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Abstract 
The paper investigates how the spatial evolution of core-based city regions affects the 
dynamics of income disparities across Metropolitan Statistical Areas in the United States 
between 1971 and 2010. Treating initially non-metropolitan counties as part of the functional 
economic system for the whole time period changes the internal composition of average per 
capita personal income thus biasing convergence analysis. The paper analyses the dynamics of 
the cross-sectional distribution of per capita personal income by comparing different methods 
to define MSAs over time. The results show that a cluster of high income economies emerges 
when MSAs are allowed to evolve spatially.  
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1 Introduction

The paper is about the evolution of income disparities in the United States:

average levels of per capita income exhibit strong and persistent differences

across Metropolitan Statistical Areas. The point that we arise is that, whether

US local economies are likely to walk on a convergence path depends on the

very same definition of the spatial units of analysis as well as on the time-

frame within which the analyses is conducted. In the US context, income dif-

ferences are evident when comparing two urban areas like San Francisco, CA

and Brownsville, TX, being per capita income in the former three times that in

the latter. Moreover, San Francisco shows an average per capita income one

third greater than Los Angeles even though it seems that the two are charac-

terised by similar technological, legal and educational endowments (Storper,

2010).

Metropolitan Statistical Areas represent local autonomous economic sys-

tems as self-contained as possible in terms of commuting patterns. Their use

in convergence analysis should be preferred over alternative administratively

defined spatial units at least for two reasons (Magrini, 2004): (i) criteria to de-

fine core-based city regions are uniform across the whole US territory and (ii)

their geographical extension includes both workplaces as well as residences.

The latter feature avoids the emergence of nuisance spatial dependence prob-

lems (Anselin and Rey, 1991) due to a mismatch between the spatial pattern of

the process under analysis and the boundaries of the observational units.

Processes of decentralisation or recentralisation of residences relative to

workplaces modify the geographic extension of Metropolitan Statistical Areas

over time. From the Seventies, the United States have experienced a move-

ment of people outward core areas and a dispersion of firms throughout the

metropolitan areas (OTA, 1995) even though mixed patterns have been identi-

fied when considering shorter periods (Fuguitt, 1985; Frey et al., 1993). Offi-

cial statistics at metropolitan level provided by the Bureau of Economic Anal-
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ysis do not consider the spatial evolution of Metropolitan Statistical Areas as

they rely on the most recent delineation realised by the Office of Management

and Budget which is fitted backward as if core-based city regions had had the

same geographic extension from the beginning to the end of the time series.

This method of defining Metropolitan Statistical Areas over time, the fixed area

approach, may deliver different statistics than those resulting from the floating

area approach that accounts for the evolution of the geographical extension of

the functional economic region (Fuguitt et al., 1988; Nucci and Long, 1995).

The sensitivity of statistical findings to the size and shape of spatial units is

known as the Modifiable Areal Unit Problem (MAUP) as firstly introduced by

Gehlke and Biehl (1934) and further developed by Openshaw (1977). Recently,

Briant et al. (2010) assess the magnitude of the bias with an application to

French data by comparing administrative, functional, and random spatial units

and concluding that “the MAUP induces much smaller distortions than eco-

nomic misspecification” (page 25). In this regard, Menon (2012) underlines

how their findings depend on the fact that French political geography presents

some peculiarities that prevent their conclusions to be generalized; moreover,

the statistical significance of the results is not testable because the random

counterfactual is based on a single iteration. Whether the geographical exten-

sion of the spatial units of analysis is considered as fixed or changeable over

time is likely to deliver different results when analysing convergence patterns.

The issue of regional convergence in the US has been extensively stud-

ied but authors have achieved contradictory results. It is possible to cat-

egorize the findings in accordance to the approaches that have been used.

The regression approach, usually associated to the notion of beta convergence

(Barro et al., 1991; Barro and Sala-i Martin, 2003), entails cross-section data

analyses which tend to report evidence of unconditional convergence (Rey

and Montouri, 1999; Higgins et al., 2006; Checherita, 2009). Different re-

sults are obtained when relying on panel data (Lall and Yilmaz, 2001; Shioji,

2001) and time series (Carvalho and Harvey, 2005; Holmes et al., 2013) meth-
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ods. Both procedures often describe a tendency towards conditional conver-

gence, i.e. spatial units converge in different clubs. Ambiguous results are

also found when using the Distribution Dynamics approach (Quah, 1993a,b,

1996b,a, 1997) with which some authors such as Hammond and Thompson

(2002) and Johnson (2000) found evidences of strong convergence while oth-

ers are in favour of polarization (Wang, 2004; DiCecio and Gascon, 2010). Ya-

mamoto (2007) analyses the evolution of income differences at various spa-

tial scales, ranging from counties to multi-state regions, to demonstrate that

smaller scales experience higher spatial income disparities, especially in the

last few decades.

