diarrheal infections are basically linked to
fecal-oral direct transmission (e.g., rotavirus) and their
dynamics can thus be modeled as SIR (susceptible-
infected-recovered) systems (Pitzer et al. 2009), the spatial
spread of waterborne diseases is mediated primarily by the
hydrological network (Bertuzzo et al. 2008, 2010, 2012;
Akanda et al. 2009). However, in many cases, human mo-
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bility plays an additional important role. In fact, infected
individuals are often asymptomatic—for example, about
75% for cholera (World Health Organization 2010) and
80% for amoebiasis caused by E. histolytica (Guerrant
1986)—and thus can inadvertently spread the pathogens
by moving to another community. Similarly, susceptible
individuals can be infected by pathogens far from their
home sites when traveling or commuting. While meta-
population dynamics was incorporated into traditional SI
or SIR models many years ago (Bolker and Grenfell 1995;
Swinton et al. 1998; Gog et al. 2002; Arino et al. 2005),
the addition of human mobility to spatial models of wa-
terborne diseases is more recent. This has been accom-
plished via either diffusion-based (Righetto et al. 2011) or
gravity-like models (Bertuzzo et al. 2011; Chao et al. 2011;
Tuite et al. 2011; Gatto et al. 2012; Mari et al. 2012a, 2012b;
Rinaldo et al. 2012). The wide availability, via geographic
information systems, of spatial data on hydrology, road
networks, population distribution, and sanitation makes
these models applicable to specific situations in each coun-
try and for each disease to be studied.

Here we extend, generalize, and make more explicit the
approach outlined by Gatto et al. (2012). Specifically, in
this work we explicitly account for spatial heterogeneities
of both hydrological conditions and pathogen ecology,
which were not considered in previous approaches. The
latter extension, in particular, is of paramount importance
in the study of pathogen invasion conditions at regional
spatial scales characterized by inhomogeneous climatic and
ecological conditions (temperature, pH, salinity, nutrient
availability). In addition, most of the results described here
refer to a spatial setting much more realistic than those
reported elsewhere (Gatto et al. 2012). To portray hydro-
logical connectivity, in fact, here we make use of so-called
optimal channel networks, which are mathematical objects
whose scaling forms are de facto indistinguishable from
those of real river networks (Rinaldo et al. 1992; Rodri-
guez-Iturbe et al. 1992). We carry out a systematic analysis
to determine the conditions under which pathogen in-
vasion and ensuing disease outbreak are possible within a
specific territory with certain demographic, epidemiolog-
ical, climatic, and socioeconomic characteristics. The main
aim of this work is to find waterborne pathogen invasion
conditions while accounting for (1) the spatial inhomoge-
neity of population density, sewage water disposal and treat-
ment, and the availability of clean, safe water, as well as that
of the hydrological system and pathogen ecology and (2)
the spread of pathogens via different pathways (typically,
the hydrological network and the human-mobility net-
work). Conditions for invasion are studied under varying
model parameters (population density distribution, contact
and water contamination rates, pathogen growth rates) and
network characteristics (connectivity, directional transport,

water retention times, mobility patterns). The second aim
of the study is analysis of the geography of epidemic out-
breaks, that is, determining the areas of the studied territory
that will be initially affected by the epidemic, if invasion
conditions are met. This is especially important because
knowledge of an outbreak epicenter can assist in an efficient
allocation of interventions (e.g., improving sanitation, pro-
viding emergency aid and medicines, enforcing quarantine),
which can minimize the extent of a disease outbreak.

The Model

Our starting point is a generalization of a spatially explicit
metacommunity model that includes both the hydrological
and the human-mobility network (Gatto et al. 2012; Mari
et al. 2012a). Although parameterizable to particular cases
(see below), the model of the network of human com-
munities (metacommunity) possibly subject to infection
by waterborne pathogens is general and can be summa-
rized as follows. Let Si(t) and Ii(t) be the local abundances
of susceptible and infected individuals, respectively, in each
node i of the hydrological network at time t, and let Bi(t)
be the concentration of the pathogens (i.e., bacteria, vi-
ruses, or protozoa) in water. The hydrological network can
be a river basin, human-made water distribution and/or
sewage systems, or both, and network nodes can be cities,
towns, or villages. Epidemiological dynamics and pathogen
transport over the hydrological and human-mobility net-
works are described by the following set of ordinary dif-
ferential equations:

ndSi p m(H ! S ) ! (1 ! m )b f(B ) " m Q b f(B ) S ,!i i S i i S ij j j i[ ]dt jp1

ndIi p (1 ! m )b f(B ) " m Q b f(B ) S!S i i S ij j j i[ ]dt jp1

! (g " m " a)I , (1)i

n WdB ji p !(m " l )B " l P B!Bi i i j ji jdt Wjp1 i

npi" (1 ! m )I " m Q I .!I i I ji j[ ]W jp1i

The evolution of the susceptible compartment (first
equation of model [1]) is a balance between population
demography and infections due to contact with the path-
ogen. The host population, if uninfected, is assumed to
be at demographic equilibrium Hi (the size of the ith local
community), with m being the human mortality rate. The
parameter bi represents the site-dependent rate of exposure
to contaminated water, and f(Bi) is the probability of be-
coming infected because of the exposure to a concentra-
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tion Bi of pathogens. The dose-response function f(Bi)
(Zmirou-Navier et al. 2006) usually saturates for high
pathogen concentrations. Beta-Poisson, exponential, and
hyperbolic are the most-used models. In accordance with
much of the literature on cholera initiated by Codeço
(2001), hereafter we use the hyperbolic function f(B ) pi

(with K being the half-saturation constant).B /(K " B )i i

This does not represent a loss of generality, because disease
outbreak is linked to the linear approximation of f(Bi) at
low pathogen concentrations, as shown below. Although
originally devised for cholera, this transmission mecha-
nism could be extended to other waterborne diseases. Also,
if the network is sufficiently fine grained, the model com-
prises the so-called human-to-human transmission path-
way as well (Weil et al. 2009; Tuite et al. 2011). In this
kind of transmission, in fact, infection rarely occurs
through direct contact, as in airborne diseases, but rather
occurs via contact by susceptibles with water (or food)
contaminated by infected individuals living in close prox-
imity and thus utilizing the same water reservoir.

