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Abstract1

Following the empirical evidence of a clear correlation between rainfall events2

and cholera resurgence that was observed in particular during the recent outbreak3

in Haiti, a spatially explicit model of epidemic cholera is re-examined. Specifically,4

we test a multivariate Poisson rainfall generator, with parameters varying in space5

and time, as a driver of enhanced disease transmission. The relevance of the issue6

relates to the key insight that predictive mathematical models may provide into7

the course of an ongoing cholera epidemic aiding emergency management (say, in8

allocating life-saving supplies or health care staff) or in evaluating alternative man-9

agement strategies. Our model consists of a set of dynamical equations (SIRB-like10

i.e. subdivided into the compartments of Susceptible, Infected and Recovered indi-11

viduals, and including a balance of Bacterial concentrations in the water reservoir)12

describing a connected network of human communities where the infection results13

from the exposure to excess concentrations of pathogens in the water. These, in14

turn, are driven by rainfall washout of open-air defecation sites or cesspool over-15

flows, hydrologic transport through waterways and by mobility of susceptible and16

infected individuals. We perform an a posteriori analysis (from the beginning of17

the epidemic in October 2010 until December 2011) to test the model reliability in18

predicting cholera cases and in testing control measures, involving vaccination and19

sanitation campaigns, for the ongoing epidemic. Even though predicting reliably20

the timing of the epidemic resurgence proves difficult due to rainfall inter-annual21

variability, we find that the model can reasonably quantify the total number of22

reported infection cases in the selected time-span. We then run a multi-seasonal23

prediction of the course of the epidemic until December 2015, to investigate con-24

ditions for further resurgences and endemicity of cholera in the region with a view25

to policies which may bring to the eradication of the disease in Haiti. The projec-26

tions show an endemic, seasonal pattern establishing in the region, which can be27

better forestalled by an improvement of the sanitation system only rather than by28

vaccination alone. We thus conclude that hydrologic drivers and water resources29

management prove central to prediction, emergency management and long-term30

control of epidemic cholera.31
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1. Introduction32

The recent, still ongoing cholera outbreak that has struck Haiti has brought33

to broad public attention the magnitude of the loss of human lives and of34

the social and economic disruption caused, even to date, by epidemics of the35

disease. The global relevance of the problem and the need for a preventive36

assessment and control of cholera spreading is manifest also in view of other37

recent or ongoing outbreaks in the Congo river basin, Cuba, Sierra Leon and38

the Sahel region (Luque Fernandez et al., 2009; Kelvin, 2011; Nkoko et al.,39

2011; Al-Tawfiq and Memish, 2012).40

While the role of climatic conditions, and rainfall in particular, on pat-41

terns of waterborne infections have long been studied especially in empiri-42

cal frameworks (Pascual et al., 2000; Lipp et al., 2002; Altizer et al., 2006;43

de Magny et al., 2008; Emch et al., 2008; Koelle, 2009), hydrologically-driven,44

spatially explicit mathematical models of cholera epidemics have only re-45

cently been developed (Bertuzzo et al., 2008, 2010). They have been applied46

to study the course of the Haitian epidemic, starting from the very first47

months after its insurgence in late 2010 (Bertuzzo et al., 2011; Tuite et al.,48

2011; Chao et al., 2011), and following disease resurgence occurred in May49

2011 in connection with unusually intense tropical rains (Rinaldo et al., 2012).50

Even though concerns for correct surveillance, monitoring and intervention51

planning have been on the rise in international institutions debate, regarding52

cholera in particular (e.g. WHO, 2011), none of these models have been uti-53

lized to date to test their effectiveness as predictive and control tools. Such54

models could be in principle applied, for instance, to deploy medical staff and55

life-saving supplies through projections of the patterns of cholera infections,56

and to implement pro-active rather than reactive policies as commonplace in57

epidemiological control strategies.58

The Haitian epidemic represents more than just another test case. In fact,59

cholera had never been reported in Haiti before 2010 and therefore it is likely60

that the population had no significant prior exposure or acquired immunity to61

the disease, suggesting that the entire population was initially susceptible to62

infection. Moreover, once a cholera epidemic starts, infected patients excrete63

huge numbers of Vibrio cholerae bacteria which spread either through water64

pathways (via active and passive dispersal; Bertuzzo et al., 2008, 2010; Chao65

et al., 2011; Righetto et al., 2011; Mari et al., 2012a) or through human66

mobility networks involving both susceptibles and infected individuals (Tuite67

et al., 2011; Chao et al., 2011; Mari et al., 2012b). Thus the poor sanitation68
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conditions experienced especially after the disastrous 2010 earthquake that69

struck the island, facilitated both types of spread and fostered the abundance70

of microorganisms in the water system, thus rendering the Haitian outbreak71

exemplary (Rinaldo et al., 2012).72

The Haiti epidemic also provided direct and compelling evidence relating73

cholera resurgence to environmental drivers, specifically to rainfall patterns.74

Little insight could be gained, in fact, from past empirical studies correlat-75

ing rainfall to cholera cases because most, if not all, previous studies were76

carried out in contexts where cholera is endemic (see e.g. Lipp et al., 2002;77

Emch et al., 2008). In fact, reported correlations between rainfall events and78

resurgences – both in their sign and time lag – have been rather disparate79

(Ruiz-Moreno et al., 2007; Akanda et al., 2009; Luque Fernandez et al., 2009;80

Hashizume et al., 2010). This reflects the range of potential mechanisms81

through which rainfall may affect increased exposure to risk of infections82

(e.g. crowding effects due to flooding; raw sewage contamination of water83

sources; increased availability of compounds boosting V. cholerae survival84

or toxins diminishing it; increased contamination due to over-exploitation of85

the water reservoirs, to name a few). Rinaldo et al. (2012) have shown how86

such correlation could be implemented in epidemiological models by forcing87

the contamination of the local water reservoir through rainfall-runoff transfer88

of V. cholerae from waste- to drinking-water. In the spatially explicit frame-89

work presented in Rinaldo et al. (2012) – which includes a family of models90

encompassing different epidemiological and hydrological assumptions – Haiti91

is depicted as a network of human communities (the nodes) connected by92

both hydrology and human mobility (the edges). Each community is repre-93

sented by a system of Ordinary Differential Equations (ODE), in which the94

population is divided into Susceptible (S), Infected (I) and Recovered (R)95

individuals. The evolution of the concentration of V. cholerae in the envi-96

ronmental water reservoir is also considered. Here we further extend that97

approach, generating scenarios of precipitation to perform epidemiological98

predictions and to evaluate a priori the impact of intervention policies.99

Unlike cholera, rainfall predictions are an established endeavour (Rodriguez-100

Iturbe et al., 1986; Cho et al., 1987) and rainfall stochastic generators have101

recently been widely considered for studying precipitation patterns (Laio102

et al., 2001), also in the light of the inclusion of a description of superstatis-103

tics of interannual variability (Porporato et al., 2006). Here we use a Poisson104

generator that takes into account both the inter-annual and the spatial vari-105

abilities of rainfall intensity in order to preserve space/time correlations while106
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generating rainfall at local scale. The identification of statistically equivalent107

spatio-temporal aggregates is carried out using suitable clustering techniques.108

