Methyleneimine $\mathrm{CH}_{2}=\mathbf{N H}$ as a Unidentate Ligand in Rhenium Complexes**

Gabriele Albertin,* Stefano Antoniutti, Alessia Bacchi, Emilio Bordignon, Maria Teresa Giorgi, and Giancarlo Pelizzi

Coordinated hydrazines RNHNH_{2} are reported to react with oxidizing agents, such as $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ and $\mathrm{H}_{2} \mathrm{O}_{2}$, to give the corresponding diazenes $\mathrm{RN}=\mathrm{NH}$, the stabilization of which on an appropriate metal fragment allows their separation as coordinated species. ${ }^{[1-3]}$ We now report a new reaction of coordinated methylhydrazine, which reacts with $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ to give a $\eta^{1}-\mathrm{NH}=\mathrm{CH}_{2}$ methyleneimine derivative.
The $\mathrm{CH}_{2}=\mathrm{NH}$ molecule is a reactive species which was first obtained in 1933 from the low-temperature reaction of HCN with hydrogen. ${ }^{[4]}$ It has been detected in several galactic objects ${ }^{[5]}$ and proposed as a possible precursor ${ }^{[6]}$ of the simplest α-amino acid, glycine. As a ligand, it is present in only one case, through π coordination ${ }^{[7]}$ to an osmium center; no other report has been found on this molecule, which displays a simple constitution and structure, and has still unknown properties.
The reaction of the hydride ${ }^{[8]}\left[\mathrm{ReH}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]$ with triflic acid (TfOH) gives the thermally unstable $\left[\operatorname{Re}\left(\eta^{2}-\right.\right.$ $\left.\left.\mathrm{H}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+}\left(\mathrm{CF}_{3} \mathrm{SO}_{3}\right)^{-}$species, which loses H_{2}, affording the compound $\left[\operatorname{Re}\left(\kappa^{1}-\mathrm{OTf}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]$. Substitution of the weakly bound triflato ligand with methylhydrazine gives trans- $\left[\mathrm{Re}\left(\mathrm{CH}_{3} \mathrm{NHNH}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+} \quad(\mathbf{1})$, which was isolated as a BPh_{4} salt $\left(\mathbf{1}-\mathrm{BPh}_{4}\right)$ in about 70% yield (Scheme 1).
Complex $1-\mathrm{BPh}_{4}$ was characterized by standard methods (IR, NMR, Λ_{M}, elemental analysis). The IR spectra show the v_{NH} bands at 3343 and $3291 \mathrm{~cm}^{-1}$ of the methylhydrazine

Scheme 1. $\mathrm{P}=\mathrm{P}(\mathrm{OEt})_{3}$.

[^0]ligand, whereas the ${ }^{1} \mathrm{H}$ NMR spectrum exhibits resonance signals at $\delta=4.35$ (s, br; $\mathrm{ReNH}_{2} \mathrm{NHCH}_{3}$), 3.93 (m, br; $\mathrm{ReNH}_{2} \mathrm{NHCH}_{3}$), and $2.49 \mathrm{ppm}\left(\mathrm{d} ; \mathrm{ReNH}_{2} \mathrm{NHCH}_{3}\right)$ of the $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$ group.
Treatment of methylhydrazine complex $\mathbf{1}-\mathrm{BPh}_{4}$ with an equimolar amount of $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ at low temperature $\left(-40^{\circ} \mathrm{C}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ gives a mixture of methyldiazene $\left[\mathrm{Re}\left(\mathrm{CH}_{3} \mathrm{~N}=\mathrm{NH}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \mathrm{BPh}_{4}\left(2-\mathrm{BPh}_{4}\right)$ and methyleneimine $\left[\mathrm{Re}\left(\eta^{1}-\mathrm{NH}=\mathrm{CH}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right] \mathrm{BPh}_{4} \quad\left(3-\mathrm{BPh}_{4}\right)$ derivatives (Scheme 2). These were separated by fractional crystallization in moderate yields (42% for $\mathbf{2}-\mathrm{BPh}_{4}, 24 \%$ for 3- BPh_{4}) as analytically pure white crystalline solids.

