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Abstract we discuss a recent theoretical approach combining catchment-scale flow and transport proc-
esses into a unified framework. The approach is designed to characterize the hydrochemistry of hydrologic
systems and to meet the challenges posed by empirical evidence. StorAge Selection functions (SAS) are
defined to represent the way catchment storage supplies the outflows with water of different ages, thus
regulating the chemical composition of out-fluxes. Biogeochemical processes are also reflected in the evolv-
ing residence time distribution and thus in age-selection. Here we make the case for the routine use of SAS
functions and look forward to areas where further research is needed.

1. Introduction

The time spent by a parcel of water within a watershed, from input to the present time, is a random variable
commonly referred to as age or, equivalently, residence time. The age dynamics of the water in storage
within a catchment system directly affects the chemical composition of hydrologic fluxes, including solute
concentrations in the discharge through the catchment outlet that are routinely measured in the field. Resi-
dence time can be seen as the master variable of catchment hydrology because its distribution captures
the integrated description of the ensemble of physical processes coexisting within a hydrologic system and
the bulk effects of biogeochemical reactions undergone by solutes transported by water [e.g., Rinaldo and
Marani, 1987; Rinaldo et al., 1989; Maloszewski et al., 1992; Kirchner et al., 2001; Weiler et al., 2003; Kirchner,
2003; Botter et al., 2005; McGuire and McDonnell, 2006; Stumpp et al., 2009; Kirchner et al., 2010; Hrachowitz
et al.,, 2010a, b; McDonnell et al., 2010; Harman et al., 2011; Cvetkovic et al., 2012; van der Velde et al., 2012;
Beven, 2012a; Heidbuchel et al., 2012; Birkel et al., 2012; McMillan et al., 2012; Hrachowitz et al., 2013; Heidbue-
chel et al., 2013; Kirchner and Neal, 2013; Davies et al., 2013; Harman and Kim, 2014; McDonnell and Beven,
2014; Harman, 2015].

As experimental evidence has mounted on the mutual links among the hydrochemistry of waters in storage
and in fluxes, climatic regimes, soil and landscape attributes, and the age of streamflows [e.g., Weiler and
Fliihler, 2004; McGuire et al., 2005; Hrachowitz et al., 2009; Soulsby et al., 2011; Tetzlaff et al., 2014], a growing
awareness has developed of the fundamental importance of a unifying theoretical framework for
catchment-scale flow and transport phenomena [e.g., Rinaldo and Marani, 1987; Kirchner, 2003; Sivapalan
et al., 2003]. Such a framework must formally characterize the age dynamics in hydrologic systems and, as a
consequence, comprehensively recapitulate hydrograph and tracer information.

Evidence of complex age dynamics originates from the observation that much (if not most) of runoff had
been stored in the catchment for much longer than event waters (the so-called old-water paradox) [e.g.,
Stewart and McDonnell, 1991; Kirchner, 2003; Bishop et al., 2004; Divine and McDonnell, 2005; McGuire and
McDonnell, 2006; McGuire et al., 2007; McDonnell et al., 2010]. Different approaches exist to reconcile the
dynamic character of runoff with the catchment’s ability to store and mix large amounts of water and
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solutes without postulating, say, the stationarity of the hydrologic processes involved or the shapes of age
distributions [see e.g., McDonnell and Beven, 2014]. A recently proposed approach, based on StorAge Selec-
tion (SAS) functions [Botter et al., 2011], provides in our view a sound basis to the quest for a watershed
theory. SAS functions, formally defined in the next section, represent the way outflows are composed of
stored water of different ages, and so recapitulate the hydrologic processes generating them. They thus
encapsulate the integral effect of dispersion mechanisms driving solute transport within a hydrologic con-
trol volume, and explicitly regulate the composition of out-fluxes.

Here we make the case for the routine use of SAS functions and look at areas where further research is
needed.