This approach allows to generate a large number of precipitation scenarios,109

naturally preserving the statistical properties of the rainfall dataset.110

We make use of these synthetic rainfall fields to force our epidemiological111

model and to obtain, as a result, estimates of the strength of the disease112

resurgence. It should be noted that our attempt differs substantially from,113

say, classical hydrological predictions, as several epidemiological and social114

processes are acting simultaneously on top of the rainfall dynamics we try to115

reproduce. As the magnitude of many of these processes is often uncertain116

(sometimes being even difficult to identify correctly the whole set of inter-117

vening processes), epidemiological predictions are particularly challenging.118

Here, we perform two types of analysis: i) an ex post evaluation, in which119

calibration, validation and prediction all belong to the past course of the out-120

break ; ii) multi-seasonal projections, from the current state of the epidemic121

to the next few years in which cholera is speculated to become endemic in122

the region (Mukandavire et al., 2013). The first analysis simulates real-time123

conditions in which short-term (a few month) scenarios of cholera resurgence124

are used to evaluate the performance of the model as a predictive and con-125

trol tool during the very course of an epidemic. We then analyze the effect126

of different, alternative scenarios of intervention (sanitation and vaccination,127

possibly differing in timing and in spatial distribution) on the evolution of128

the outbreak to mimic model-guided intervention policies. We study whether129

the inference of the most effective policy – say, that aiming at the maximum130

reduction of the total number of reported cases in a given time frame – may131

still hold in the face of the actual development of disease resurgence. In the132

long-term case, the study of correlations of cyclic resurgence of the disease133

with the seasonal rainfall cycle matters, as the particular initial conditions134

that have favored the appearance of cholera in Haiti – i.e. a high number135

of susceptibles – will no longer apply in the future. The epidemic, in fact,136

can be expected to revamp in particular conditions of stress (e.g. extreme137

rainfall events) with an intensity that depends on the rate at which recovered138

individuals lose their temporary acquired immunity to the disease. This kind139

of analysis allows also to estimate the amount of sanitation or the extent of a140

vaccination campaign aimed at eradicating the disease from the region, and141

is deeply rooted in hydrologic sciences.142

The paper is organized as follows. In Section 2 we detail the epidemiolog-143

ical, spatially explicit models of cholera spreading used in this work and in144
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section 3 we define the procedure to obtain the rainfall generation model. In145

Section 4 we present and discuss the results relative to both predictions and146

intervention efficacy evaluation, for both short-term and long-term scenarios.147

A set of conclusions closes then the paper.148

2. Spatially explicit epidemiological models for the Haitian epi-149

demic150

We make use here of some of the models presented in Rinaldo et al.151

(2012), who have constructed a spatially explicit framework for the descrip-152

tion of the Haitian epidemic and whose approach evolved from the first Haiti153

application by Bertuzzo et al. (2011). In particular, we restrict here our anal-154

ysis to the two models which emerged as best performing under absorbing155

or diffusive boundary conditions (Rinaldo et al., 2012, see Fig. S8 therein).156

They consider n communities (i = 1, n) spatially distributed within a given157

domain that embeds the hydrologic and the human mobility networks (Fig.158

1). Let Si(t), Ii(t) and Ri(t) be the local abundances of susceptible, infected159

and recovered individuals in each node i of the river network at time t, and160

let Bi(t) be the concentration of V. cholerae in the water reservoir at site i.161

2.1. Basic model and dynamics162

Epidemiological dynamics, pathogen transport and human mobility can163

be described by the following set of coupled differential equations, which164

includes most of the mechanisms common to the models and represents the165

simplest of the two models here considered:166

dSi

dt
= µ(Hi − Si)−Fi(t)Si + ρRi

dIi
dt

= Fi(t)Si − (γ + µ+ δ)Ii

dRi

dt
= γIi − (ρ+ µ)Ri

dBi

dt
= −µBBi − l

(
Bi −

n∑
j=1

Pji
Wj

Wi

Bj

)
+

+
p

Wi

[1 + ϕJi(t)]Gi(t) . (1)
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The host population is assumed to be at a demographic equilibrium, where µ167

is the human mortality rate, Hi is the population size of the local community168

and µHi a constant recruitment. The force of infection Fi(t), which repre-169

sents the rate at which susceptible individuals become infected via contact170

with contaminated water, is expressed as:171

Fi(t) = β

[
(1−m)

Bi

K +Bi

+m

n∑
j=1

Qij
Bj

K +Bj

]
.

The parameter β represents the rate of exposure to contaminated water, and172

Bi/(K + Bi) is the probability of becoming infected due to the exposure to173

a concentration Bi of V. cholerae, K being the half-saturation constant (Ca-174

passo and Paveri-Fontana, 1979; Codeço, 2001). The parameterm represents175

the fraction of individuals that travel outside their node. Because of human176

mobility, infection in a given node depends on the local concentration Bi177

for a fraction 1 − m of the susceptible hosts and on the concentration of178

the destination community Bj for the remaining fraction m. The concentra-179

tions Bj are weighted according to the probability Qij that an individual (a180

susceptible one, in this case) living in node i would reach j as a destination.181

Choosing a gravity-like pattern to describe human mobility (Erlander and182

Stewart, 1990), one can define connection probability as:183

Qij =
Hje

−dij/D∑n
k ̸=iHke−dik/D

,

where the attractiveness factor of node j depends on its abundance, while the184

deterrence factor is assumed to be dependent on distance dij and represented185

by an exponential kernel (with shape factor D). Infected individuals recover186

at a rate γ, or die for natural or cholera-induced mortality at a rate µ or δ,187

respectively. Recovered individuals Ri(t) lose their immunity and return to188

the compartment of susceptibles at a rate ρ or die for natural mortality at a189

rate µ. Bacterial shedding in node i – quantified by the rate p/Wi, where p190

is the per-capita contamination rate of infectives and Wi is the volume of the191

local water reservoir (here assumed to be proportional to the population size,192

i.e. Wi = cHi as in Rinaldo et al., 2012) – is regulated by the total infective193

pool Gi(t) which is defined as:194

Gi(t) = (1−m)Ii +m
n∑

j=1

QjiIj .
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Similarly to the the force of infection, the total infective pool accounts for195

human mobility and in particular for infected people who travel from com-196

munity j to the focal community i.197

In order to express the worsening of sanitation conditions caused by198

rainfall-induced runoff, which causes additional loads of pathogens to be cast199

into the water reservoir, the contamination rate p is increased by rainfall200

intensity Ji(t) via a coefficient ϕ. Bacteria are also supposed to be endowed201

with an environmental mortality µB and to be transported along the hydro-202

logic network at rate l. We assume that pathogens can travel from node i to j203

with probability Pij. In this case we assume Pij = 1 if j is a downstream near-204

est neighbor of node i and zero otherwise. We consider partially reflecting205

boundaries at the outlets of all the river systems to simulate specific coastal206

hydrologic settings, such as upstream transport (i.e. diffusion prevailing on207

advection in low flow conditions) or more favorable local environmental con-208

ditions (i.e. a higher salinity) causing higher viability of bacterial populations209

close to the coast. We fix the fraction of reflected particles at the outlets at210