The dynamics of the infected compartment (second
equation of model [1]) is a balance between newly infected
individuals and losses due to recovery or natural/patho-
gen-induced mortality, with g and a being the rates of
recovery and mortality due to the disease, respectively.
Waterborne diseases generally confer at least temporary
immunity (in cholera, about 2–5 years; Clemens et al.
1990; Koelle et al. 2005). Therefore, we do not consider
the dynamics of recovered individuals, because our goal
is to assess pathogen dynamics during the initial conditions
of an outbreak. The evolution of the local concentration
of pathogens that live free in the aquatic environment
(third equation of model [1]) assumes that bacteria, vi-
ruses, or protozoa are released in water (e.g., excreted) by
infected individuals and immediately diluted in a well-
mixed local water reservoir of volume Wi at a site-specific
rate pi, depending on local sanitation conditions. Free-
living pathogens are also assumed to die at a constant,
site-dependent rate , which can widely vary accordingmBi

to inhomogeneous climatic and ecological conditions.
As regards the hydrological transport, the spread of

pathogens over the river network is described as a biased
random-walk process on an oriented graph (Bertuzzo et
al. 2007). Specifically, we assume that pathogens can move,
at a rate li, from node i to node j of the hydrological
network with a probability Pij. The rate li depends on both
downstream advection and other possible pathogen trans-
port pathways along the hydrological network, for ex-
ample, short-range distribution of water for consumption
or irrigation or pathogen attachment to phyto- and zoo-
plankton. This rate can be, therefore, quite variable from
node to node. The transport process is assumed to be
conservative, that is, . Possible topological

n! P p 1ijjp1

structures for the hydrological network range from simple
one-dimensional lattices to more realistic mathematical
characterizations, such as Peano basins (as in Gatto et al.
2012), optimal channel networks (Rinaldo et al. 1992;
Rodriguez-Iturbe et al. 1992; see below for details), or real
river systems (e.g., Bertuzzo et al. 2008; Mari et al. 2012a;
Rinaldo et al. 2012). As for the human-mobility network,
we assume that the nodes of this second layer correspond
to those of the hydrological layer, whereas edges are de-
fined by connections among communities. We also assume
that susceptible and infected individuals can undertake
short-term trips from the communities where they live
toward other nodes. While traveling or commuting, sus-
ceptible individuals can be exposed to pathogens and re-
turn as infected carriers to the community where they
usually live. Similarly, infected hosts can disseminate path-
ogens away from their home community. It should be
remembered that in many cases infected individuals are
asymptomatic and thus are not barred from their usual
activities by the presence of the pathogen in their intestine.

Human mobility patterns are defined according to a
connection matrix in which individuals leave their original
node (say i) with an infection-dependent probability (mS

for susceptibles and mI for infecteds, usually with m ≥S

), reach their target location (say j) with a probabilitym I

Qij, and then come back to node i. Topological and tran-
sition probability structures for human mobility patterns
used in epidemiology are quite varied (Eubank et al. 2004;
Riley 2007). They can be based on suitable measures of
node-to-node distance, as in gravity models (Erlander and
Stewart 1990), on the actual transportation network
(roads/airports/waterways; Colizza et al. 2006), on proxies
for human movement (e.g., mobile phone data; Bengtsson
et al. 2011), or on paradigmatic models based on concep-
tually different interactions, such as Erdős-Rényi random
graphs (Erdős and Rényi 1959), scale-free networks (Albert
and Barabási 2002), and small-world-like graphs (Watts
and Strogatz 1998).

Pathogen Invasion Conditions

The derivation of the conditions for pathogen invasion in
the network system can be outlined as follows. The non-
linear model of the waterborne disease at the global scale
is always characterized by the disease-free equilibrium X0,
that is, a state where , , and for allS p H I p 0 B p 0i i i i

. If X0 is unstable, the epidemic can start andi p 1, … , n
the system evolves toward another equilibrium (or more
generally, an attractor) characterized by positive values of
pathogen concentrations and densities of infected people.
On the contrary, if X0 is stable, the pathogen cannot invade
the metacommunity and disease outbreak is not possible.
If the communities are isolated (no connections, either
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through the hydrological network or through human mo-
bility), successful pathogen invasion in each community
is determined by whether the basic reproductive number,

p H bi i iR p ,0i W Km (g " m " a)i Bi

(Codeço 2001) is smaller or larger than unity.
Here, we analyze system (1), taking into account the

network connections, and find out which parameter com-
binations correspond to a transition from X0 being stable
to its being unstable. Technically, this is called a “bifur-
cation” (Kuznetsov 1995). Finding bifurcation conditions
requires analysis of how the eigenvalues associated with
the disease-free equilibrium vary with the system param-
eters. In practice, to analyze stability, we consider the lin-
earized system, which is given by

dDS * *p !mDS ! (1 ! m )HbB ! m HQbB ,S Sdt

dI * *p (1 ! m )HbB " m HQbB ! fI,S Sdt

*dB * !1 T *p !(M " L)B " W P WLBBdt

1 ! m mI I!1 !1 T" pW I " pW Q I,
K K

where the superscript T indicates matrix transposition;
; ;T T *DS p [S ! H , … , S ! H ] I p [I , … , I ] B p1 1 n n 1 n

; ; , p, MB, L, H, and WT[B /K, … , B /K] f p g " m " a b1 n

are diagonal matrices whose nonzero elements are made
up by the parameters bi, pi, , li, Hi, and Wi, withm i pBi

, respectively (W!1 is also obviously diagonal,1, 2, … , n
with elements equal to ); and and1/W P p [P ] Q pi ij

are, respectively, the hydrological and human-[Q ]ij

mobility connection matrices, assumed to be Markov ma-
trices, that is, and for any i. As

n n! P p 1 ! Q p 1ij ijjp1 jp1

for P and Q, we further assume that the union of the
graphs associated with them is strongly connected, that is,
that there always exists a path between any two nodes
along either the hydrological or the human-mobility net-
work. In some cases, we use the stronger assumption that
the graphs associated with the two networks are strongly
connected (so that matrices P and Q are irreducible). In
this case, according to the Perron-Frobenius theorem for
nonnegative Markov matrices (Gantmacher 1959), we can
state that both P and Q have unique dominant eigenvalues
equal to 1. As the eigenvalues of a matrix and of its transpose
coincide, the dominant eigenvalues of PT and QT are also
1.

Because the model is a positive system (namely, the
variables Si, Ii, and Bi can never become negative if the

system is initialized at nonnegative conditions) and the
disease-free equilibrium is characterized by null values of
infected abundances and pathogen concentrations, the bi-
furcation from stable to unstable can occur only via an
exchange of stability. This implies that the disease-free
equilibrium switches from being a stable node to being a
saddle through a transcritical bifurcation. Thus, the con-
dition for the bifurcation to occur (epidemiologically
equivalent to the condition for successful pathogen in-
vasion) is that the Jacobian evaluated at the disease-free
equilibrium has one zero eigenvalue (Kuznetsov 1995).
Appendix A reports the detailed calculations necessary to
derive the pathogen invasion condition, which we state
below. An alternative derivation of the onset condition,
based on a next-generation matrix approach (Diekmann
and Heesterbeek 2000; Diekmann et al. 2010), is described
in appendix B; appendixes B–D available online.