2. Storage Selection Functions: An Overview

The SAS framework relies on the representation of a hydrologic system as a dynamic population of water
parcels growing older as they move within the system until they leave through any of the outflows. The pro-
cess of water/solute transport from entry to exit can be described either through a time-forward or a time-
backward perspective, which coincide only under steady transport [Niemi, 1977; Rinaldo et al., 2011]. In the
forward case, one focuses on injections at a specific time and considers the distribution of future arrival
times to an outlet. In the backward representation, the ages of particles in storage within (or leaving) the
system at a given time are considered in terms of their distribution of entrance times. A sample of stream
water contains a distribution of ages that entered the catchment at different times, hence, the backward
representation is particularly suitable when at-a-station flux measurements of solutes are involved (say, con-
taminant release or mineral weathering). We shall focus here on the backward formulation and avoid tech-
nicalities, including the dual forward formulation [see e.g., Benettin et al., 2015a]. Suffice here to recall that
the forward approach focuses on the future evolution of the system using the current state as initial condi-
tion, and requires the introduction of a water parcel’s life expectancy which quantifies the time it will spend
within the system before being sampled by one of the outflows. The sum of age and life expectancy is the
parcel’s travel time. Forward and backward formulations differ practically and conceptually as they yield
analogous formal relationships only in the special case of stationary systems [Niemi, 1977]. Age and life
expectancy distributions evolve distinctively in response to unsteady hydrologic fluxes, and both can be
used to describe the fate of solutes measured at the exit control surface(s), with relative advantages that
depend on the specific case at hand.

The backward travel time distribution (TTD) for discharge po(T,t) (typically labeled as po(T,t) when a dis-
tinction between backward and forward formulations is needed), defines the distribution of the ages T of
particles that are leaving as discharge, Q, at time t. Likewise, any other outflow is characterized by a distinct
age distribution (e.g., per(T,t) representing the distribution of the ages T in storage removed by evapo-
transpiration at time t). The residence time distribution (RTD), ps(T,t), in contrast, defines the probability
distribution of the ages that characterize the water storage at time t. Residence and travel time distributions
are not independent from one another but tightly regulated by a Master Equation (ME), expressing mass
and age continuity [Botter et al., 2011]. The ME shows that residence and travel time distributions share the
legacy of the sequence of inputs and their subsequent aging, and accounts for the transformation of age-
tagged storage into fluxes out of the system. To characterize such transformation, Botter et al. [2011] intro-
duced SAS functions (originally termed mixing functions) as:

_ pQ(T7 t)
pg(T, t)

_ per(T,t)
e (T,0)= ps(T1)

SAS functions identify, in a spatially integrated manner, the relationship between the set of ages available
within a hydrologic control volume and the ages of the particles removed as outflows through the system
boundaries (in our example, Q and ET). As such, SAS functions are volume-integrated analogues of the
advection-dispersion equation (ADE) of water mass density along an age dimension [e.g., Ginn et al., 2009;
Delhez et al., 1999; Kirchner et al., 2001; Cornaton and Perrochet, 2006; Fiori and Russo, 2008; Ali et al., 2014].
SAS functions can be derived explicitly for general dispersion models in finite 1-D domains by accounting

wq(T, 1) (1

)
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Figure 1. Sketch of a typical hydrologic transport volume. The cross section (A-A) of a hillslope is meant to recapitulate a first-order catch-
ment as a part of a complex geomorphological setting embedded into the catchment (top right inset). (a) Probability density function of
travel times T (i.e., exit age) of water parcels released at time t in the evapotranspirative flux (ET). Also highlighted is a possible SAS function
wger exhibiting preference for younger waters, and defined by the ratio of the relative fractions of exiting ages to the ones in storage at
time t; (b) Probability density function of residence times T of water parcels in storage within the entire control volume at time t; (c) Proba-
bility density function of travel times T (i.e., the exit age) of water parcels released at time t in the discharge Q. As in Figure 1a, also high-
lighted is a possible SAS function wq showing preference for older waters.