The present research contributes upon the literature on convergence dy-

namics by assessing the sensitivity of the findings to a dynamic version of Mod-

ifiable Areal Unit Problem, i.e. the one deriving from the spatial evolution of

Metropolitan Statistical Areas over time. In order to achieve our aim, we con-

struct two time series (from 1969 to 2012) on per capita personal income at

metropolitan scale. The former follows the fixed area approach and aggregates

counties into Metropolitan Statistical Areas by keeping constant over time the

end-of-period delineation; the latter employs the floating area approach and

allows spatial units to change shape and size over time. Subsequently, we

compare the Distribution Dynamics results deriving from the use of the two

series. The findings indicate that both the inter and the intra-distributional dy-

namics may be significantly different and some patterns cannot be identified

by ignoring the spatial evolution of core-based city regions. As a matter of fact,

both in the long-run and in the short-term the floating area approach reveals

the presence of a cluster of high-income economies.

The paper is structured as follow. Section 2 explains in details the concept

of Metropolitan Statistical Areas in the US, how they are defined, the patterns

of spatial evolution detected in the last fifty years and the methods employed

to account for them; Section 3 describes the methodological framework and in

Section 4 we present the empirical analysis. Section 5 concludes.
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2 Metropolitan Statistical Areas’ Definition

The Metropolitan Statistical Area is defined as a core region containing a

large population nucleus, together with surrounding communities that present

a high degree of social and economic integration with the core (Bureau of the

Census, 1994). The concept of metropolitan area arose at the beginning of

the Twentieth Century with the observation that the physical extent of large

urban agglomerations rarely coincided with official city limits. Especially in

those areas later identified as Industrial Districts1, suburban territories often

overflew city boundaries: already in 1846, population in Boston appeared to be

small without considering neighbouring towns not included in the city charter

but actual component parts of the city (Hayward, 1846).

In 1950, the Federal Bureau of the Budget (later renamed Office of Man-

agement and Budget, OMB) established the Standard Metropolitan Area2 to

identify the functional zone of economic and social integration around a cen-

tral place. In order to maximize the availability of statistical data, the Federal

Bureau of the Budget decided that metropolitan boundaries have to match the

borders of the counties, i.e. the smallest administratively defined territorial

units covering the whole nation3. A number of drawbacks arise when using the

county as the building block for the construction of Metropolitan Statistical

Areas, first of all because they often contain a large rural component; there-

fore, the real extent of the functional zone tends to be overstated, especially in

some Western states (Parr, 2007)4. For example, in California, the geographi-

1 The definition of Industrial Districts - later renamed Metropolitan Districts - provided by
the Bureau of the Census in 1905, may be considered as a first attempt to identify functional
economic areas for the cities of New York, Boston, Chicago and St. Louis.

2 The collective term used for Federal metropolitan areas have varies over time, beginning
with Standard Metropolitan Areas (SMA) in 1950, Standard Metropolitan Statistical Areas
(SMSA) in 1960 to Metropolitan Statistical Areas (MSA) in 1980.

3 An exception is New England, where subcounty units - cities and towns- have a wide range
of statistics available.

4Alternative approaches have been suggested to define a system of settlements areas that
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cal extent of San Bernardino and Riverside counties is around 70,000 Km2 but

most of the area is in unoccupied desert. Nonetheless, the two counties con-

stitutes the Riverside-San Bernardino MSA which belongs also to the Greater

Los Angeles’ region that combines adjacent metropolitan statistical areas.

Generally speaking, a Metropolitan Statistical Area is a county or group of

counties that either contain at least one city of minimum 50,000 inhabitants

or has to be metropolitan in character and integrated with the central city.

The former is the central county, the latter qualifies as the outlying county.