0.5, which corresponds to diffusive conditions.211

Epidemiological records usually refer to reported disease incidence (i.e.212

number of reported cases per unit time) not to disease prevalence (current213

number of infected individuals). In order to derive disease incidence from the214

model one simply needs to i) compute the cumulative reported cases Ci(t)215

by solving216

dCi

dt
= σFi(t)Si ,

where σ represents the fraction of total infected people that show severe217

symptoms and are thus likely reported (here σ = 0.2, PAHO, 2010, see the218

Appendix for details) and ii) differentiate Ci(t) in time.219

As in previous applications (Bertuzzo et al., 2011; Rinaldo et al., 2012),220

we assume that before the epidemic the whole population is susceptible, i.e.221

Si(0) = Hi because of the lack of any pre-existing immunity (Enserink, 2010;222

Walton and Ivers, 2011; Sack, 2011; Piarroux et al., 2011). The model is also223

initialized by some infected individuals being placed in the locations of the224

first reported cases (see again Piarroux et al., 2011).225

2.2. Hyperinfectivity226

The second model we test here accounts for a hyperinfective state of227

V. cholerae, caused by passage through human intestine (Merrell and al.,228

2002; Alam and al., 2005), which has already been used in modeling exercises229
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(Hartley et al., 2006), also in the context of the Haiti epidemic (Andrews and230

Basu, 2011; Chao et al., 2011). Thus, an equation describing the dynamics231

of the hyperinfective stage of V. cholerae has to be added to model 1, so that232

such model can be modified as follows:233

dSi

dt
= µ(Hi − Si)−FHI

i (t)Si + ρRi

dIi
dt

= FHI
i (t)Si − (γ + µ+ δ)Ii

dRi

dt
= γIi − (ρ+ µ)Ri

dBi

dt
= −ξBi − l

(
Bi −

n∑
j=1

Pji
Wj

Wi

Bj

)
+

p

Wi

[1 + ϕJi(t)]Gi(t)

dBi

dt
= ξBi − µBBi − l

(
Bi −

n∑
j=1

Pji
Wj

Wi

Bj

)
, (2)

where Bi is the concentration of hyperinfective pathogens in the water reser-234

voir and ξ is the rate at which V. cholerae lose hyperinfectivity and convert235

to normal state (here we impose 1/ξ = 1 day; Hartley et al., 2006). The total236

contact rate FHI
i (t) has to take into account the joint effect of hyperinfective237

and regular V. cholerae, i.e.:238

FHI
i (t) = β

[
(1−m)

(
Bi

K +Bi

+
Bi

KHI + Bi

)
+

+ m
n∑

j=1

Qij

(
Bj

K +Bj

+
Bj

KHI + Bj

)]
,

whereKHI is the half-saturation constant for hyperinfective bacteria (K/KHI ≈239

50; Hartley et al., 2006). Analogously to model 1, reported cases for model240

2 can be computed by solving dCi/dt = σFHI
i (t)Si and differentiating the241

cumulative reported cases with respect to time.242

2.3. Modeling of interventions243

We detail here how actions of public health management may be eval-244

uated by (and integrated in) our model. One of the possible key uses of245
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epidemiological, large-scale predictions, in fact, is the evaluation of the ef-246

fectiveness of different intervention strategies. In the case of a waterborne247

disease such as cholera, two major categories of intervention can be taken248

into account: sanitation of the water supply system and vaccination. In the249

former case, several active (e.g. chlorination tablets, direct clean water sup-250

ply) or pro-active (education campaigns) actions can be taken to increase the251

sanitation level in a country. The application of these measures decreases the252

probability of ingesting contaminated water and/or the probability that crit-253

ical concentrations of pathogens may reach the water reservoir. They can be254

expressed as a decrease, respectively, of the contact rate β(t) and/or of the255

contamination rate p(t), which can also be spatially-distributed in order to256

represent localized policies. We model, instead, vaccinations as an outgoing257

flux of individuals being immunized from the disease from the susceptible258

compartment. Two doses, administered separately with a 10-14 days delay259

between the two, are required for current standard cholera vaccination, in260

which immunization builds up 7 days after the second dose (Jertborn et al.,261

1993). Standard cholera vaccines only grant temporary immunization, so262

that immunity loss has to be taken into account in the evaluation of long-263

term intervention scenarios. Field trials (Clemens, 1990; Girard et al., 2006)264

suggest parameter values of immunity loss for the only vaccine acknowledged265

by WHO. In particular, we model here the effects of vaccines as observed266

by Clemens (1990) in Bangladesh. The vaccine grants 85% immunization267

in the first 6 months, 60% in the following 18 months and 20% in the third268

and last year of (partial) immunization . This means that vaccinated peo-269

ple still have a finite probability of contracting the disease, and they may270

become fully susceptible again once their immunity is lost, after three years.271

We thus introduce four new state variables in our model: Sv
i which quantifies272

the abundance of individual vaccinated whose immunity has not built up yet,273

and Vi,I/II/III(t) which represent the abundance of individuals who have been274

immunized less than 6, between 6 and 24, and more than 24 months before275

time t, respectively. The fluxes among these compartments are illustrated in276

Fig. 1, panel A. We detail here the implementation of vaccinations in model277

2:278
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dSi

dt
= µ(Hi − Si)−FHI

i (t)Si + ρRi − νi(t)
Si

Hi − Ci −
∫ tv
t
νi(t)dt

+ ρV,IIIVi,III

dSv
i

dt
= −µSv

i −FHI
i (t)Sv

i + νi(t)
Si

Hi − Ci −
∫ tv
t
νi(t)dt

− ωSv
i

dVi,I
dt

= ωSv
i − (1− ψV,I)FHI

i (t)Vi,I − (ρV,I + µ)Vi,I

dVi,II
dt

= ρV,IVi,I − (1− ψV,II)FHI
i (t)Vi,II − (ρV,II + µ)Vi,II

dVi,III
dt

= ρV,IIVi,II − (1− ψV,III)FHI
i (t)Vi,III − (ρV,III + µ)Vi,III

dIi
dt

= FHI
i (t) [Si + Sv

i + (1−ψV,I)Vi,I + (1−ψV,II)Vi,II + (1−ψV,III)Vi,III ]−(γ+µ+δ)Ii

dRi

dt
= γIi − (ρ+ µ)Ri

dBi

dt
= −ξBi − l

(
Bi −

n∑
j=1

Pji
Wj

Wi

Bj

)
+

p

Wi

[1 + ϕJi(t)]Gi(t)

dBi

dt
= ξBi − µBBi − l

(
Bi −

n∑
j=1

Pji
Wj

Wi

Bj

)
(3)