for different boundary conditions, showing that larger dispersivities increase their uniformity (wqer — 1)
[Benettin et al., 2013a]. SAS functions are meant to describe which water parcels (i.e., those that recently
entered the catchment or those that have been in storage for some time) contribute to streamflow produc-
tion and plant uptake, as shown in the sketch of Figure 1. They embed the entirety of the physical processes
determining the arrival of stored water at the boundary of a hydrologic system, to exit as discharge, evapo-
transpiration, or any other flux (say, through pumping or recharge to deep aquifers). Thus, at any time there
exists a true SAS function which is impossible to measure directly unless every possible age in the transport
volume is tagged. With current technology, this is clearly not an option. Viable approaches are thus based
on the adoption of a functional form (fixed or time-varying) and on the calibration of its parameters by con-
trasting theoretical results with data. The specification of SAS functions, jointly with the knowledge of the
relevant hydrologic fluxes, allows for a complete statistical characterization (say, of age and travel time dis-
tributions) through analytical or numerical solutions of the ME.

SAS theory is hypothesized to represent a general and flexible tool for characterizing the hydrochemistry of
different types of flow systems potentially relevant to hydrology and biogeochemistry. A key issue for the

practical use of SAS functions, however, is the requirement that wq - ps needs to be a probability distribu-
t

tion (i.e., J pa(x,t)dx=1and pg > 0). Because ps evolves in time, wg should also change to satisfy normal-
0

ization. This renders a closed-form expression for the SAS functions impractical in most cases. An elegant
procedure to tackle the general case has been proposed by van der Velde et al. [2012] who characterized
the sampling behavior by expressing the SAS functions not as a function of age, but rather as a function of

N
the cumulative distribution of ages stored in the control volume, i.e., T maps into P5=J ps(t,t)dz. In the
0

residence time age domain Ps, the SAS function is a probability distribution function and thus it can be
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parameterized, e.g., by a beta distribution [van der Velde et al., 2012, 2014] or through a power law defining
the preference for old/young water [Queloz et al., 2015]. If the storage that actively participates in transport
is a small fraction of the total, the resulting travel time distributions should be relatively insensitive to the
actual size of the overall storage prompting Harman [2015] to suggest a formulation in which wq is defined
in terms of the product Ps(T, t) - S(t)=Sr(T, t) (rather than Pg), termed age-ranked storage. The ME can then
be conveniently expressed by mass balance in Sy where 5(t) no longer appears in the equation explicitly.
Harman [2015] also demonstrated an important feature of SAS functions: they can be parameterized to vary
in time with other system state variables (such as relative catchment wetness), so as to capture the tempo-
ral dynamics of transporting processes.

Interestingly, analytical solutions of the transport problem are available for wqer=1, i.e., where sampling
occurs proportionally to the volumes of the various ages in storage (random sampling) [Botter et al., 2010].
In such a case, the age distributions in storage and in the outflows coincide [Botter et al., 2011; Hrachowitz
et al, 2013]. Such solutions enable the derivation of more general analytical expressions for randomly
sampled storages arranged in series or in parallel, collectively far from randomly sampled, which result in
increasing/decreasing SAS functions corresponding to preference for older/younger ages, respectively [Ber-
tuzzo et al., 2013; Benettin et al., 2013a, 2015b].

Model identification is central to estimates of hydrologic fluxes that cannot be directly measured, like large-
scale ET or internal fluxes among different compartments. Ranking approaches by discounting for the num-
ber of parameters can be done formally by comparative analyses of measured and computed quantities
[Akaike, 1974; Beven, 2012b]. Examples already exist of revealing comparative computational analyses based
on hydrochemical field data, e.g., for chloride and nitrate at the Hupsel brook catchment in the Netherlands
[van der Velde et al., 2010, 2012; Benettin et al., 2013b], the Monchaldorf catchment in Switzerland for pesti-
cide circulation at catchment scales [Bertuzzo et al.,, 2013], upland catchments in the Scottish highlands for
chloride and water stable isotopes [Hrachowitz et al., 2013; Birkel et al., 2015], and the upper and lower
Hafren catchment in Wales for chloride transport [Harman, 2015; Benettin et al., 2015b]. General numerical
solutions for the relevant statistics have also been provided [e.g. Fiori and Russo, 2008; Fiori, 2012; Bertuzzo
et al., 2013; Ali et al., 2014; Harman, 2015].