Scheme 2. $\mathrm{P}=\mathrm{P}(\mathrm{OEt})_{3}$.

The complexes were characterized by spectroscopy and in two X-ray diffraction studies. ${ }^{[9-12]}$ Figure 1 shows the crystal structure of the cation $\left[\operatorname{Re}\left(\eta^{1}-\mathrm{NH}=\mathrm{CH}_{2}\right)(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{+}$ (3). The most relevant feature of the complex is the presence

Figure 1. Structure of the core of the cation $\mathbf{3}$ (thermal ellipsoids drawn at the 30% level; ethoxy groups are omitted for clarity). Selected bond lengths [\AA] and angles [${ }^{\circ}$]: Re-C50 1.956(8), Re-N1 2.32(1), Re-P3 2.362(2), Re-P1 2.362(2), Re-P4 2.374(2), Re-P2 2.378(2), O13-C50 1.108(8), N1-C51 1.26(1); C50-Re-N1 175.9(3), C50-Re-P3 87.7(2), N1-Re-P3 95.9(2), C50-Re-P1 86.9(2), N1-Re-P1 89.5(2), P3-Re-P1 174.44(6), C50-Re-P4 94.4(2), N1-Re-P4 87.6(2), P3-Re-P4 90.00(7), P1-Re-P4 89.25(7), C50-Re-P2 92.9(2), N1-Re-P2 85.0(2), P3-Re-P2 91.44(6), P1-Re-P2 90.01(6), P4-ReP2 172.56(6), O13-C50-Re 177.2(6), C51-N1-Re 134(1).
of the methyleneimine ligand, trans to the carbonyl group, and coordinated with the metal in a bent mode, as required by the sp^{2} character of the N atom (Re-N-C $\left.139(1)^{\circ}\right)$, with $\mathrm{Re}-\mathrm{N}$ $2.32(1)$ and $\mathrm{N}-\mathrm{C} 1.26(1) \AA$. This is, in fact, the first example of η^{1} coordination of a $\mathrm{CH}_{2}=\mathrm{NH}$ molecule to a transition metal, the only other similar case being the deprotonated $\mathrm{CH}_{2}=\mathrm{N}=\mathrm{M}$ fragment found in (μ^{2}-methyleneamido)tricarbonylbis-
(η^{5}-pentamethylcyclopentadienyl)methyleneamidodimolybdenum, ${ }^{[13]}$ in which the system is practically linear (M-N-C 163°). The bent geometry found for our terminal methyleneimine group fits the common structural features of alkylic and arylic $\mathrm{R}_{2} \mathrm{C}=\mathrm{NH}$ ligands, which show similar M-N-C angles and generally larger $\mathrm{N}-\mathrm{C}$ distances (ranging from 1.25 to $1.30 \AA$; the shortest ones are found in the catenabis(isopropylideneamine) gold trifluoromethanesulfonate complex at $173 \mathrm{~K}^{[14]}$). The plane of the methyleneimine ligand (Re-N1-C51) forms a dihedral angle of $38(1)^{\circ}$ with the equatorial coordination plane containing the N donor (Re-C50-P1-P3-N1).

The ${ }^{1} \mathrm{H}$ NMR spectra of $\mathbf{3}-\mathrm{BPh}_{4}$ are diagnostic for the presence of the methyleneimine ligand, showing a broad highfrequency signal at $\delta=13.98 \mathrm{ppm}$, which is attributed to the $=\mathrm{NH}$ imine proton. Substituted imine $\mathrm{R}_{2} \mathrm{C}=\mathrm{NH}$, and RHC $=\mathrm{NH}$ bonded to a metal center ${ }^{[14,15]}$ are also reported to give rise to a high-frequency NH proton resonance signal. A slightly broad multiplet is also present at $\delta=3.66 \mathrm{ppm}$, which is coupled with the imine proton and was assigned to one of the two protons of the methylene $=\mathrm{CH}_{2}$ group. The other is probably masked by the methylene signals of the $\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{3}\right)_{3}$ ligands. In the temperature range between +30 and $-80^{\circ} \mathrm{C}$ the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum displays a sharp singlet, which is assigned to a trans geometry like that found in the solid state.