In order to be metropolitan in character, a county has to: 1) either contain

(or employ) 10,000 non-agricultural workers, or contain (or employ) at least

one tenth as many non-agricultural workers as the central county, or contain

more than 50% of the population in minor civil divisions that have a population

density of at least 150 inhabitants per square mile (240 inhabitants per Km2);

and 2) have a labour force that is at least 75% non-agricultural. Furthermore,

a county may be considered as integrated if: 1) more than 15% of the work-

ers residing in the outlying county work in the central one, or 2) 25% of the

workers employed in the outlying county live in the central one. Hence, the

social and economic integration of surrounding residential areas with the em-

ployment core is defined in terms of daily commuting rather than, for example,

city’s trade area.

Despite many adjustments in terminology and criteria, the general concept

of Metropolitan Statistical Areas that official delineations are supposed to rep-

resent has remained unchanged. According to the Geographic Areas Reference

Manual provided by the Bureau of the Census, “Most of the changes in the stan-

dards have been minor and have not reflected significant deviations from the

concepts underlying the standards used for the 1950 Census” (Bureau of the

Census, 1994, page 13-5). The argument may ensure scholars about the coher-

ence in the use of Metropolitan Statistical Areas for the whole period ranging

from the middle of the century to the present days.

could overcome these limitations, see for example Berry et al. (1969) and Adams et al. (1999).
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Spatial Evolution of Metropolitan Statistical Areas

The geographic extension of the area that corresponds to a local and au-

tonomous economic system modifies over time as settlements evolve and com-

muting systems change. In the United States, the spatial distribution of jobs

and residential areas have followed mixed patterns over time. Since the post-

war period, the tendency has been for people to move outward beyond the sub-

urbs and for firms to disperse throughout the metropolitan area (OTA, 1995).

Despite the general decentralizing behaviour, some differences have been ob-

served from one decade to the next. In particular, the 1970s have witnessed the

so-called non-metropolitan turnaround (Fuguitt, 1985) when non-metropolitan

areas were found to be growing faster than metropolitan counterparts. The

trend reversed in the Eighties with the new urban revival (Frey et al., 1993)

which lasted until the end of the decade as a new rural rebound commenced

(Johnson and Beale, 1995). By looking at job growth by sectors, Gordon et al.

(1998) define the 1980s as an anomaly when accounting for Frostbelt - Sunbelt

differences: even in that period there have been steady decentralization, often

beyond the suburbs into rural areas. Carlino and Chatterjee (2002) observe

that most of the empirical studies analysing long-term urban evolution concen-

trate on population size while overlooking population density. By focusing on

the latter aspect, it is possible to identify a pattern of employment and popu-

lation deconcentration from the Fifties to the Nineties: the urban employment

(population) share of relatively dense metropolitan areas has declined while

that of less dense metropolitan areas has increased. Moreover, the authors

argue that the shift in employment (population) to metropolitan areas of lower

density, has been accompanied by a decentralization process from dense areas

toward the less dense ones within individual MSAs.

The official delineations of Metropolitan Statistical Areas change over time

following the patterns of residential decentralization as well as the spatial evo-

lution of the local economic system. The Office of Management and Budget

(OMB) updates the official boundaries every decade, as new information war-
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rants. In particular, some counties that were initially classified as non-metro

change status over time, being incorporated into existing MSAs. For exam-

ple, in 1960 the St. Louis MSA consisted of seven counties; by 2005 the St.

Louis MSA had expanded to encompass seventeen counties. At each revision,

the statistics for the metro and non-metro portion of every state are recal-

culated by the Bureau of Economic Analysis (BEA) to reflect the most recent

county classification. When the Office of Mangement and Budget adds a new

Metropolitan Statistical Area, the Bureau of Economic Analysis creates a time

series for it even though it may not have had any urban area at the beginning

of the period. Similarly, when the OMB changes the definition of a statistical

area, the BEA recreates the time series for that area, using the same defi-

nition (the new one) for every year in the time series. For example, when

OMB first defined the Gainesville, FL MSA, it consisted of the single county of

Alachua. The current definition of the Gainesville, FL MSA, consists of Alachua

and Gilchrist counties. BEAs’ estimates of personal income and employment

for the Gainesville, FL MSA also consist of the same two counties every year

from 1969 to the present day.

The use of recalculated time series may be a source of measurement er-

ror when dealing with long-term demographic and economic statistics. One

bias applies to MSAs that grew rapidly in population and geographic size over

the analysed time range. For these MSAs, the current boundaries overstates

land area and population for early years of the sample. In particular, the con-

vergence analysis between metropolitan areas may be affected by the way in

which spatial units of analysis are defined. Drennan et al. (2004) argues that

results may be biased in favour of convergence because those counties that ac-

quire the metropolitan status later in time with respect to the beginning of the

period of analysis tend to be poorer than counties originally part of the MSA.