3. Tracking Tracers and SAS Functions: An Outlook

The formulation of transport by nonstationary travel time distributions forces a rethinking of traditional
hydrologic approaches subsumed by the introduction of SAS functions. Implications of recent field and the-
oretical results and areas where progress is needed are outlined below.

1. The availability of high-quality hydrochemical data sets [e.g. Kirchner and Neal, 2013] in diverse regions of
the world, including semiarid, cold, or tropical ones, remains central to our understanding of solute reten-
tion in catchments and interpreting hydrobiogeochemical processes in general—in brief, current
approaches are geographically biased. High-frequency measurements should be undertaken for the rele-
vant input and output fluxes, and maintained for timespans larger than mean travel times, typically rang-
ing from months to years. This places constraints on the interpretation of field data. Hydrologists, in fact,
would need to re-evaluate the traditional interpretation of field experiments in terms of concentration
breakthrough curves to instantaneous pulses (the forward picture) in the light of long-term at-a-station
gauging of exiting ages in streamflow (the backward picture). The theoretical apparatus underlying SAS
functions challenges the uniqueness and usefulness of contrasting observed forward breakthrough
curves with input concentrations time series in light of the now-realized need to predict and understand
their backward dual. This holds whenever the system under investigation cannot be seen as the host of
steady state transport phenomena, quite unlikely in the hydrologic response of natural watersheds;

2. Integrating information from different tracers still represents a challenge. Spiking rainfall with artificial
tracers at catchment scales is manageable only at small spatial scales with current technologies, and thus
the use of natural tracers represents a practical choice for catchment-scale hydrochemical transport stud-
ies. Depending on the tracer, however, one may introduce a bias to either young or old water: high trit-
ium may suggest the presence of old water on the timescale of decades [see e.g. Morgenstern et al., 2010;
Stewart, 2012], while water stable isotopes mostly provide information on younger water (months to a
few years) [Seeger and Weiler, 2004]. Moreover, the methodology itself used to analyze the tracers may be
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structurally biased [Bethke and Johnson, 2008; Cornaton et al., 2011]. The effects of evaporation and tran-
spiration on isotope/solute transport are an ongoing matter of concern for many natural tracers, Hence,
challenges to hydrologic transport that might be impacted by the use of SAS functions include tools that
enable a spatially explicit characterization of inputs and improved understanding of the isotopic/solute
composition of soil and vegetation water. In this context, model-guided field validation seems like a sen-
sible step for interpreting laboratory evidence and scaled-up, catchment-scale transport experiments;

. SAS functions propose a paradigm shift from a variety of approaches that require significant assumptions

(e.g., to fit parameters of stationary transit time distributions to observed data from unsteady systems) to
a coherent mathematical framework which explicitly takes into account flow and transport under variable
hydrologic drivers. Applications to diverse hydrologic settings, already underway, are needed to build an
archive of case studies. More work is thus needed on accurate large-scale numerical studies employing
arbitrary SAS functions varying with distinctive state variables and embedding significant geomorpholog-
ical complexity [but see e.g., van der Velde et al., 2014; Harman, 2015; Benettin et al., 2015b; Queloz et al.,
2015];

. Approaches that consider an entire catchment as a unique control volume, without storage partitions of

any kind, are of interest owing to our enhanced ability to measure and/or estimate directly in and out-
fluxes without introducing internal subdivisions with their own state variables [e.g., Kendall et al., 2001]. In
such a case, however, the behavior of whole catchment-scale SAS functions proves far more complex
than a random sampling scheme, for which exact solutions are available [Botter et al., 2011; Benettin et al.,
2013a; Bertuzzo et al., 2013]. To that end, Harman [2015] demonstrates how SAS theory can be used to
parameterize a whole-catchment SAS function that is nonuniform and varies in time with a catchment
state variable (relative storage);