In the crystal structure of $\mathbf{2}-\mathrm{BPh}_{4}$, the methyldiazene and carbonyl ligands in the cation are exchanged between two trans coordination positions, with 50% substitutional disorder, and their refinement was possible only by restraining them to conform to a plausible geometry. ${ }^{[16]}$
The ${ }^{1} \mathrm{H}$ NMR spectra of $2-\mathrm{BPh}_{4}$ further support the presence of the $\mathrm{CH}_{3} \mathrm{~N}=\mathrm{NH}$ ligand, showing the NH resonance signal at $\delta=15.99 \mathrm{ppm}$ and one doublet at $\delta=4.37 \mathrm{ppm}$, attributed to the methyl group. A mutual trans position of carbonyl and methyldiazene ligands is also suggested in solution by the presence of only one singlet at $\delta=116.7 \mathrm{ppm}$ in the ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum.
Other methylhydrazine complexes, such as dicarbonyls $\left[\mathrm{Re}\left(\mathrm{CH}_{3} \mathrm{NHNH}_{2}\right)(\mathrm{CO})_{2} \mathrm{P}_{3}\right] \mathrm{BPh}_{4}\left(\mathrm{P}=\mathrm{P}(\mathrm{OEt})_{3}\right.$ or $\left.\mathrm{PPh}(\mathrm{OEt})_{2}\right)$, were prepared, and their reaction with $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ led, at $-40^{\circ} \mathrm{C}$, to a mixture of methyldiazene $\left[\operatorname{Re}\left(\mathrm{CH}_{3} \mathrm{~N}=\mathrm{NH}\right)\right.$ $\left.(\mathrm{CO})_{2} \mathrm{P}_{3}\right]^{+}$and methyleneimine $\left[\operatorname{Re}\left(\eta^{1}-\mathrm{NH}=\mathrm{CH}_{2}\right)(\mathrm{CO})_{2} \mathrm{P}_{3}\right]^{+}$ derivatives which, in the case of $\mathrm{P}(\mathrm{OEt})_{3}$, were separated in pure form or, for $\mathrm{PPh}(\mathrm{OEt})_{2}$, were detected by spectroscopy. The reaction affording the coordinated $\eta^{1}-\mathrm{NH}=\mathrm{CH}_{2}$ molecule seems to be general for the $\left[\operatorname{Re}(\mathrm{CO})_{n} \mathrm{P}_{5-n}\right](n=1,2)$ fragment containing a methylhydrazine ligand, but appears to be specific for $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$, as attempts to carry out the reaction with other oxidants such as MnO_{2} or $\mathrm{H}_{2} \mathrm{O}_{2}$ were unsuccessful.
The formation of species $2-\mathrm{BPh}_{4}$ and $3-\mathrm{BPh}_{4}$ from the reaction of methylhydrazine complexes $\mathbf{1}-\mathrm{BPh}_{4}$ (Scheme 2) suggests that $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ gives rise to two parallel reactions involving selective oxidation of $\mathrm{CH}_{3} \mathrm{NHNH}_{2}$ to methyldiazene $\mathrm{CH}_{3} \mathrm{~N}=\mathrm{NH}$, giving 2- BPh_{4}, in one case, whereas a completely new reaction involving cleavage of the $\mathrm{N}=\mathrm{N}$ bond and formation of the $\mathrm{CH}_{2}=\mathrm{NH}$ moiety takes place in the other. Although coordinated hydrazine is known to undergo oxidation by $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ or other reagents to the corresponding diazene, ${ }^{[1-3]}$ the reaction affording coordinated $\eta^{1}-\mathrm{NH}=\mathrm{CH}_{2}$ is
new, unexpected, and interesting-not only because it allows us to prepare, and stabilize by coordination, an elusive molecule such as methyleneimine, but also because, whatever the mechanism ${ }^{[17]}$ may be, cleavage of the $\mathrm{N}=\mathrm{N}$ bond ${ }^{[18]}$ of a coordinated hydrazine ${ }^{[19]}$ takes place in the presence of an oxidizing species.