Define the matrix

R 0 … 00 1

p0 R … 00 !1 !12R p p M HbW ,0 B_ _ 5 _ Kf 
0 0 … R 0n

which is made up of the basic reproductive numbers of
each community when isolated from the others ( ). InR 0i

addition to matrix R0, three other matrices of reproductive
numbers can be introduced, namely,

!1 T !1pM Q HbWBIR p ,0 Kf

!1 !1pM HQbWBSR p ,0 Kf

!1 T !1pM Q HQbWBISR p ,0 Kf

corresponding to metacommunities where only infecteds
are mobile, only susceptibles are mobile, or both are mo-
bile, respectively. If we account for the different proba-
bilities of movement in the metacommunity, we can com-
pute the average reproductive matrix as

ave IR p (1 ! m )(1 ! m )R " m (1 ! m )R0 I S 0 I S 0

S IS" (1 ! m )m R " m m R .I S 0 S I 0

In appendix A, we show that the bifurcation of the disease-
free equilibrium corresponds to the condition

ave !1 Tdet (U ! R ! M (P ! U )L) p 0, (2)n 0 B n

where Un is the identity matrix of dimension n. Equiva-
lently, if we define a generalized reproductive matrix

ave !1 TJ p R " M (P ! U )L, (3)0 0 B n
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Figure 1: Special and prototypical cases. A, The case for model (1) without human mobility. The solid line shows the bifurcationn p 2
curve given by equation (2), while the dotted line shows where the average of the two basic reproductive numbers is equal to 1. Below the
solid curve, the pathogen cannot invade the metacommunity. In region 1, the average reproductive number is smaller than 1 and the
pathogen cannot invade; in region 2, the average reproductive number is smaller than 1, but the pathogen can invade; in region 3, the
average reproductive number is larger than 1, yet the pathogen cannot invade; in region 4, the average reproductive number is larger than
1 and the pathogen can invade. Parameter values: . B, Dominant eigenvalue of (solid line) as a functionavel p l p m p m p 0.23 J p R1 2 B B 0 01 2

of human mobility: for a simple topology with three nodes having the same community size H and connected via a gravitationalm p m p mS I

model (no hydrological transport). Pairwise distances between nodes are , , . The connection matrix Q is2 2 1/2d p 1 d p 5 d p (d " d )12 13 23 12 13

computed under the assumption that . The values of the local reproductive numbers are ( ). C, Dominantg(d) p 1/(1 " d) R p 0.95 i p 1, 2, 30i

eigenvalue of J0 as a function of mobility: for a simple topology with three hydrologically and ecologically networked nodes,m p m p mS I

connected by both hydrology and human mobility. Parameter values: , , ( ).l p l p l p 0.7 m p m p m p 0.23 R p 0.75 i p 1, 2, 31 2 3 B B B 01 2 3 i

Connection matrices P and Q are reported in the figure. See text and appendix D, available online, for details.

and indicate by lmax(A) the dominant eigenvalue of a ma-
trix A, the condition for waterborne pathogen invasion to
be successful is

y p l (J ) 1 1. (4)0 max 0

Epidemics can be triggered by positive perturbations of
pathogen concentrations or densities of infected individ-
uals if and only if y0, the dominant eigenvalue of J0, is
larger than 1. Condition (4), based on matrix J0, constitutes
a nontrivial advancement over invasion criteria proposed
elsewhere (Gatto et al. 2012), specifically because it allows
for the study of systems where the parameters relevant to
pathogen ecology (mB) and transport (l) vary in space,
which is most likely the case in large-scale epidemics.

Criterion (4), coupled with equation (3), synthesizes the
intertwined effects of epidemiological, hydrological, and
human-mobility dynamics on the outbreak of waterborne-
disease epidemics. As a matter of fact, J0 results from the
sum of two matrices, one depending linearly on the hy-
drological network P and the other nonlinearly on the
human-mobility network Q. Pathogen invasion condition
(4) is based on the dominant eigenvalue of J0, which is
not simply deducible from the eigenvalues of the two ad-
denda. Therefore, the hydrological and human-mobility
networks interplay in a complex manner to determine
disease outbreak and spread. If the pathogen transport
rates li and the human mobilities mS and mI are equal to

0 (completely isolated communities), then equation (2)
becomes

det (U ! R ) p 0.n 0

This condition is obviously satisfied when the largest R 0i

is equal to 1—which corresponds to the classical criterion
obtained in a spatially implicit context. However, the in-
troduction of hydrological connections and human mo-
bility changes the picture completely and makes condition
(4) absolutely nontrivial, as demonstrated in the next
sections.

The above criterion for successful pathogen invasion is
also a key to understanding the geography of pathogen
persistence and ensuing epidemic outbreaks (see app. C).
In fact, when condition (4) is verified, the disease-free
equilibrium becomes a saddle, and the dominant eigen-
vector (corresponding to the dominant eigenvalue y0) pin-
points the direction in the state space along which the
system orbit, after a transient period due to initial con-
ditions, will diverge from the equilibrium. The eigenvector
lies in the subspace , and is char-DS p 0 i p 1, 2, … , ni

acterized by strictly positive components (according to
Perron-Frobenius theorem for nonnegative matrices; see
Gantmacher 1959). The components of the eigenvector
thus correspond to the values of the infected individuals’
abundances and the pathogen concentrations in the dif-
ferent human communities. Whenever the dominant ei-
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Video 1: Still image from video 1 (available online). The case
for model (1) without human mobility, with for alln p 3 l p 0.23i

i, for all i, , ,m p 0.23 P p 0.9 P p P p 0.05 P p P pB 11 12 13 21 31i

, , . The green surface shows the0.99 P p P p 0.01 P p P p 022 33 32 23

bifurcation in the parameter space , while the gray plane(R , R , R )0 0 01 2 3

shows where the average of the three local basic reproductive num-
bers is equal to 1; below the green surface, the pathogen cannot
invade the metacommunity and epidemics cannot be triggered.

genvalue is sufficiently larger than 1, there may be other
eigenvalues larger than unity. Thus, in the very short term
the system orbit might point in the direction of the sub-
dominant eigenvector before converging to the dominant.
Therefore, we can outline the geography of the epidemic
as follows. At the very beginning (transient period related
to initial conditions), the spread will obviously occur in
the locations most connected to those initially infected,
but then the epidemic will mainly propagate along the
locations that correspond to the largest components of the
dominant eigenvector (or, possibly, first along the com-
ponents of the subdominant and then along those of the
dominant eigenvector). These communities are where the
number of infected individuals and the pathogen concen-
trations will be highest during disease outbreak, thus acting
as the main foci of the epidemic.

Special and Prototypical Cases

In this section, we examine three special cases that, despite
their simplicity, demonstrate how invasion criterion (4)
can be applied and lead to interesting results. The situa-
tions we consider are those of no human mobility (hy-
drological network only), no connection among water res-
ervoirs (human-mobility network only), and coupling of

the two dissemination pathways in a spatially homoge-
neous setting. The numerical examples (fig. 1) refer to
prototypical networks consisting of only a few nodes, but
the results (technical details in app. D) can be extended
to more complex and realistic networks.