Susceptibles are recruited according to the vaccination rate νi(t), which279

represents the number of doses administered per day, possibly varying in280

time/space. It should be noted that the denominator Hi − Ci −
∫ tv
t
νi(t)dt281

is the pool of potential candidates for vaccination. Because most infected282

individuals do not develop acute symptoms, only people whose infection has283

been reported (Ci), or to whom the vaccine has already been administered284

(
∫ tv
t
νi(t)dt), can be safely excluded from the campaign. Therefore the prob-285

ability of giving vaccine to people who are actually susceptible to cholera286

is represented by the fraction Si/
[
Hi − Ci −

∫ t

tv
νi(t)dt

]
. Vaccinated indi-287

viduals Sv
i gain immunity to the disease at rate ω (here ω = 0.5 days−1).288

According to the observations made by Clemens (1990), loss of immunity of289

vaccinated individuals progresses at rates 1/ρV,I = 1/2 year, 1/ρV,II = 1.5290

years and 1/ρV,III = 1 year. During these periods, these individuals develop a291

partial immunity, which means that they can contract the disease with prob-292

ability (1-ψV,i), with ψV,I = 0.85, ψV,II = 0.6 and ψV,III = 0.2. Notice that293
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for this model the cumulative reported cases can be computed integrating294

dCi/dt = σFHI
i (t)(Si+Sv

i +(1−ψV,I)Vi,I +(1−ψV,II)Vi,II +(1−ψV,III)Vi,III).295

2.4. Parameter calibration and model selection296

While several parameters are estimated from the literature (see Table 1297

for the numerical values and for the relevant references),the remaining five298

are obtained through calibration. Introducing the dimensionless bacterial299

concentrations B∗ = B/K and B∗/KHI it is possible to group three parame-300

ters of model 1 and 2 in a single ratio θ = p/(cK), whose value is determined301

through calibration. The other four are the hydrologic transport rate l, the302

fraction of moving people m, the deterrence distance D and the coefficient303

ϕ. We calibrate the models using a Markov Chain Monte Carlo sampling304

algorithm (ter Braak and Vrugt, 2008, see the Appendix for details). The305

goodness of each single simulation is computed as the residual sum of squares306

(RSS) between weekly reported cholera cases in each of the ten Haitian de-307

partments as recorded in the epidemiological dataset and simulated by the308

model being tested. The numerical values of the best-fit parameters of both309

models are reported in Table 2. Model selection is then carried out using the310

Akaike Information Criterion (AIC, Akaike, 1974, see the Appendix).311

We perform here a first test calibration run, from the start of the epidemic312

(23/10/2010) until 28/05/2011, for both the presented models. The results313

of this run, expressed with the RSS and AIC values, are shown in Table 3.314

We use this fitting to perform an ex-post evaluation of the performance of315

model predictions, in particular regarding the resurgence of the disease of316

the summer/autumn of 2011 (so until 31/12/2011).317

In this first run, none of the models emerges as performing significantly318

better (as the Akaike difference must be > 4 for significance, Akaike, 1974;319

Burnham and Anderson, 2002; Corani and Gatto, 2007). We choose model 2320

as best ranked in the first run and as the model including the higher level321

of detail and realism and we perform a second, long-term calibration run322

only for this model until 14/01/2012 and project cholera patterns up to De-323

cember 2015. In this case, we also tune the parameters which play a major324

role in the long-term dynamics of endemic periodic resurgence: the loss of325

immunity rate, ρ, and the fraction of symptomatic infected individuals, σ.326

These two parameters control the rate at which the susceptible pool is emp-327

tied (σ) and replenished (ρ). At the beginning of an epidemic the dynamics328

is not constrained by the pool of susceptible which is, particularly in the329

case of Haiti, very large. Therefore these two parameters have been safely330
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assumed from literature values in the short-term calibration run. In Fig.331

2 we depict the temporal sequence of calibration runs and the subsequent332

validation/prediction windows for each of them.333

3. Rainfall generation patterns334

In the hydrological literature, stochastic rainfall generation is often mod-335

eled as a marked Poisson process, where rainfall events are treated as a series336

of point events in continuous time where the associated mark represents the337

rainfall depth of the event (see e.g. Rodriguez-Iturbe and Porporato, 2004;338

Laio et al., 2001). This implies that no temporal evolution of a single event339

is taken into account, such that the amount of rainfall falling at a given time340

scale – which is usually assumed as daily, as in this paper – is modeled by341

a point process. The arrival of rainfall events is modeled as a Poisson pro-342

cess with rate λ. Therefore the inter-arrival time τ between rainfall events is343

exponentially distributed with mean ∼ 1/λ, i.e.:344

p(τ) = λe−λτ for τ ≥ 0. (4)

The depth of each rainfall event is then sampled, again, from an exponential345

distribution, described by the following probability density function, in which346

α is the mean rainfall depth of all events:347

p(h) =
1

α
e−h/α forh ≥ 0. (5)

This model has been shown to perform well in describing daily rainfall348

statistics (see e.g. Benjamin and Cornell, 1970) but it is better suited to ap-349

plications to confined climatic regions, showing similar precipitation regimes.350

In Fig. 3 one can appreciate the peculiarity of the Haitian rainfall patterns in351

both space (panel A; mean daily rainfall for the period 1998-2012) and time352

(panel B: average yearly pattern for whole Haiti). Daily satellite rainfall es-353

timates have been obtained from data collected by the NASA-JAXA’s Trop-354

ical Rainfall Measuring Mission (TRMM 3B42 precipitation estimates, see355

http://trmm.gsfc.nasa.gov/ for details) through the IRI/LDEO data por-356

tal set up by Columbia University (http://iridl.ldeo.columbia.edu/).357

Rainfall data are spatially distributed with the resolution of 0.25 degrees of358

latitude and longitude and are then downscaled at the node level with nearest359

neighbor interpolation.360
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In order to derive climatically homogeneous regions (and seasons) from361

data, we calculate the mean depth of observed rainfall occurrences (which362

expresses α) and their mean interarrival time (1/λ, in days) at the node scale,363