Studies are currently in progress to explore the reaction chemistry of the $\mathrm{M}-\mathrm{NH}=\mathrm{CH}_{2}$ systems, mainly in terms of deprotonation and substitution reactions.

Experimental Section

All reactions were carried out under an inert atmosphere using dry, air-free solvents.
1- $\mathrm{BPh}_{4}: \mathrm{CF}_{3} \mathrm{SO}_{3} \mathrm{H}(\mathrm{TfOH})(0.23 \mathrm{mmol}, 20 \mu \mathrm{~L})$ was added to a solution of $\left[\mathrm{ReH}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OEt})_{3}\right\}_{4}\right]^{[8]}(200 \mathrm{mg}, 0.23 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ cooled to $-196^{\circ} \mathrm{C}$, and the reaction mixture was allowed to warm to room temperature, and stirred for $1 \mathrm{~h} . \mathrm{CH}_{3} \mathrm{NHNH}_{2}(0.6 \mathrm{mmol}, 32 \mu \mathrm{~L})$ was added and stirring was continued for 24 h . The solvent was removed under reduced pressure to give an oil which was triturated with ethanol (3 mL) containing $\mathrm{NaBPh}_{4}(0.6 \mathrm{mmol}, 205 \mathrm{mg})$. A white solid slowly separated out, which was crystallized from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and ethanol to give 1- $\mathrm{BPh}_{4}(210 \mathrm{mg}$; yield 73%). IR (KBr): $\tilde{v}=3343(\mathrm{~m}), 3291(\mathrm{~m})\left(v_{\mathrm{NH}}\right), 1880 \mathrm{~cm}^{-1}(\mathrm{~s})\left(v_{\mathrm{CO}}\right)$; ${ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 293 \mathrm{~K}, \mathrm{TMS}$): $\delta=7.40-6.86(\mathrm{~m}, 20 \mathrm{H} ; \mathrm{Ph})$, $4.35\left(\mathrm{~s}, \mathrm{br}, 2 \mathrm{H} ; \mathrm{NH}_{2}\right), 4.05\left(\mathrm{~m}, 24 \mathrm{H} ; \mathrm{CH}_{2}\right) ; 3.93(\mathrm{~m}, \mathrm{br}, 1 \mathrm{H} ; \mathrm{NH}), 2.49(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{H}, \mathrm{H}}=6 \mathrm{~Hz}, 3 \mathrm{H} ; \mathrm{CH}_{3} \mathrm{~N}\right), 1.29 \mathrm{ppm}\left(\mathrm{t}, 36 \mathrm{H} ; \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(200 \mathrm{MHz}$, $\mathrm{CD}_{2} \mathrm{Cl}_{2}, 293 \mathrm{~K}, \mathrm{H}_{3} \mathrm{PO}_{4} 85 \%$ ext.): $\delta=117.9 \mathrm{ppm}(\mathrm{s})$; elemental analysis (\%) calcd for $\mathrm{C}_{50} \mathrm{H}_{86} \mathrm{BN}_{2} \mathrm{O}_{13} \mathrm{P}_{4} \mathrm{Re}$ (1244.14): C 48.27, H 6.97, N 2.25 ; found: C 48.15, H 7.01, N 2.13.
$\mathbf{2}-\mathrm{BPh}_{4}, \mathbf{3}-\mathrm{BPh}_{4}$: A sample of $\mathbf{1}(124 \mathrm{mg}, 0.1 \mathrm{mmol})$ was placed in a threenecked $25-\mathrm{mL}$ flask fitted with a solid-addition sidearm containing $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right](0.1 \mathrm{mmol}, 44 \mathrm{mg})$. The system was evacuated, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(8 \mathrm{~mL})$ was added, the solution cooled to $-40^{\circ} \mathrm{C}$, and $\left[\mathrm{Pb}(\mathrm{OAc})_{4}\right]$ was added portionwise over $10-20 \mathrm{~min}$ to the cold stirring solution. The reaction mixture was then allowed to warm to $0^{\circ} \mathrm{C}$, stirred for 10 min , and the solvent removed under reduced pressure. The oil obtained was treated at $0^{\circ} \mathrm{C}$ with ethanol $(2 \mathrm{~mL})$ containing $\mathrm{NaBPh}_{4}(0.2 \mathrm{mmol}, 68 \mathrm{mg})$. A white solid slowly separated out which was filtered and crystallized fractionally. A typical separation involved slow cooling from +20 to $-25^{\circ} \mathrm{C}$ of a saturated solution of the complexes prepared by adding ethanol $(8 \mathrm{~mL})$ to the white solid and enough $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ to obtain a saturated solution at room temperature. The first crystals are of $\mathbf{2}-\mathrm{BPh}_{4}$, the second a mixture of $\mathbf{2}-\mathrm{BPh}_{4}$ and $\mathbf{3}$ BPh_{4} which was recrystallized. A total of 52 mg of 2- BPh_{4} (yield 42%) was separated. By further cooling of the solution, 29 mg of white crystals of $\mathbf{3}$ BPh_{4} (yield 24%) were obtained. Pure samples of $\mathbf{2}-\mathrm{BPh}_{4}$ and $\mathbf{3}-\mathrm{BPh}_{4}$ can also be obtained by Pasteur separation of crystals obtained by cooling a saturated solution of the reaction product in ethanol to $-25^{\circ} \mathrm{C}$.
2- BPh_{4} : IR (KBr): $\tilde{v}=1890 \mathrm{~cm}^{-1}$ (s) $\left(\mathrm{v}_{\mathrm{CO}}\right) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $293 \mathrm{~K}, \mathrm{TMS}$): $\delta=15.99$ (s, br, 1 H ; NH), $7.40-6.70(\mathrm{~m}, 20 \mathrm{H} ; \mathrm{Ph}), 4.37$ (d, $\left.3 \mathrm{H} ;=\mathrm{NCH}_{3}\right), 4.06\left(\mathrm{~m}, 24 \mathrm{H} ; \mathrm{CH}_{2}\right), 1.33 \mathrm{ppm}\left(\mathrm{t}, 36 \mathrm{H} ; \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ ($200 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 293 \mathrm{~K}, \mathrm{H}_{3} \mathrm{PO}_{4}$ ext.): $\delta=116.7 \mathrm{ppm}$ (s); elemental analysis (\%) calcd for $\mathrm{C}_{50} \mathrm{H}_{84} \mathrm{BN}_{2} \mathrm{O}_{13} \mathrm{P}_{4} \mathrm{Re}$ (1242.12): C 48.35, H 6.82, N 2.26; found: C 48.19, H 6.95, N 2.30 ;