Hydrological Transport Only

If the human mobilities are equal to 0 ( ),m p m p 0S I

then equation (2) becomes

!1 Tdet (U ! R ! M (P ! U )L) p 0.n 0 B n

The previous equation yields a surface in the space
. The simple case with two hydrologi-(R , R , … , R )0 0 01 2 n

cally and ecologically homogeneous nodes ( ,n p 2 l p1

, ) already shows some distinctive features,l m p m2 B B1 2

which are summarized in figure 1A. In fact, the average
reproductive number, , is not a good predic-(R " R )/20 01 2

tor of disease outbreak, because there are cases in which
pathogen invasion is possible even if the average repro-
ductive number is smaller than 1 (regions labeled 2 in fig.
1A). In contrast, there are also cases in which the pathogen
cannot invade even if the average reproductive number is
larger than 1 (region 3 in fig. 1A). Letting P11 vary, we
obtain figure S1 (figures S1–S6 are available online), which
shows how the size of the various parametric regions
changes; for instance, if there is little transport of water
between node 1 and node 2 ( ), a large sizeP p P p 0.811 22

is obtained for region 2, where the average reproductive
number is smaller than 1 but the pathogen can still invade.
Similar results extend to the case . When node 1 isn p 3
quite close to being absorbing—that is, when P11 is close
to 1—the shape of the bifurcation surface is such that
successful pathogen invasion is possible even if andR 02

are small and is slightly larger than 1 (see videoR R0 03 1

1, available online).

Human Mobility Only

If , then equation (2) becomesL p 0

ave( )det U ! R p 0,n 0

or, otherwise stated, the dominant eigenvalue of mustaveR 0

be 1. As stated above, there are several human-mobility
models that can be used in the epidemiological context.
The class of gravitational models (Erlander and Stewart
1990) is sufficiently simple, yet flexible and amenable to
theoretical analysis. Here, we assume that the connection
matrix Q is determined by a gravity model in which

H g(d )j ij
Q p (5)ij n! H g(d )k ikkpi
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Figure 2: Effects of hydrological transport parameters, human mobility, and local reproductive number on waterborne pathogen invasion
in an optimal channel network (OCN; inset of A) with a spatially homogeneous population distribution and a water reservoir system. A
is obtained in the absence of human mobility, B and C account for both hydrological transport and gravity-like human mobility, and D is
obtained in the absence of hydrological transport. The solid lines show the bifurcation curves given by equation (2) for different values of
r0 ( for all i, as labeled on curves). The pathogen can invade for the parameter combinations lying to the left (right) of the curvesR p r0 0i
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day.

(where ), , and g(d) is a suitable decreasingi ( j Q p 0ii

function of distance d. If we assume that water availability
is proportional to population size (Bertuzzo et al. 2008;
Mari et al. 2012a), then it is quite easy to prove (see app.
D for technical details) that pathogen invasion conditions
strongly depend on the topology of the human-mobility

network and that there might exist network topologies for
which an epidemic can be triggered even if all the areR 0i

less than 1 (subthreshold epidemic; see van den Driessche
and Watmough 2002). Figure 1B shows a simple proto-
typical case that has the required property. Even if the
network consists of three nodes characterized by local re-
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productive numbers smaller than 1, for increasing values
of human mobility, the dominant eigenvalue of J0 increases
and finally exceeds unity.

Interplay between Hydrological Connections and Human
Mobility in Spatially Homogeneous Networks

Let us now assume that both hydrological transport and
human mobility are fully operating but that all pi, bi, ,mBi

li, Hi, and Wi are spatially homogeneous, that is, indepen-
dent of i. Then all are equal to a constant r0. It canR 0i

be shown (see app. D for details) that if Q is nonsymmetric
and , a pathogen can invade even if . Anm 1 0 r ! 1S 0

example is shown in figure 1C. For low mobility, the dom-
inant eigenvalue is smaller than 1; this is so because for

, the dominant eigenvalue is controlled by r0 evenm p 0S

if Q is nonsymmetric. However, for high mobility, the
dominant eigenvalue becomes larger than 1. This dem-
onstrates that even if the epidemic could never start in
isolated, homogeneous communities (because ),r ! 10

nonsymmetric mobility can give rise to pathogen invasion
(another case of subthreshold epidemic; see van den Dries-
sche and Watmough 2002). The condition that Q is non-
symmetric is quite common, because even symmetric grav-
ity models (where all Hi are equal) can yield nonsymmetric
Q matrices, as shown, for example, in figure 1B.

Epidemic Spread in Complex Landscapes

The analytical framework proposed above can be used to
derive pathogen invasion conditions for waterborne dis-
ease epidemics spreading on more complex, realistic land-
scapes. Gatto et al. (2012) analyzed epidemic outbreaks in
Peano basins with spatially homogeneous rates of path-
ogen growth and hydrological transport. Peano basins are
deterministic, space-filling fractals with a tree-like struc-
ture whose topological measures are similar to those of
real rivers but fail to satisfy the statistics of aggregation
and upstream/downstream distances (Rodriguez-Iturbe
and Rinaldo 1997; Rinaldo et al. 1999). Furthermore, the
degree of the inner nodes of Peano networks is four, while
the inner nodes of real river networks have no more than
three connected neighbors (Rodriguez-Iturbe and Rinaldo
1997). Here, we want to introduce a more realistic de-
scription of hydrological connectivity. To this end, we ap-
ply model (1) to an optimal channel network (OCN; inset
of fig. 2A), that is, a mathematical structure characterized
by optimal scaling forms that closely conform to the ob-
served geomorphological features of real river networks.
OCNs hold fractal characteristics that are obtained through
a specific selection process based on the principle of min-
imum energy expenditure in the network as a whole (Ri-
naldo et al. 1992; Rodriguez-Iturbe et al. 1992). The scaling

behavior of the probability distributions of contributing
area, channeled lengths, and elongation in OCNs matches
that observed in the field (Rodriguez-Iturbe and Rinaldo
1997), to the extent that OCNs pass all tests—however
stringent—in reproducing distinctive river network statis-
tics, both topological and metric (Rinaldo et al. 1999).