for each month. We then perform a cluster analysis on those parameters,364

taking also into account the coordinates of each node to preserve spatial365

continuity of each cluster. Using the k-means clustering technique (Xu and366

Wunsch, 2005), we identify 20 clusters – over 12 months times 301 spatial367

nodes – of statistically similar monthly rainfall regimes that are contiguous in368

space. k-means clustering uses an iterative procedure which is initialized by369

fixing k means in the space of data points. The algorithm then progressively370

changes their position until the distance among such centroids and each point371

of the cluster is minimized for all clusters (so that the contiguity of the372

points of each cluster is highest). As the procedure depends on the initial373

position of the centroids, it has been repeated 10, 000 times choosing the374

partition which gives the minimum distance among points belonging to the375

same cluster. In the case at hand, each data point of the 4-dimensional376

clustering space is characterized by the normalized values of: a) the monthly377

depth and interarrival time of rainfall events, averaged over the whole period378

of observation (1998-2012), in each node; b) the spatial coordinates of the379

node. In order to limit the number of clusters in the spatial subset of the data380

space, we weigh coordinate values less than rainfall statistics (in this case,381

the weight is equal to 0.5). Fig. 4 shows the performance of the clusterization382

with respect to rainfall statistics (panel A) and to the spatial distribution of383

clusters (panel B).384

To generate the widest range of plausible scenarios of rainfall events in385

the Haiti territory, we also include inter-annual variability as described in386

Porporato et al. (2006), who observed that different yearly patterns may387

not be merely described by different realizations of the same stochastic pro-388

cess, but by explicit changes in the statistical properties of the process – the389

parameters α and λ. This procedure is carried out by assuming that the pa-390

rameters of the exponential distributions of rainfall depths and inter-arrival391

times change from year to year and are gamma-distributed random variables392

(Porporato et al., 2006):393

gx(x) =
(bx)

ax

Γ(ax)
x(ax−1)e−bxx (6)

where x is alternatively α or λ. The parameters ax and bx of the distribu-394

tions of each cluster have been evaluated by fitting the empirical distribution395
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extracted from the rainfall dataset using the moments method. Finally, to396

generate daily rainfall events we use the following procedure:397

• for each year of generation and each cluster we extract α’s and λ’s from398

their respective Gamma distribution;399

• for each cluster, we generate rainfall events using the corresponding α400

and λ, assigning the generated daily depth to each node belonging to401

the respective cluster.402

The rainfall depth h is then used to derive the rainfall intensity time series403

Ji(t) which forces the epidemiological model.404

4. Results and Discussion405

4.1. Rainfall scenarios406

We first analyse the performance of the stochastic model for rainfall gen-407

eration. Fig. 5 shows the the cumulative probability distributions and the408

probability density functions of the whole ensemble of inter-arrival times and409

of rainfall depths for the observed rainfall and for the multivariate Poisson410

generator, for both the global and the local scale. As in Porporato et al.411

(2006), the so-called “super-statistics” generator shows a good agreement412

with data. Moreover, we run an exercise to illustrate the improvements this413

model produces with respect to the 0-degree model used in Rinaldo et al.414

(2012), where a simple reshuffling of the 13 observed years of rainfall events415

was used to perform model projections. Such method is indeed practical416

and simple, but it falls short of generating events of intensity outside the417

observed realizations. Here we simulate a large number of yearly rainfall418

scenarios (10,000) with both models, taking as reference data-set the period419

1998-2011, and we compare the results to the observed rainfall events of 2012.420

In Fig. 6 we show that, in many cases, observed rainfall events fall outside421

the 5−95th percentile boundaries of the 0-degree model, differently from our422

generator. It should be noted that this is true for both models for a few423

major events, probably corresponding to tropical storms and hurricanes (e.g.424

the event at day≃ 300 is hurricane Sandy).425

4.2. Short-term projections426

From an epidemiological perspective, we intend to test whether our mod-427

els can be used as an effective tool for the prediction and the control of the428

15



course of an ongoing epidemic – in this case, the Haitian one. To this aim,429

we focus on the short-term evolution of the disease, in order to simulate con-430

ditions of epidemiological emergency. For this analysis, we use as calibration431

time horizon the interval between the beginning of the epidemic (October432

2010) and the end of May 2011, just before the June 2011 resurgence driven433

by the Haitian rainy season. We emphasize the fact that a limited dataset is434

specifically used to calibrate our models to represent a worst-case scenario,435

i.e. a situation in which decision makers would face limited information and436

likely miss key drivers. Notice in particular that the calibration window ends437

right before the spring rainy season and therefore it contains few indications438

on the effect of rainfall on the epidemic dynamics (i.e. on the magnitude439

of parameter ϕ). This limited information refers to the autumn rainfalls of440

2010 and is possibly clouded by the initial boost of the epidemic. All these441

elements make this prediction exercise particularly challenging.442

We use rainfall scenarios generated by the multi-variate Poisson model443

presented in the previous section to force model 2 – which shows a slightly444

better AIC value – and simulate the course of the epidemic in the following445

months, until the end of 2011. In all panels of Fig. 7 we show the trajectory446

of the models when forced by the rainfall pattern that was actually observed447

in Haiti and the range of possible epidemiological scenarios emerging from448

the generated rainfall patterns.449

The different timing of the epidemic peak – observed in June 2011 from450

the data and at the end of October in the model simulations – can be ex-451

plained by the peculiar rainfall pattern that was observed in Haiti in 2011,452

with a highly concentrated event of very rare intensity at the beginning of453

June followed by an abnormally wet summer. We deem that the difficulty454

in generating such particular rainfall pattern lies in the limitedness of the455

dataset (15 years) available to fit the rainfall stochastic model. Simulations456

performed with the actually observed rainfall pattern display, in fact, a far457

better synchronization with reported cases (Fig.7).458

An important result of our prediction effort concerns the ability of the459

model to grasp reasonably well the order of magnitude of the new outbreak.460

The cumulated reported cases between May-December 2011 amount to ap-461

proximately 188, 000, while the model forced with generated rainfall events462

predicts in the median 230, 000 cases. One can appreciate this more clearly463

when looking at the course of cumulated cases, which we show in Fig. 8.464

This result is reassuring if one aims at using mathematical models as pre-465

diction and control tools. Knowing the order of magnitude of the upcoming466
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spreading of the disease in space and time, public health organization can467