3- BPh_{4} : IR (KBr): $\tilde{v}=1894 \mathrm{~cm}^{-1}(\mathrm{~s})\left(v_{\mathrm{CO}}\right) ;{ }^{1} \mathrm{H}$ NMR ($200 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$, $293 \mathrm{~K}, \mathrm{TMS}$): $\delta=13.98$ ($\mathrm{s}, \mathrm{br}, 1 \mathrm{H} ; \mathrm{NH}$), $7.60-6.80(\mathrm{~m}, 20 \mathrm{H} ; \mathrm{Ph}), 4.06(\mathrm{~m}$, $\left.24 \mathrm{H} ; \mathrm{CH}_{2}\right), 3.66\left(\mathrm{~m}, \mathrm{br}, 1 \mathrm{H} ; \mathrm{N}=\mathrm{CH}_{2}\right), 1.34 \mathrm{ppm}\left(\mathrm{t}, 36 \mathrm{H} ; \mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ ($200 \mathrm{MHz}, \mathrm{CD}_{2} \mathrm{Cl}_{2}, 293 \mathrm{~K}, \mathrm{H}_{3} \mathrm{PO}_{4}$ ext.): $\delta=123.6 \mathrm{ppm}$ (s); elemental analysis (\%) calcd for $\mathrm{C}_{50} \mathrm{H}_{83} \mathrm{BNO}_{13} \mathrm{P}_{4} \operatorname{Re}$ (1227.11): C 48.94, H 6.82, N 1.14; found: C 49.08, H 6.96, N 1.10.