The OCN is described as an oriented graph whose nodes
and edges represent, respectively, human communities and
the hydrological interconnections among them (Bertuzzo
et al. 2007). The inner nodes of the network have two
inward edges and one outward edge, while the leaves have
just one outward link. These interconnections are sub-
sumed into matrix P. Specifically, the fraction Pij of path-
ogens that move between two nodes of the hydrological
network (say from i to j) is given by

Pout if i r j,
d (i)P " d (i)Pout out in in

PinP pij if i R j,
d (i)P " d (i)Pout out in in{
0 otherwise,

where Pout (Pin) is the fraction of pathogens moving along
an outward (inward) edge and dout (din) is the outdegree
(indegree) of node i, that is, the number of outward (in-
ward) edges. Note that the quantity Pij can be derived from
the discretization of the standard advection-dispersion
equation for water flow or, equivalently, from a biased
random-walk process on an oriented graph (Bertuzzo et
al. 2010). The transport process is assumed to be conser-
vative (see above); that is, , where Ni is the set! P p 1ijj!Ni

of neighbors connected to node i (of cardinality d(i) p
). The bias of hydrological transport alongd (i) " d (i)out in

the river (which is related to downstream velocity) can
thus be defined as . Note alsob p P ! P p 2P ! 1out in out

that matrix P must account for proper boundary condi-
tions (BCs) for the upstream nodes of the network (leaves
of the graph) and the outlet of the OCN. “Absorbing” BCs
at a certain node describe the situation when the pathogens
reaching that node will never leave it. “Reflecting” BCs,
on the contrary, imply that at least some of the pathogens
reaching that node can be transported to nearby nodes.
At the outlet (labeled “node 1”), in particular, absorbing
BCs can be used to characterize river basins with coastal
regions where pathogens are not found in interepidemic
periods, while reflecting BCs are better suited for, for ex-
ample, areas where cholera is endemic, brackish and es-
tuarine water represents a reservoir for pathogens, and
seawater can move landward. To properly define BCs, we
introduce a fictitious node 0 downstream of the network
outlet (i.e., node 0 is connected with node 1 only), so that

, with N1 including node 0. Absorbing BCs! P p 11jj!N1

thus correspond to setting and , whileP p 0 P p 101 00
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Figure 3: Effects of the human-mobility parameters and D on pathogen invasion in an optimal channel network with am p m p mS I

Zipf-like population distribution. Results are shown for (A) and (B), with for all i. For each parameter combination,r p 1 r p 0.9 R p r0 0 0 0i

1,000 simulations with different stochastic realizations of population distribution were performed. The grayscale indicates the percentage
of realizations in which invasion condition (4) is met. Parameter values: for all i, , , , and for all i.l p 1 b p 0.5 b p 1 f p 0.2 m p 0.23i Bi

All rates are per day.

(purely) reflecting BCs can be obtained by imposing
and . In the same way, we can defineP p P P p 1 ! P01 10 00 10

fictitious nodes upstream of the network leaves. All the
numerical examples described in the remainder of the ar-
ticle are obtained with reflecting BCs for the leaves and
absorbing BCs for the outlet of the river network, so as
to mimic nonendemic coastal settings.

Analysis of the Invasion Conditions

Figure 2A shows how hydrological transport alone influ-
ences pathogen invasion/epidemic outbreak conditions in
an OCN with spatially homogeneous population (H pi

), water reservoir system ( , ) and pathogenh l p l W p cHi i i

mortality rate ( for all i). Specifically, the higherm p mB Bi

the values of either the hydrological transport rate l (1/l
is the average residence time of pathogens in each node)
or the hydrological downstream bias b, the higher the local
reproductive number must be for an epidemic to be trig-
gered. As a matter of fact, in the presence of absorbing
BCs at the outlet of the river system, high values of the
product lb imply that a large number of pathogens are
washed out through the terminal node of the network
(Mari et al. 2012b), de facto increasing overall pathogen
mortality—which could be compensated for by higher
contamination and/or exposure rates at the local scale (i.e.,
higher ).R 0i

As in the prototypical examples proposed in the pre-

vious section, local communities can also be interlinked
through human mobility, which is described by matrix Q.
Here we assume that the entries of Q are given by gravity
model (5), in which , where D is theg(d) p exp (!d/D)
distance parameter of the exponential kernel (Bertuzzo et
al. 2011; Mari et al. 2012b). Although this mobility model
is not expected to fully capture the complexity of real
human movement patterns, gravity-like models have been
widely applied in the epidemiological literature to describe
the impact of human mobility on the course of a suite of
human diseases, including influenza (Viboud et al. 2006;
Eggo et al. 2010), HIV infection (Thomas 1999), measles
(Xia et al. 2004; Bharti et al. 2008), and, very recently,
cholera (Bertuzzo et al. 2011; Chao et al. 2011; Tuite et
al. 2011; Mari et al. 2012a, 2012b; Rinaldo et al. 2012).
Figure 2B shows that human mobility can significantly
favor waterborne disease epidemics. In fact, it is apparent
from comparing figures 2A and 2B that epidemic out-
breaks related to human movement may occur for lower
values of the local basic reproductive number r0 (R p0i

for all i) than in the corresponding case in which humanr0

mobility is negligible ( ). Properly takingm p m p 0S I

into account host movement is thus essential to correctly
estimate the likelihood of waterborne disease epidemics.
Even in this realistic spatial setting, human mobility can
allow for the occurrence of subthreshold epidemics (van
den Driessche and Watmough 2002), that is, for the spread
of epidemics characterized by . This requires that ar ! 10
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Figure 4: Effects of the spatial distribution of pathogen mortality rates and of the local contamination rate on waterborne pathogen invasion
in an optimal channel network with spatially homogeneous (A) or Zipf-like (B) population distribution. The parameters mB(outlet) and
mB(farthest) indicate the values of the pathogen mortality rate at the network outlet and in the farthest node from it, respectively. Mortality
rates in the remaining nodes have been computed by linear interpolation according to distance from the outlet. The solid lines in A show
the bifurcation curves given by equation (2) for different values of the local contamination rate ( for all i, as labeled on curves). Thep p pi

pathogen can invade for mortality combinations lying below the curves. In B ( ), for each parameter combination, 1,000 simulationsp p 0.03
with different stochastic realizations of population distribution were performed; the grayscale indicates the percentage of realizations in
which invasion condition (4) is met. The dashed lines indicate spatially homogeneous distributions of pathogen mortality rates. Other
parameter values are as in figure 3.

large fraction of individuals move over intermediate dis-
tances (fig. 2C). In the absence of hydrological transport
(or for low values of the product lb), epidemics can be
triggered even for (fig. 2D).r K 10

All the results shown in figure 2 refer to the idealized
case of spatially homogeneous population distribution
( for all i), which obviously represents a somewhatH p hi

crude simplification of the observed spatial arrangement
of human communities. Empirical observations show, in
fact, that a much more realistic model for the size of hu-
man settlements is given by the so-called Zipf’s law (Zipf
1949; Newman 2005), according to which the size distri-
bution of human communities can be well represented by
a power-law distribution, namely, . We have!2Pr (H ) ∝ Hi i

thus repeated the analysis of model (1), sampling the size
of each local community from a power-law distribution. To
allow comparison with the results of the homogeneous case,
we imposed the normalizing constraint . For

n! H p nhiip1

each parameter setting analyzed, we extracted 1,000 inde-
pendent realizations of sample size n from the population
distribution and distributed the n population sizes randomly
in the landscape. For each replicate, human-mobility fluxes
were computed with the exponential form of gravity model
(5). Again we find that increased movement distance fa-
vors epidemic outbreaks, especially for high values of the

fraction of moving individuals (fig. 3). Quite remarkably,
coupling a spatially heterogeneous population distribution
with a gravity-like mobility pattern allows the conditions
for successful pathogen invasion to be met with a high
probability, even for low values of the local reproductive
number (e.g., for all i in fig. 3B)—whichR p r p 0.90 0i

thus turns out to be a rather poor indicator of the like-
lihood of pathogen invasion in realistic networked
landscapes.