set the scale of the reaction needed to act in time and possibly mitigate the468

resurgence of the epidemic.469

4.3. Evaluation of intervention strategies470

Mathematical models like the ones presented here offer a invaluable tool471

to evaluate a priori the effectiveness of policy scenarios on the course of472

the epidemic. We present (Fig. 9) an assessment of different intervention473

scenarios in the same time span (01/06/2011-31/12/2011), using the best474

fit parameters of the best performing model (model 2, Table 3). This time475

interval, for which we know that the model is able to reproduce the expected476

number of cases, allows us to make quantitative considerations on the effects477

of possible control actions. Panels A and C of Fig. 9 show the effect of478

a reduction in the contact rate β, which is supposed to decrease linearly,479

and uniformly in the territory of Haiti, in the span of one month since the480

start of the campaign. Given our prediction of resurgence peaking in late481

October and starting in September, we set the beginning of the campaign482

either at 01/06/2011 or a month later, at 01/07/2011, depending on the483

rapidity of decision and intervention deployment. In panels B and D the484

effect of a spatially uniform vaccination of a fraction of the Haitian population485

is displayed, under the same assumptions at the start of the campaign (i.e.486

June or July 2011) and in the same time span of intervention (1 month). A487

constant vaccination effort is assumed. As the model is not able to predict488

accurately the temporal evolution of the cases but rather the total cumulative489

cases at the end of the year, one may wonder how reliable the predicted effects490

of the interventions are. To assess their accuracy, in Fig. 9 we compare the491

predicted effects of the interventions (red lines) with those obtained applying492

the same interventions to the model when calibrated using all the available493

epidemiological and rainfall data until the end of 2011 (blue lines). This494

benchmark calibration run provides the most reliable estimates of the effect495

of such interventions. Results show that the difference between prediction496

and benchmark in the estimates of reduction of cases remains below 10%497

for any type and magnitude of the interventions, provided that intervention498

campaigns start promptly (01/06/2011). It should be noted that, if these are499

delayed to one month later, the uncertainty increases, so that such estimates500

differ of an average value of around 15%.501

The application of the two types of interventions (which could also be502

applied simultaneously, of course) in the field presents indeed different kinds503
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of difficulties. Therefore, the effort needed to implement a given policy can be504

different and not easily estimated. Under such premises, we can still compare505

the effectiveness of both sanitation and vaccination at reducing the impact506

of cholera resurgence on the Haiti population. In panels C and D of Fig.507

9 we show the number of new cholera cases between 28/05 and 31/12/2011508

normalized with respect to the “no intervention” scenario, as a function of509

the reduction of the contact rate (C) and of the number of vaccines deployed510

(D). We choose here a maximum effort of 8 million vaccinations in the latter511

case (corresponding to the entire Haitian population), and of 50% sanitation512

rate in the former. Note that such a rate implies that the probability of513

coming into contact with contaminated water is reduced by a half.514

Timely intervention represents an essential feature of any public health515

policy, be it focused on sanitation or on vaccination. The average number516

of “avoided infections” (the difference between the sum of cases simulated517

from 28/05/2011 to 31/12/2011 in absence of interventions and the average518

number of cases when measures are taken) in fact amounts to around 230, 000519

(vaccination) and 185, 000 (sanitation) when policies start being applied in520

June 2011, and to 187, 000 (vaccination) and 155, 000 (sanitation) for actions521

starting in July 2011. This means a rough average of 85% of total cases522

avoided should interventions have started in June, while figures drop to 70%523

had campaigns begun in July.524

4.4. Multi-season projections525

Another use of the tools implemented deals with multi-seasonal projec-526

tions of epidemiological predictions, which allows to estimate possible fu-527

ture resurgences of the disease should it become endemic (Tappero and528

Tauxe, 2011). Fig. 10 shows a projection of future outbreaks spanning until529

31/12/2015. We perform several (1, 000) simulation runs, generating rainfall530

events and sampling from the posterior distribution of our fitting parameter531

set (i.e. from the last 1, 000 parameter combinations explored by the fitting532

algorithm), which now includes also the rate of immunity loss ρ and the533

asymptomatic ratio σ. Our predictions show a first resurgence of the disease534

in 2012 and then a settling on an endemic, seasonal pattern characterized535

by roughly constant annual attack rate (Fig. 10). The comparison with536

the actual observed cases shows that, although within the 5-95th percentile537

range, the model generally overestimates the intensity of the new prevalence538

peaks. In this respect, an increased awareness regarding common sanitiz-539

ing practices and the risk connected to the ingestion of contaminated water540
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could have led to lower contact/contamination rates and, thus, to a lower541

intensity of cholera resurgence. Another factor that can concur to this slight542

overestimation is the uncertainty related to the calibration of the duration543

of the immunity of Recovered individuals 1/ρ and the ratio of asymptomatic544

infections σ. In fact, the long-term calibration run converges to a duration545

of the immunity of 1 − 2 years (5 − 95th percentile range of the parameter546

posterior distribution), which causes a fast replenishment of the susceptible547

pool. The asymptomatic ratio σ ranges between 0.2 and 0.25 in the 5− 95th548

percentile range of the parameter posterior distribution. One can observe –549

see panel B – how the intensity of new outbreaks is set by the initial size550

of the susceptible pool and that a threshold size is needed for the outbreak551

to start (which reminds the concept of generalized reproduction numbers552

for spatially explicit models; see Gatto et al., 2012, 2013). Overall, in an553

epidemic management context, the results of this long-term prediction are554

deemed particularly valuable.555

The possibility of cholera becoming endemic in Haiti and the possible556

strategies to eradicate it have been the subject of an intense debate (see557

e.g. Mukandavire et al., 2013). If one considers vaccination more easily de-558

ployed in the field in times of emergency especially when living conditions559

are precarious and the sanitation system is nearly absent, effects of different560

intervention policies on the long-term evolution of the disease must be ac-561

counted for. Fig. 11 illustrates the effects of different intervention scenarios562

on the predicted course of the epidemic in the period 14/01/2012-31/12/2015563

(policy implementation starts on 01/08/2012 and lasts 1 year in the case of564

sanitation and 90 days in the case of vaccination to reflect the different effort565

required to implement such measures). In panel A the effect of vaccinating566

1 to 4 million susceptibles is displayed. One can already appreciate the ef-567

fect of a mass vaccinations campaign when carried out only once: increasing568

the number of vaccinations has the sole effect of delaying – and possibly569

exacerbating – the resurgence of the disease, even in the extreme event of570

vaccinating the entire population of Haiti (see inset of panel A, portraying the571

predicted evolution of new weekly cases until 31/12/2017). Note, however,572

that ours is a worst case scenario as no concurrent improvement of sanita-573

tion conditions is accounted for. In the other case (panel B), we show that a574

sanitation campaign, besides other positive effects brought by an increased575

drinking water quality, can effectively eradicate the disease from the country,576

provided that the final effort exceeds a certain threshold. In our analysis, the577

threshold lies somewhere between a 20−30% reduction of the contact rate in578
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all nodes of the Haitian network (see the inset of panel B, showing the effect579

of 30% sanitation on the course of the epidemic until 31/12/2017). Focus-580

ing only on vaccination as intervention policy, the eradication of the disease581