Received: March 13, 2002 [Z18883]
[1] a) D. Sellmann, A. Brandl, R. Endell, Angew. Chem. 1973, 85, 1122; Angew. Chem. Int. Ed. Engl. 1973, 12, 1019; b) D. Sellmann, A. Brandl, R. Endell, J. Organomet. Chem. 1973, 49, C22; c) G. Huttner, W. Gartzke, K. Allinger, Angew. Chem. 1974, 86, 860; Angew. Chem. Int. Ed. Engl. 1974, 13, 822; d) D. Sellmann, K. Jödden, Angew. Chem. 1977, 89, 480; Angew. Chem. Int. Ed. Engl. 1977, 16, 464; e) D.

Sellmann, E. Böhlen, M. Waeber, G. Huttner, L. Zsolnai, Angew. Chem. 1985, 97, 984; Angew. Chem. Int. Ed. Engl. 1985, 24, 981; f) D. Sellmann, W. Soglowek, F. Knoch, M. Moll, Angew. Chem. 1989, 101, 1244; Angew. Chem. Int. Ed. Engl. 1989, 28, 1271; g) J. P. Collman, J. E. Hutchison, M. A. Lopez, R. Guilard, R. A. Reed, J. Am. Chem. Soc. 1991, 113, 2794; h) D. Sellmann, J. Käppler, M. Moll, F. Knoch, Inorg. Chem. 1993, 32, 960; i) D. Sellmann, K. Engl, F. W. Heinemann, J. Sieler, Eur. J. Inorg. Chem. 2000, 1079.
[2] a) M. R. Smith III, R. L. Keys, G. L. Hillhouse, A. L. Rheingold J. Am. Chem. Soc. 1989, 111, 8312; b) M. R. Smith III, T.-Y. Cheng, G. L. Hillhouse, J. Am. Chem. Soc. 1993, 115, 8638; c) T.-Y. Cheng, A. Ponce, A. L. Rheingold, G. L. Hillhouse, Angew. Chem. 1994, 106, 703; Angew. Chem. Int. Ed. Engl. 1994, 33, 657; d) T.-Y. Cheng, J. C. Peters, G. L. Hillhouse, J. Am. Chem. Soc. 1994, 116, 204; e) D. Sutton, Chem. Rev. 1993, 93, 995.
[3] a) G. Albertin, S. Antoniutti, A. Bacchi, E. Bordignon, F. Busatto, G. Pelizzi, Inorg. Chem. 1997, 36, 1296; b) G. Albertin, S. Antoniutti, E. Bordignon, S. Pattaro, J. Chem. Soc. Dalton Trans. 1997, 4445; c) G. Albertin, S. Antoniutti, A. Bacchi, M. Bergamo, E. Bordignon, G. Pelizzi, Inorg. Chem. 1998, 37, 479.
[4] a) K. H. Geib, P. Harteck, Ber. Dtsch. Chem. Ges. B 1933, 66, 1815; b) K. H. Geib, P. Harteck, Trans. Faraday Soc. 1934, 30, 131.
[5] a) J. E. Dickens, W. M. Irvine, C. H. DeVries, M. Ohishi, Astrophys. J. 1977, 497, 307; b) G. Winnewisser, C. Kramer, Space Sci. Rev. 1999, 90 , 181.
[6] F. Hoyle, N. C. Wickramasinghe, Nature 1976, 264, 45.
[7] P. A. Shapley, J. M. Shusta, J. C. Hunt, Organometallics 1996, 15, 1622.
[8] G. Albertin, S. Antoniutti, S. Garcia-Fontán, R. Carballo, F. Padoan, J. Chem. Soc. Dalton Trans. 1998, 2071.
[9] X-ray structural analysis: Philips PW1100 diffractometer equipped with a scintillation counter, graphite-monochromated $\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation ($\lambda=0.71069 \AA$). Data correction for absorption effects by the ψ scan method ${ }^{[10]}$ for both compounds, and intensity decay correction (40%) for $2-\mathrm{BPh}_{4}$. Structural determination: direct methods ${ }^{[11]}$ and fullmatrix least-squares refinement on all $F^{2} .{ }^{[12]}$ Anisotropic displacement parameters refined in both cases for all non-hydrogen atoms; hydrogen atoms were introduced in idealized positions. Phosphite and phenyl groups were restrained to agree with typical bonding geometry from the literature. Crystal data for 2- BPh_{4} : $\mathrm{C}_{50} \mathrm{H}_{84} \mathrm{BN}_{2} \mathrm{O}_{13} \mathrm{P}_{4} \mathrm{Re}$, $M_{\mathrm{W}}=1242.12$, crystal dimensions $0.3 \times 0.2 \times 0.2 \mathrm{~mm}^{3}$, space group $P 2_{1} / c$, monoclinic, $a=13.002(2), b=24.570(5), c=20.054(4) \AA, \beta=$ $95.49(2)^{\circ}, \quad V=6377(2) \AA^{3}, \quad Z=4, \quad \rho_{\text {calcd }}=1.308 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \theta_{\max }=30^{\circ}$, 18990 measured reflections (18537 unique), 4388 unique observed $(I>2 \sigma(I)), R_{1}=0.095, w R_{2}=0.26$ (on observed data), 176 restraints, 601 parameters, $G O F=0.845$. Crystal data for $\mathbf{3}-\mathrm{BPh}_{4}$: $\mathrm{C}_{50} \mathrm{H}_{83} \mathrm{BNO}_{13} \mathrm{P}_{4} \mathrm{Re}, \quad M_{\mathrm{w}}=1227.11$, crystal dimensions $0.4 \times 0.3 \times$ $0.2 \mathrm{~mm}^{3}$, space group $P \overline{1}$, triclinic, $a=15.393(5)$, $b=16.977(5)$, $c=$ $12.916(5) \AA \AA, \quad \alpha=100.02(5), \quad \beta=91.63(5), \quad \gamma=71.08(5)^{\circ}, \quad V=$ $3143(2) \AA^{3}, Z=2, \rho_{\text {calcd }}=1.290 \mathrm{gcm}^{-3}, \quad \theta_{\text {max }}=28^{\circ}, 15138$ measured unique reflections, 8634 unique observed $(I>2 \sigma(I)), R_{1}=0.048$, $w R_{2}=0.115$ (on observed data), 611 parameters, 79 restraints, $G O F=0.912$. CCDC-181120 $\left(\mathbf{2}-\mathrm{BPh}_{4}\right)$ and CCDC-181121 $\left(\mathbf{3}-\mathrm{BPh}_{4}\right)$ contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/ retrieving.html (or from the Cambridge Crystallographic Data Centre, 12, Union Road, Cambridge CB21EZ, UK; fax: (+44) 1223-336-033; or deposit@ccdc.cam.ac.uk).
[10] A. C. T. North, D. C. Phillips, F. S. Mathews, Acta. Crystallogr. Sect. A 1968, $24,351$.
[11] SIR97: A. Altomare, G. Cascarano, C. Giacovazzo, A. Guagliardi, M. C. Burla, G. Polidori, M. Camalli, J. Appl. Crystallogr. 1994, 27;, 435.
[12] G. M. Sheldrick, SHELXL-97, Program for structure refinement, University of Göttingen, Göttingen (Germany), 1997.
[13] W. A. Herrmann, L. K. Bell, M. L. Ziegler, H. Pfisterer, C. Pahl, J. Organomet. Chem. 1983, 247, 39.
[14] J. Vicente, M. T. Chicote, M. D. Abrisqueta, R. Guerrero, P. G. Jones, Angew. Chem. 1997, 109, 1252; Angew. Chem. Int. Ed. Engl. 1997, 36, 1203.
[15] D. A. Knight, M. A. Dewey, G. A. Stark, B. K. Bennett, A. M. Arif, J. A. Gladysz, Organometallics 1993, 12, 4523.
[16] Coordination geometry for 2: $\mathrm{Re}^{-\mathrm{N}} 2.12(1), \mathrm{Re}^{-} \mathrm{CO} 2.14(1), \mathrm{Re}-\mathrm{P}$ 2.354(4), NH-N 1.251(4), N-C 1.36(2), C-O 1.12(1) Å; Re-N-N 145(2), N-N-C 123(2).
[17] Preliminary investigations show the presence of traces of ammonia in the final reaction mixture, but no other nitrogen-containing compound was unambiguously identified, and therefore no reaction path may be reasonably proposed.
[18] Metal-mediated $\mathrm{N}-\mathrm{N}$ or $\mathrm{N}=\mathrm{N}$ bond activation is a topic of current interest. For some recent examples see: A. K. Verma, S. C. Lee, J. Am. Chem. Soc. 1999, 121, 10838; R. G. Peters, B. P. Warner, C. J. Burns, J. Am. Chem. Soc. 1999, 121, 5585; M. A. Aubart, R. G. Bergman, Organometallics 1999, 18, 811; F. Maseras, M. A. Lockwood, O. Eisenstein, I. P. Rothwell, J. Am. Chem. Soc. 1998, 120, 6598.
[19] Interest in cleavage of the $\mathrm{N}-\mathrm{N}$ bond of hydrazine stems from its importance to inorganic and bioinorganic reducing system(s): a) A. E. Shilov, Metal Complexes in Biomimetic Chemical Reactions, CRC, Boca Raton, FL, 1997; b) R. R. Eady, Chem. Rev. 1996, 96, $3013 ;$ c) G. J. Leigh, Science 1995, 268, 827; d) R. R. Schrock, T. E. Glassman, M. G. Vale, J. Am. Chem. Soc. 1991, 113, 725; e) S. M. Malinak, K. D. Demadis, D. Coucouvanis, J. Am. Chem. Soc. 1995, 117, 3126; f) D. Sellmann, J. Sutter, Acc. Chem. Res. 1997, 30, 460.