Pathogen invasion condition (4) displays all its power
when the further effects of heterogeneities in the spatial
distributions of pathogen mortality and/or hydrological
transport rates are studied. Figure 4 shows the results for
a case in which pathogen mortality rates follow a geo-
graphical pattern (for instance, because of heterogeneous
water temperature, pH values, or salinity) in which the
network outlet and the node farthest from it are charac-
terized by the extreme values of the mortality range (either
minimum or maximum), while mortality rates in the re-
maining nodes assume intermediate values. In particular,
the pathogen mortality rate can often be assumed to be
minimal at the network outlet and maximal at the up-
stream headwaters. This condition is representative, for
instance, of the ecology of Vibrio cholerae. The causative
agent of cholera is known to be a regular guest of coastal



B
Dominant eigenvector

C D E

0.3

200 400 600 800
0

0.15

Time [days]
In

fe
ct

ed
 [%

]

0

A

Pop. distribution

C D

E

Emergence Outbreak Peak

010

-210

-410

-610

0

10

-2

10

-4

10

2

10

Figure 5: Simulation of a waterborne disease epidemic close to the bifurcation in an optimal channel network with hydrological transport and human mobility. Populations of different
human communities are distributed according to Zipf’s law (inset of A; see text). A, Time series of total infected individuals (normalized by total population); the red dots indicate the
emergence of the epidemic (C), the full outbreak (D, identified numerically as the week after which daily incidence and its first and second time derivatives exceed 5% of the respective
maximum values recorded in the simulation), and the peak (E). B, Dominant eigenvector of matrix J0, rescaled so as to portray the infected persons’ components (see app. C, available
online). C, Geography of disease emergence, evaluated from the numerical simulation as the number of cases in the week following point C in A. D, Geography of epidemic outbreak,
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evaluated as the number of cases in the week following point D in A. E, Geography of epidemic peak, evaluated as the number of cases
in the week following point E in A. In B–E, large (small) values of the depicted quantities (log10 of either eigenvector or incidence components,
normalized so as to have the norm equal to 1) are colored in red (blue; see color scale in E); note also that linear interpolation in space
has been performed in these four panels. All the parameters are spatially homogeneous. The outlet of the river network (white dot in the
inset of A) is chosen as the initial condition for the simulation. Parameter values: for all i, for all i, ,R p r p 2 l p 3.1 b p 0.8 m p0 0 i Si

, , , , for all i. All rates are per day. For this parameter setting, the dominant eigenvalue ofm p 0.2 D p 0.05 b p 1 f p 0.2 m p 0.23I Bi

matrix J0 is slightly larger than 1 ( ).y p 1.070

brackish water ecosystems, where it finds suitable condi-
tions for long-term persistence (Colwell 1996), while its
survival in inland freshwaters is quite low. Figure 4 shows
that as the pathogen mortality rate increases, so does the
local contamination rate necessary for a pathogen outbreak
to occur. However, as the bifurcation curves are not sym-
metric with respect to the bisector of the parameter plane,
different geographical patterns of pathogen mortality can
determine different pathogen invasion conditions. Spatial
heterogeneities in pathogen mortality (and transport) may
thus play an important role in determining epidemic out-
breaks, especially when regional spatial scales are con-
sidered.

The Geography of Epidemic Outbreaks

The analytical framework outlined above can be used to
characterize the geography of epidemic outbreaks in com-
plex landscapes. In fact, close to the transcritical bifur-
cation through which the disease-free equilibrium loses
stability, the components of the dominant eigenvector of
matrix J0 (corresponding to y0) indicate where the epi-
demic is expected to hit hardest at the beginning of the
epidemic (see app. C). Numerical simulations of model
(1) can be used to assess the predictive power of matrix
J0 and its eigenvalues and eigenvectors. Figures 5 and 6
show simulations of the model in the most complex setting
considered so far (realistic OCN landscape, hydrological
and human-mediated connections, heterogeneous popu-
lation distribution). The outbreak is assumed to start close
to the outlet of the river network, as is often observed in
real-world epidemics (Bertuzzo et al. 2008; Mari et al.
2012a), with 0.1% of the local population representing the
initially infected pool.

Figure 5 illustrates the case of spatially homogeneous
mortality rates of pathogens. Close to the bifurcation, the
dominant eigenvector of J0 (fig. 5B) is actually a very good
indicator of incidence at disease emergence (defined as the
time when the derivative of the time series of total infected
people turns from negative to positive after the fading of
initial conditions; see fig. 5A, 5C), at the full development
of the outbreak (i.e., when a sizable number of cases begin
to be reported; see fig. 5D legend for details), and even at
the epidemic peak (corresponding to the global maximum

of the time series for total infected individuals; fig. 5E).
The agreement between the quantity depicted in figure 5B
(log10 of the dominant eigenvector components) and those
reported in figures 5C–5E (log10 of simulated weekly in-
cidence in the network nodes) is demonstrated by the
relevant coefficients of determination: for dis-2R p 0.99E

ease emergence (fig. 5C), for epidemic out-2R p 0.99O

break (fig. 5D), and for epidemic peak (fig.2R p 0.98P

5E). Moreover, the dominant eigenvector of J0 is also a
good indicator of the whole course of the epidemic eval-
uated as cumulative cases in the two years following disease
emergence ( ; not shown in fig. 5).2R p 0.98T

The dominant eigenvector of J0 is a satisfactory indicator
not only of disease incidence but also of prevalence in each
node, evaluated as the number of cases recorded in a net-
work node (in a given time span) divided by the size of
the local community. The relevant coefficients of deter-
mination range, respectively, from for2 2R p R p 0.99E O

emergence and outbreak to and for2 2R p 0.97 R p 0.98P T

epidemic peak and the whole epidemic course. The disease
dynamics is also related to the location of the first epidemic
hotbed (namely, being more or less close to the dominant
eigenvector). Figure 5 was obtained with the first infections
occurring at the outlet of the OCN. Different choices of
initial conditions have been used in figures S2 and S3.
These show that, after a transient period due to varied
initial conditions, the dominant eigenvector of J0 still pro-
vides a good description of the geography of disease
spread.