could have been obtained only if periodic vaccination campaigns were set up.582

These periodical campaigns, however, may well imply an effort comparable to583

that needed to minimize exposure probabilities, say, by sanitizing the water584

supply system on a permanent basis. No complete eradication of the disease585

would be reached, however, without improving concurrently the sanitation586

conditions of water supply in the country. We also point to the limited stock587

of vaccines that is currently available (which counts less than 400, 000 doses588

currently; Waldor et al., 2010), which would not allow, of course, vast vacci-589

nations campaigns such as the ones we have simulated. We remind that mass590

vaccinations, however, remain one of the potentially fastest interventions to591

be deployed in an emergency.592

5. Conclusions593

The following conclusions are worth mentioning:594

• spatially explicit mathematical models provide a tool to predict and595

control the course of ongoing cholera epidemics. The relevance of this596

new class of models relates to the fact that inappropriate responses597

can be avoided by providing adequate and timely information to policy-598

makers, decision-makers, the media and the public. While several issues599

remain open, like the field validation of parameters defined node-by-600

node, major public health policy challenges like those involving lim-601

itations of human mobility, structural measures (construction of hos-602

pitals, placement of field hospitals, construction of water sanitation603

infrastructures) and other interventions (vaccination and/or sanitation604

campaigns, antibiotics administration) can be thoroughly addressed by605

the proposed class of models;606

• rainfall patterns can be used to drive epidemiological models with re-607

alistic rainfall scenarios. We have used a Poisson generator integrated608

with space-time interannual variability. Poisson generators constitute609

a simple, synthetic way to generate rainfall patterns preserving the ba-610

sic statistics of observed precipitation events (depth and interarrival611

times). However, they perform poorly when it comes to reproducing612
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widespread events, in both space and time, such as monsoons and trop-613

ical storms in general. Also, our results point out how the evaluation614

of epidemiological predictions must rely on more comprehensive indi-615

cators than the simple expected value, due to the unpredictability of616

rainfall events, especially the extreme ones. An altered intensity and617

frequency of these particular rainfall events may influence dramatically618

the conditions of resurgence of the disease;619

• multi-season projection of the disease patterns can be used for the620

assessment of the effectiveness of control strategies. We suggest that621

vaccination alone, still considered in many studies as the key form of622

outbreak control, may be effective in the short term but would avoid623

resurgence of the disease only if sanitation conditions were to improve624

concurrently. Relative merits of the various interventions can therefore625

be weighed on a quantitative basis. In this respect, the increasing626

number of available spatially explicit mathematical models, after the627

first proposed by Bertuzzo et al. (2008) and particularly for the case of628

Haiti (Tuite et al., 2011; Chao et al., 2011), suggests that their impact629

on public health practice is gaining momentum;630

• the application of spatially explicit models proves a powerful monitor-631

ing tool. The epidemiological framework can in fact be coupled with632

projections of rainfall scenarios. Short- and long-term assessments of633

the possible evolution of the epidemic can thus be produced and dis-634

cussed. In particular, this exercise has proven useful to show the short-635

comings and the existing pitfalls of our approach, but also the impor-636

tance of being able to draw in advance possible scenarios of disease637

resurgence with reasonable accuracy, especially in capturing the total638

number of cases in a limited timespan.639
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7. Appendix651

The optimization approach for parameter estimation is based on Markov652

Chain Monte Carlo (MCMC) sampling, that is a family of methods allow-653

ing for the exploration of the posterior probability density function of a de-654

sired probability distribution (in our case, the joint probability distribution655

of the set of tuning parameters (Gilks et al., 1995). Specifically, we use the656

DREAMZS variant of the DREAM (Differential Evolution Adaptive Metropo-657

lis) algorithm (ter Braak and Vrugt, 2008), which makes use of sampling from658

past states visited by the Markov chains and of a snooker update step (in659

addition to parallel update steps) to generate candidate points in each in-660

dividual chain – thus reducing the number of parallel chains needed for an661

effective exploration of the posterior distribution while at the same time in-662

creasing the diversity of candidate points (Vrugt et al., 2009). The algorithm663

is initialized with broad flat prior distributions for parameter values and is664

allowed to run up to convergence (O(105) iterations). From an operational665

perspective, we first calibrate independently each candidate model against666

the epidemiological data available for the Haiti cholera epidemic.667

To assess whether and how more complex models are better suited to668

describe the evolution of the Haiti cholera outbreak we rank the performances669

of the two candidate models according to Akaike’s Information Criterion670

(AIC Akaike, 1974). AIC is a model-selection procedure that explicitly takes671

into account the trade-off between model accuracy and complexity, measured672

as the number Θ of free parameters (i.e. the structural parameters for each673

candidate model, plus one residual variance parameter; see Burnham and674

Anderson, 2002; Corani and Gatto, 2007). For each best-fit model we then675

compute676

AIC = 2Θ + η ln

(
RSS

η

)
,

where η is the number of data points (η = ndnw, nd = 10 and nw = 31 – in677

the short term calibration run – and nw = 65 – in the long term run – being678

the numbers of administrative departments and weeks from the onset of the679

epidemic, respectively), and RSS is the value of the residual sum of squares680
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computed on the basis of model results and the epidemiological record, i.e.681

RSS =

nd∑
i=1

nw∑
j=1

[
N (i, j)− N̂ (i, j)

]2
,

where N (i, j) and N̂ (i, j) are the new reported cases at the department scale682

evaluated from the weekly epidemiological bulletins and best-fit model sim-683

ulations, respectively. Note that model results are given at the watershed684

level. Therefore, they have to be up-scaled to the Department level for com-685

parison with the available epidemic data. Should of course less aggregated686

data be available, the current procedure would require no coarse graining of687

computed results. The up-scaling procedure is performed here by account-688

ing for the fraction of population of each watershed that belongs to a given689

Department. RSS values and AIC scores for both models are reported in690

Table 3 for both calibration periods. Results show that the performance691

of models 1 and 2 cannot be ranked with high significance in the first case692

(Akaike, 1974; Burnham and Anderson, 2002; Corani and Gatto, 2007).693
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Table 1: Estimated parameter values, relevant units, and cited literature for both cali-
bration runs (short-term and long-term) and both models (including hyper-infectivity or
not). Note that ρ and σ are fitted in the longer calibration run.

Parameter Units Value References

µ day−1 1/(61 · 365) CIA (2009)

β day−1 1 Codeço (2001)

ρ day−1 1/(3 · 365) Koelle et al. (2005)

γ day−1 0.2 Codeço (2001)

δ day−1 4 · 10−3 PAHO (2010)

µB day−1 0.2 Codeço (2001)

σ - 0.2 WHO (2011)

Walton, D., Ivers, L., 2011. Responding to cholera in post-earthquake Haiti.864

The New England Journal of Medicine 364, 3–5.865

WHO, 2011. Annual report on cholera, available online at866

http://www.who.int/cholera/statistics/en/. Tech. rep., World Health867

Organization.868

Xu, R., Wunsch, D., 2005. Survey of clustering algorithms. IEEE Transac-869

tions on Neural Networks 16 (3), 645–678.870
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Table 2: Fitted parameter values and relevant units for both calibration runs and both
models. Note that ρ and σ are not fitted but taken from literature in the shorter calibration
run.