In general, convergence results may differ according to the method adopted

for defining the boundaries of MSAs over a long period of time because au-

tonomous economic regions follow distinct spatial patterns. For MSAs that
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have experienced a substantial geographic expansion, the adoption of the most

recent definition for the entire time series may introduce measurement errors

both overstating population size and understating income levels.

The implications of measurement errors related to metropolitan areal bound-

aries definition have been considered only by few scholars, especially in the

field of population studies. Fuguitt et al. (1988) evaluate different methods

to describe the process of metropolitan - nonmetropolitan population change

and show how alternative county designations affect the results, even though

the turnaround of the 1970s and the subsequent return to metropolitan con-

centration in the 1980s do not arise as a consequence of the way counties

are designated as metropolitan or not. In particular, the authors compare

the metropolitan-nonmetropolitan growth differentials for each decade from

1950 to 1990 by adopting two methods. The floating area approach uses the

universe of metro counties at the beginning (or end) of each decade while

the fixed area classify the same counties as metropolitan throughout the se-

ries. The former implies that the universe of counties designated metropolitan

changes for each decade (Hall and Hay, 1980) according to the OMB’s defin-

tions. The results show how population growth rates for metropolitan counties

are systematically higher when using a floating area approach according to

which initially nonmetropolitan counties are excluded from the metropolitan

growth rate computation.

Acknowledging the ambiguities introduced by using constant boundaries,

Nucci and Long (1995) study the spatial and demographic dynamics of metro

and nonmetro territory in the US by adopting a spatial components-of-change

approach that identifies the separate contribution of core areas spreading out-

ward and newer areas being formed and expanding. Population change is

firstly analysed in Metropolitan Statistical Areas in existence at the beginning

of the period and then neighbouring counties are added to the urban fringe

as the OMB’s updates the delineations. Ehrlich and Gyourko (2000) document

changes in the population size distribution of metropolitan areas from 1910 to
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1995. In order to overcome arbitrariness in the delineations of metropolitan

areas, they investigate a variety of possible definitions, ranging from floating

area approach to fixed area classification based on the initial or final year. The

results are robust across metropolitan areas definitions and show that, follow-

ing the Second World War, the top decile in the distribution of metropolitan

areas by size loses population in favour of the next largest decile.

Gottlieb (2006) conducts a study on decentralization and deconcentration

in the United States in the period 1970-2000. The author suggests to assess

the evolution of the American settlement system over time by looking at the

distribution of population or employment across types of metropolitan areas

as defined at each decennial census. By adopting the floating area method,

it is possible to avoid the measurement error and to report the metropolitan

status of different places as accurate as possible. On the other way round, it

would not be possible to identify individual preferences for counties that are

at the bottom of the urban hierarchy but that gradually move up as people and

jobs migrate there. In contrast, Carlino and Chatterjee (2002) highlight the

importance of reducing this kind of measurement error when using density to

measure employment deconcentration, arguing that any negative correlation

between growth and employment density may spuriously be enhanced by the

erroneous underestimation of density at the beginning of the time series. In

order to alleviate the problem, the authors use metropolitan areas boundaries

from a single year but adopt a middle-period definition.

In the empirical section, we evaluate the implications of alternative defi-

nitions of Metropolitan Statistical Areas for the convergence analysis. Hence,

we borrow the methods developed by the demographic literature that accounts

for the spatial evolution of MSAs and apply them to the Distribution Dynamics

approach firstly discussed by Quah (1993a) in order to assess the evolution of

cross-sectional distribution of per capita income across MSAs. In particular,

we compare convergence results obtained by using either the floating area or

the fixed area approach as introduced by Fuguitt et al. (1988).
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3 Distribution Dynamics Approach

We analyse convergence using the Distribution Dynamics approach (Quah,

1993a,b, 1996a,b, 1997), in which the evolution of the cross-sectional distri-

bution of per capita income is examined directly, using stochastic kernels to

describe both the change in the distribution’s external shape and the intra-

distribution dynamics.

Consider two random variables, Yt and Yt+s, which represent per capita

income of a group on N economies observed, respectively, at time t and t + s.