Similar results are found for spatially heterogeneous mBs.
Figure 6 shows a simulation in which pathogen mortality
is at a minimum at the outlet and at a maximum at the
headwaters of the river network. It is evident from con-
trasting the spatial patterns reported in figures 5 and 6
that the high values of the pathogen mortality rate far
from the network outlet limit the upstream propagation
of the epidemic in its initial phases. As the outbreak un-
folds, however, the effect of infected individuals shedding
pathogens in the river system becomes more important
than the geographical distribution of pathogen mortality
rates. Nevertheless, the dominant eigenvector of J0 remains
a satisfactory indicator of disease incidence in the long
run as well ( , , ).2 2 2 2R p R p 0.95 R p 0.91 R p 0.92E O P T

It is also possible to properly characterize the geography
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of pathogen invasion and disease spread far from the bi-
furcation, when the dominant eigenvalue of J0 is much
larger than unity (and J0 may possibly have several unstable
eigenvalues), by computing the eigenvalues (and the ei-
genvectors) of matrix J* (instead of J0; see app. C for the
definition of J* and its link to J0). Numerical simulations
show that far from the bifurcation, the localization of the
first cases is well characterized by the components of the
subdominant eigenvector of matrix J*, while the subse-
quent phases of the epidemic are better captured by the
dominant eigenvector (see figs. S4 and S5). The quanti-
tative agreement between the eigenvector components and
the geography of disease incidence is very good for disease
emergence and outbreak; however, at the epidemic peak
the accordance is weaker (table S1, available online).

Discussion and Conclusions

Diekmann et al. (1990) and van den Driessche and Wat-
mough (2002) showed how to properly define a gener-
alized reproductive number for epidemiological models in
which the host population can be divided into groups
whose members are distinguishable by age, behavior, spa-
tial position, and/or stage of disease. In this work, we have
followed a similar approach to derive a novel expression
that defines space-dependent conditions for waterborne
pathogen invasion and disease outbreak. To this end, we
have introduced a generalized reproductive matrix J0 that
accounts not only for local epidemiological dynamics but
also for different mechanisms of pathogen spread along
hydrological and human-mobility networks. The domi-
nant eigenvalue y0 of J0 is the quantity controlling the
epidemic. The condition for pathogen invasion is y 1 10

and does not require that the local R0 be larger than 1.
Subthreshold epidemics (van den Driessche and Wat-
mough 2002) are therefore possible. This invasion con-
dition generalizes previous results obtained under the as-
sumption of spatially homogeneous pathogen ecology and
transport (Gatto et al. 2012). Therefore, it is particularly
suited to addressing large-scale epidemic outbreaks, that
is, epidemics involving spatial scales at which climatic and
ecological conditions cannot reasonably be considered spa-
tially homogeneous.

With respect to traditional mean-field modeling of wa-
terborne diseases, our approach is more realistic because
there are many cases in which spatial homogeneity of the
host population and of the pathogen distribution cannot
be reasonably assumed. Actually, the hypothesis of ho-
mogeneity would be tenable if there were fast spatial mix-
ing, that is, if the spatial spread of pathogens were much
faster than the local increase of pathogen concentration
and disease incidence. However, this is rarely the case. For
instance, the timescales of spatial spread and local epi-

demiology in cholera dynamics are often comparable;
therefore, realistic models for cholera epidemics must ac-
count for the spatial distribution of the host population
and for the relevant pathogen relocation mechanisms (Ber-
tuzzo et al. 2010). The importance of replacing R0 with J0

and its dominant eigenvalue y0 is also demonstrated by
the ability of our approach to describe the geography of
disease outbreak, which is well characterized by the dom-
inant eigenvector of matrix J0 (or, more generally, by the
dominant and subdominant eigenvectors of matrix J*).
This result can be easily applied to realistic landscapes
described by networks of any given complexity, ranging
from a few to thousands of nodes. It is, in fact, based on
simple matrix computations that are routinely performed
with standard scientific software.

Network structure can also influence pathogen propa-
gation along river systems (Bertuzzo et al. 2010) and, in
turn, invasion conditions. As an example, the different
topological and metric properties of Peano basins and
OCNs make pathogen invasion more likely in the former
than in the latter, all else being equal (fig. S6). In other
terms, approximating a river network with a Peano con-
struct (as done in Gatto et al. 2012), rather than with a
more realistic OCN, can lead to an overestimation of the
actual likelihood of waterborne pathogen invasion (and
epidemic outbreak).

Our method can also be used to determine conditions
for real-world outbreaks (as already attempted by Gatto
et al. [2012]) and to predict which communities will be
hit hardest during the epidemic. Such outcomes would
greatly help in the planning of prognostic sanitation ac-
tions and/or the management of emergency interventions
in the aftermath of disease outbreak. Both are crucial goals
of public-health policies, as shown by the discussion on
the recent cholera epidemic in Haiti (Cyranoski 2011; Wal-
ton and Ivers 2011). The application of the framework to
real case studies would clearly require some spatially dis-
tributed knowledge of local conditions. However, geore-
ferenced data on population distribution, hydrology, and
transportation networks are becoming increasingly avail-
able worldwide, including data for developing countries.
This has recently allowed spatially explicit models of ep-
idemic outbreaks to be set up in the very course of an
epidemic (e.g., Andrews and Basu 2011; Bertuzzo et al.
2011; Chao et al. 2011; Tuite et al. 2011; Rinaldo et al.
2012). Data on sanitation conditions (which influence
contact and contamination rates and, in turn, determine
the local value of the basic reproductive number of the
disease) are usually less common. When available, these
data can be readily incorporated into spatially explicit anal-
yses (e.g., Sasaki et al. 2008; Oguntoke et al. 2009; Osei
et al. 2010; Mari et al. 2012a). When sanitation data are
not available, the framework outlined here can still be
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useful for evaluating possible intervention scenarios in a
more qualitative way.

Our approach, however, is not exempt from limitations.
First of all, it is useful to analyze the space/time patterns
of the disease outbreak in a broad sense at the beginning
of the epidemic or during the following midterm evolu-
tion, but in general our approach cannot be reliably used
to derive long-term patterns into the distant future. This
task would in fact require determination of the attractor
of the model and analysis of its characteristics. Also, the
model should be modified to include waning immunity,
because individuals recovered from waterborne diseases
usually become susceptible again after a certain time. This
could be done by adding a compartment of “recovered”
in each node (Rinaldo et al. 2012), thus obtaining a space-
explicit SIRB-like model (i.e., an SIR model with a com-
ponent for bacterial dynamics). The theoretical analysis,
however, would not be simple, because the attractor might
not be an equilibrium. Second, our approach might be
made more realistic by including seasonality in the model
parameters (as in the space-implicit model of Righetto et
al. [2012] or the hydroclimatological model of Bertuzzo
et al. [2012]) to account for temperature and precipitation
variations that are known to influence pathogen growth
rate, water availability, and exposure and contamination
rates. The stability analysis of the disease-free equilibrium
in this space-explicit, time-varying model would be con-
siderably more complex. It would involve determination
not of the eigenvalues but of the Lyapunov exponents
associated with the equilibrium (Ferrière and Gatto 1995)
and is thus left to future work.