Short-term Long-term
Parameter Units Model 1 Model 2 Model 2

θ day−1 0.11 0.37 0.51
l day−1 0.70 1.37 2.54
m - 0.05 0.06 0.05
D km 95.47 50.82 150.33
ϕ day mm−1 6.23 · 10−2 4.77 · 10−2 2.43 · 10−2

ρ day−1 - - 2.6 · 10−3(1.04 years)
σ - - - 0.21

Table 3: Number of calibrated parameters and AIC scores for the two tested models (see
text for technical details on the candidate models) in the calibration runs 23/10/2010-
28/05/2011 and 23/10/2010-14/01/2012. Columns indexed with ∆AIC show Akaike differ-
ences (with respect to the best-ranked model), which must be larger than 4 for significance
(Akaike, 1974; Burnham and Anderson, 2002; Corani and Gatto, 2007).

Short-term Long-term
Model Θ RSS AIC ∆AIC RSS
model 1 5 1.905 · 108 4267 1 –
model 2 5 1.902 · 108 4266 – 3.34 · 108
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Figure 1: Panel A. Block diagram of the i-th site epidemiological model, including the hy-
perinfective state Bi and the implementation of vaccination (see subsection 2.3). Panel B:
Spatial databases. In clock-wise order: color-coded Digital Terrain elevation Map (DTM)
of Haiti; the subdivision of Haitian territory in hydrological units (sub-basins) extracted
from the DTM; a relevant subset of the network of human mobility, here portrayed syn-
thetically by the four largest outbound connections for each node; spatial distribution
of population density obtained by LandScan project, which is translated into a georefer-
enced spatial distribution of nodes i endowed with population Hi. Partially redrawn from
Rinaldo et al. (2012).
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Figure 2: GANTT diagram of the calibration runs and validation/prediction windows.
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Figure 3: Panel A: Raster map of Haiti in which each pixel shows the average depth
of rainfall events in the period 1998-2012 (source: http://iridl.ldeo.columbia.edu/;
resolution: 0.25 degrees); Panel B: yearly time series of rainfall intensity averaged over the
whole territory of Haiti and over the whole period of observation; resolution: 10 days.
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Figure 4: Panel A: Scatter plot in which each point represents the average, in the period
1998-2012, of mean monthly depth/interarrival time of rainfall events at the node level;
colored dots belong to the same cluster (we show here the aggregates that emerge for the
month of June). Panel B: Distribution of clusters in space, in the month of June.
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Figure 5: Distribution of the inter-arrival times (A) and precipitation depths (B) of rainfall
events at the Haiti scale, derived from the multi-variate (red stars) Poisson process or from
the data (blue circles). In the inset we show the distributions at the cluster scale (one
the clusters containing the node representing Port-au-Prince is taken as example), as
outcomes of generated rainfall (red dots) or data values (blue dots). While the cumulated
probability distribution function is shown at the global scale, we choose to display the
probability distribution function at the cluster level, for graphical clarity.
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Figure 6: Grid showing a comparison between the rainfall events observed in 2012 and the
rainfall events generated with the 0-degree model of Rinaldo et al. (2012) and the Poisson
generator presented here, in the space of nodes and Julian days. Black pixels represent
observed events that are contained in the 5 − 95th percentile range of both distributions
of generated rainfall events. Blue pixels show events that do not belong to such range in
either distributions. Red/yellow pixels show events that fall outside the boundaries of this
range of the distribution obtained with the Poisson generator/the 0-degree model.
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Figure 7: Rainfall and epidemiological patterns for the period 23/10/2010-31/12/2011;
blue solid lines refer to observed rainfall patterns (decadal and averaged over the whole
Haiti, upper part) and to the corresponding model outputs as new weekly cholera cases
(blue dashed lines in the validation period); red solid lines show instead one realization in
1000 generated rainfall patterns between 28/05/2011 and 31/12/2011 and the median of
the corresponding model outputs (the shaded range also shows the 25th-75th percentile
span); grey bars depict the weekly reported cases over the simulation horizon. Panel A
shows results at the country scale, while patterns for the most populated departments
are shown in panels B-D (Ouest, Artibonite, Nord respectively; see inset in panel D).
Parameters are taken from the best fit in the short term calibration run.
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Figure 8: Cumulative weekly cases, reported (gray bars) and simulated by model 2.
Blue solid/dashed line: simulation with the observed rainfall pattern; red solid line (me-
dian)/shaded range (25th-75th percentile): simulation with generated rainfall.
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Figure 9: Effect of intervention policies on the predicted course of the epidemic between
28/05 and 31/12/2011 (blue lines: simulations with the model calibrated until 31/12/2011
and with observed rainfall as input; red lines: median of simulations with generated rain-
fall). A) Effect of a reduction of the 30% of the contact rate β, implemented in one month
starting from the 1st of June (dashed blue/red lines) or the 1st of July (dotted blue/red
lines) 2011. B) Effect of a vaccination of 4 million individuals, implemented in one month
starting from the 1st of June (dashed blue/red lines) or the 1st of July (dotted blue/red
lines) 2011. C-D) Number of new cases normalized with respect to the cases simulated in
absence of interventions in the period 28/05-31/12/2011 as a function of the reduction of
the contact rate β (panel C) and as a function of the number of vaccinated individuals
(panel D).
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Figure 10: Panel A: multi-seasonal projection of the course of the epidemic in the period
15/01/2012-31/12/2015. Calibration is performed between 23/10/2010 and 14/01/2012
(shaded yellow). New weekly cases in Haiti in the calibration (green solid line) and in
the prediction (black solid line/shaded range for the median/5th-95th percentile range)
periods. Gray bars show the reported cases used for calibration and the cases registered
until 31/12/2012. One rainfall realization is also shown in the upper part (green: ob-
served; blue: generated pattern. Panel B: temporal evolution of the median ratio between
susceptibles and total population.
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Figure 11: Effect of intervention policies on the predicted course of the epidemic between
08/2012 and 12/2015. The black solid line shows the median value of the prediction
with no planned intervention. Other solid lines (from yellow to green) show the average
predicted pattern of new weekly cases with increasing effort of vaccination (A) or sanitation
(B). In the inset of both panels the lilac solid line shows the same pattern until 12/2017,
for 8 million vaccinations (A) or 30% sanitation (B). Notice that small differences before
the implementation of interventions may arise from different realizations of the stochastic
rainfall scenarios.

39