. The meaning (and possibly the existence) of ideal tracers that sample the same velocity field as water par-

cels needs be revisited in the light of SAS functions. In fact, even if a tracer is assumed to be passive to
chemical reactions and degradation in soils and flows perfectly along with water without retardation of
any nature (but see [Oberg and Sanden, 2005]), it still may show limited (or enhanced) affinity to be
selected by vegetation in settings where transpiration is significant. Under the above circumstances, the
process of evapotranspiration would directly impact the chemical or isotopic composition of the storage
and hence stream water quality. The residence times of solutes would thus be inevitably different from
those of water parcels, regardless of the ideal nature of the tracer seen from a mere soil-water mass
exchange perspective. Hence, deeper understanding of vegetation affinity for uptake of different ages is
critical [Brooks et al., 2010; McDonnell, 2014]. Also, we need to develop suitable technologies for the direct
measurement of solute uptake from large-scale assemblages of diverse vegetation cover. This is key to
mass balance closures devoid of critical assumptions. Upscaling sap water sampling and biomass ana-
lyzed for residuals to levels producing statistical significance is one possible way, lacking to date a break-
through technology for noninvasive bulk measurements;

. Another challenge, and a call to action, pertains the study of catchment-scale reaction kinetics within the

above framework. The residence time distribution inherently defines contact times between fixed and
mobile phases driving biogeochemical cycling and mass exchange phenomena [Rinaldo and Marani,
1987; Rinaldo et al., 1989] (but see also [see e.g., Brusseau et al., 1989; Botter et al., 2006; Maher, 2010; Basu
et al, 2010]). Thus, regardless of the physical, chemical, or biological reaction undergone by the solute
mass within stored water parcels (or lack of it thereof), the mobile mass sampled by outflows would be
inevitably controlled by the evolving residence time distribution and thus by age-selection. A critical
issue, and an open challenge, will, therefore, reside in bridging complex geochemistry issues with the
large-scale, integrative characterization required by catchment transport scales. Many biogeochemical
processes occurring along hydrological flow paths (e.g., redox reactions, heterogeneous reaction kinetics,
varying solubility equilibria to name a few) may be of importance for other solutes, and one would need
to assess quantitatively what storage selection can achieve in this regard. Moreover, as in Botter et al.
[2005], an assessment of spatial effects is needed so as to highlight at what nonpoint-source injection
scales (relative to correlation scales of heterogeneous properties) one could assume the processes as
chiefly driven only by contact times between fixed and mobile phases. A distinct advantage of SAS func-
tion approaches is that transport parameters pertaining to travel times may be decoupled from the ones

RINALDO ET AL.

ON STORAGE SELECTION FUNCTIONS 4844



@AG U Water Resources Research

10.1002/2015WR017273

Acknowledgments

AR, P.B. and E.B. wish to thank the
Swiss National Science Foundation
(SFN) for funding the research project
through grant SFN-135241. C.H. wishes
to thank the National Science
Foundation for support through grant
EAR-1344664. The authors wish to
thank two anonymous reviewers for
their insightful comments on an earlier
version of this Commentary.

characterizing any reaction kinetics, thereby allowing a direct use of multiple tracer field and experimen-
tal evidence and an effective parameter calibration;

7. Top-down and bottom-up approaches are both needed to develop a general, empirically supported
theory [see e.g. Sivapalan et al., 2003]. A top-down approach requires application to a large number of
systems where appropriate data are available, and eventually a synthesis of the estimated SAS functions
to infer patterns. A bottom-up approach involves analytical, numerical, and experimental analysis eluci-
dating the relationship between the structure and dynamics of individual systems and their emergent
SAS functions. Such efforts, both needed, should focus on site-specific dominant controls on storage
selection, and how they can be parameterized in a systematic manner.

Regardless of the open challenges for which action is called, we conclude that the advancement postulated
by SAS functions already provides the hydrologic community new and fundamental tools for coherently
addressing catchment-scale flow and transport phenomena.
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