Despite these caveats, we think that the mathematical
approach used here to derive waterborne pathogen inva-
sion conditions in network models is quite general. It can
be usefully applied to other infectious diseases for which
an SI-like compartmental model can be devised, specifi-
cally in the presence of spatially inhomogeneous host dis-
tribution. Possible examples include directly transmitted
human diseases (i.e., pathologies that are transmitted

through airborne or fecal-oral contact), in which the in-
tertwining of mobility and social networks may play a key
role in spreading the epidemic, and vector-borne/zoonotic
diseases, in which spatial interactions of both host and
vector/carrier populations might be relevant. In general,
the mathematical framework outlined in this work can be
used to approach other (apparently unrelated) topics in
spatial and conservation ecology, such as the persistence
of populations living in fragmented landscapes (e.g., Casa-
grandi and Gatto 1999, 2002, 2006), advective environ-
ments (e.g., Speirs and Gurney 2001; Pachepsky et al.
2005), dendritic networks (Campbell Grant et al. 2007,
2010), and webs of marine protected areas (e.g., White et
al. 2010; Aiken and Navarrete 2011; Watson et al. 2011).
In all these cases, in fact, population persistence can be
established by properly accounting for the relevant spatial
interactions and studying the conditions under which the
extinction equilibrium becomes stable or unstable. Eigen-
vector analysis can assist in designing conservation efforts
that should be specifically calibrated in both time and
space.
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APPENDIX A

Derivation of Pathogen Invasion Conditions

To analyze stability, we consider the Jacobian of the linearized system evaluated at the disease-free equilibrium X0 (see
main text), which is given by

( )!mU 0 !m HQb ! 1 ! m Hbn S S 
( )0 !fU m HQb " 1 ! m HbJ p n S S .

m 1 ! mI I!1 T !1 !1 T ( )0 pW Q " pW !M ! U ! W P W LB nK K 
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Because of its block-triangular structure, the Jacobian has obviously n eigenvalues equal to !m; therefore, instability
is determined by the eigenvalues of the block matrix

!fU m HQb " (1 ! m )Hbn S S 
*J p .m 1 ! mI I!1 T !1 !1 T pW Q " pW !M ! (U ! W P W)LB nK K 

The off-diagonal entries of J* are all nonnegative, and at least one diagonal entry is negative; thus, J* is a proper
Metzler matrix (Farina and Rinaldi 2000), and its eigenvalue with the maximal real part (dominant eigenvalue) is real.
If the union of graphs associated with P and Q is strongly connected, then the graph associated with J* is also strongly
connected. Therefore, the Perron-Frobenius theorem for irreducible matrices (Gantmacher 1959) states that the dom-
inant eigenvalue is a simple real root of the characteristic polynomial. Transcritical bifurcation of the disease-free
equilibrium occurs when one eigenvalue is 0, that is, when the determinant of J* is 0 (Kuznetsov 1995). As long as
the disease-free equilibrium is stable, all the eigenvalues have negative real parts and is positive, because J* is*det (J )
a matrix of even order 2n. The disease-free equilibrium becomes unstable when switches from positive to*det (J )
negative or, equivalently, when the dominant eigenvalue becomes 0. For matrices of the kind

A B
,[ ]C D

with all blocks being square and matrix A commuting with matrix C, the following equality holds:

A B
det p det (AD ! CB)[ ]C D

(see Silvester 2000). As Un obviously commutes with any matrix, we have

m m m (1 ! m )S I I S* !1 T !1 T !1 Tdet (J ) p det f(M " (U ! W P W)L) ! pW Q HQb ! pW Q HbB n[ K K

(1 ! m )m (1 ! m )(1 ! m )I S I S!1 !1! pW HQb ! pW Hb .]
K K

The matrices L and W!1 are diagonal, and thus commuting, matrices; hence, we can rework the determinant of J* as

m m m (1 ! m )S I I S* n !1 !1 !1 T !1 !1 T !1 !1 Tdet (J ) p f det M W W ! M M W (P ! U )LW ! M M pW Q HQb ! M M pW Q HbB B B n B B B B[ Kf Kf

(1 ! m )m (1 ! m )(1 ! m )I S I S!1 !1 !1 !1! M M pW HQb ! M M pW Hb .B B B B ]Kf Kf

Introducing the basic reproductive numbers of each community, when isolated from the others, that is,

p H bi i iR p ,0i W Km fi Bi

we can define the matrix

R 0 … 00 1

p0 R … 00 !1 !12R p p M HbW .0 B_ _ 5 _ Kf 
0 0 … R 0n

Since p, H, , MB and W!1 are diagonal, and thus commuting, matrices, we can writeb
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m mS I* n !1 !1 T !1 T !1det (J ) p f det (M ) det W U ! M (P ! U )L ! (1 ! m )(1 ! m )R " pM Q HQbWB n B n I S 0 B( { [ Kf

m (1 ! m ) (1 ! m )mI S I S!1 T !1 !1 !1" pM Q HbW " pM HQbW W .B B ]} )Kf Kf

The determinant of a product of square matrices is the product of the determinants, the determinant of an inverse
matrix is the inverse of the determinant, and and are positive. Therefore, the condition of transcriticaldet (M ) det (W)B

bifurcation (i.e., switching from positive to negative) is finally given by*det (J )

m mS I!1 T !1 T !1det U ! M (P ! U )L ! (1 ! m )(1 ! m )R " pM Q HQbWn B n I S 0 B{ [ Kf

m (1 ! m ) (1 ! m )mI S I S!1 T !1 !1 !1" pM Q HbW " pM HQbW p 0.B B ]}Kf Kf

In addition to the matrix , we introduce three other matrices of reproductive numbers:!1 !1R p (p/Kf)M HbW0 B

!1 T !1pM Q HQbWBISR p ,0 Kf

!1 !1pM HQbWBSR p ,0 Kf

!1 T !1pM Q HbWBIR p ,0 Kf

corresponding, respectively, to metacommunities in which both infected and susceptible individuals are mobile, only
infecteds are mobile, and only susceptibles are mobile. If we account for the different probabilities of movement in
the metacommunity, we can define the average reproductive matrix as

ave IS I SR p (1 ! m )(1 ! m )R " m m R " m (1 ! m )R " (1 ! m )m R .0 I S 0 S I 0 I S 0 I S 0

Therefore, in more compact form the condition for pathogen invasion is

!1 T avedet (U ! M (P ! U )L ! R ) ! 0.n B n 0

Equivalently, the bifurcation condition is that the dominant eigenvalue of the matrix

ave !1 TJ p R " M (P ! U )L0 0 B n

must equal unity. Actually, the disease-free equilibrium switches from being stable to being a saddle, thus triggering
pathogen invasion, whenever the dominant eigenvalue y0 of this matrix switches from being less than 1 to being larger
than 1.
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