Total Synthesis of the Amaryllidaceae Alkaloid (+)-Plicamine and Its Unnatural Enantiomer by Using Solid-Supported Reagents and Scavengers in a Multistep Sequence of Reactions**

Ian R. Baxendale, Steven V. Ley,* and Claudia Piutti

Amaryllidaceae alkaloids are an important class of natural products especially as many members of the series display a wide range of potent biological activity. These properties include anticholinergic, antitumor, immunosuppresive, and analgesic activity, and they have also been shown to inhibit various cell cycle mechanisms (including HIV-1 activity), and have found recent application in the therapeutic treatment of Alzheimer's disease. ${ }^{[1]}$ Thus extensive synthetic studies of this family have been carried out over a number of years. ${ }^{[2,3]}$ Furthermore, the search for new members of the series has proved to be extremely profitable. ${ }^{[3,4]}$ The recently isolated compound (+)-plicamine ($\mathbf{1}$) is especially attractive as it exemplifies many of the structural features of these natural

[^1]
[^0]: [*] Prof. G. Albertin, S. Antoniutti, E. Bordignon, Dr. M. T. Giorg Dipartimento di Chimica
 Università Ca' Foscari di Venezia
 Dorsoduro 2137, 30123 Venezia (Italy)
 Fax: (+39) 041-234-8917
 E-mail: albertin@unive.it
 Prof. A. Bacchi, G. Pelizzi
 Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica Chimica Fisica, Università di Parma Parco Area delle Scienze 17/a, 43100 Parma (Italy)
 [**] This work was supported by MIUR (Rome)—Programmi di Ricerca Scientifica di Rilevante Interesse Nazionale, Cofinanziamento 2000 2001. We thank Daniela Baldan for technical assistance.Supporting information for this article is available on the WWW under http://www.angewandte.org or from the author.

[^1]: [*] Prof. S. V. Ley, I. R. Baxendale
 Department of Chemistry
 University of Cambridge
 Lensfield Road, Cambridge CB2 1EW (UK)
 Fax: (+44) 1223-336-442
 E-mail: sv11000@cam.ac.uk
 C. Piutti

 Department of Chemistry
 Pharmacia S.p.A
 Discovery Research Oncology
 Viale Pasteur, 10, 20014 Nerviano (MI) (Italy)
 [**] We gratefully acknowledge financial support from Pfizer Central Research for a Postdoctoral Fellowship (to I.R.B.), the BP endowment and the Novartis Research Fellowship (to S.V.L.), and Pharmacia \& Upjohn (to C.P.).