Express the variables in relative terms with respect to the group average and

consider the cross-sectional distributions F (Yt) and F (Yt+s). Then, assume that

a density exists for each of the two distributions, i.e. f(Yt) and f(Yt+s). Finally,

suppose that the law of motion between time t and t + s can be modelled as a

first order process; therefore, the density at time t+ s is given by:

f (Yt+s) =

Z 1

�1
f (Yt+s|Yt) f (Yt) dYt (1)

where f(Yt+s|Yt) is a stochastic kernel mapping the density at time t into the

density at time t+s which describes where points in f(Yt) end up in f(Yt+s). An

estimate of this operator provides two sets of information: on the one hand, we

observe how the external shape of the distribution evolves over time; on the

other hand, the intra-distribution dynamics emerges as economies moves from

one part of the distribution to another. Hence, convergence may be studied

either by looking directly at the plot of the conditional density estimate or by

analysing the ergodic distribution. In the latter case, we assume that the first

order process is Markovian time homogeneous and we compare the shape of

the initial distribution with the stationary one that is defined as the limit of

f(Yt+s) as s ! 1.

A commonmethod to estimate the stochastic kernel in Equation (1) is through

the kernel estimator. Given a sample (Y1,t, Y1,t+s, . . . , Yj,t, Yj,t+s, . . . , Yn,t, Yn,t+s) of
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size n, the kernel density estimator of Yt+s conditional on Yt is:

f̂(Yt+s|Yt) =
nX

j=1

wj(Yt)Kb(Yt+s � Yj,t+s) (2)

where

wj(Yt) =
Ka(Yt � Yj,t)Pn
j=1 Ka(Yt � Yj,t)

(3)

with a and b bandwidths controlling the degree of smoothness and K a

kernel function.

Notwithstanding the large use in the empirical literature, the estimator in

Equation (2) might have poor bias properties. These limitations have been

highlighted and discussed by Hyndman et al. (1996), who proposes to estimate

the mean function implicit in the kernel density estimator by using an esti-

mator with better properties than the Nadarya-Watson estimator, such as the

local linear estimator (Loader, 1999). In the empirical section of the paper, we

estimate the stochastic kernel with the mean bias adjustment. In particular,

we employ Gaussian kernels and we fix the degree of smoothing using cross

validation (Green and Silverman, 1993). Estimates of the mean functions are

obtained via a local linear estimator with nearest-neighbour bandwidth.

Following Gerolimetto and Magrini (2014), we use smoothed time series

in the Distribution Dynamics analysis. In particular, we apply the Hodrick

Prescott (HP) filter5 (Hodrick and Prescott, 1997) to get rid of short term fluc-

tuations connected to the business cycle that are likely to bias the results,

as shown by Magrini et al. (2015). Let’s assume that regional per capita in-

come time series are the sum of two elements: a trend ygt and a cycle yct for

5 We rely on HP filter because of its simplicity and widespread use. For criticism see, for
example, Canova (1998) and Gomez (2001). Gerolimetto and Magrini (2014) show that the
choice of the band-pass filter does not significantly affect the convergence results.
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t = 1, . . . , T . The estimate of the trend component via the HP filter is obtained

by minimizing the following problem with respect to ygt :

TX

t=1

[(yt � ygt )
2 + �(ygt � 2ygt�1 + ygt�2)

2)] (4)

for a given value of �, which is the parameter that controls the degree of

smoothness of the estimated trend and the shape of the cyclical swings: as �

increases, the estimated trend component approaches a linear function.

Which value should be assigned to the � parameter is a highly debated is-

sue, discussed for example in Harvey and Trimbur (2008) and Ravn and Uhlig

(2002)6. As suggested by Kaiser and Maravall (1999), the choice of the degree

of smoothness should reflect the specific interests of the researcher. By draw-

ing on Gerolimetto and Magrini (2014), we assume � = 40 for annual data; the

value is computed according to the rule proposed by Ravn and Uhlig (2002)

who calculate the HP parameter from the value for quarterly data by multiply-

ing it by 4�4. In particular, the HP parameter for quarterly data is set equal

to 10000, a value computed following Gomez (2001) who derives � based on

the cut-out frequency which depend on the period of a complete business cycle

and determine the frequency threshold for a swing to be assigned to the cycle.

Moreover, Gerolimetto and Magrini (2014) adjust the proportion between av-

erage and cut-out cycles in order to take into consideration the fact that, for a

given average duration at the national level, the average duration at the state

(and at the MSAs) level may be longer. This derives from the fact that the US

cycle is a weighted average of the states’ cycles. Finally, we ignore estimates

at the sample endpoints because they tend to be close to the observations thus

failing to remove the cycle component from the trend (Baxter and King, 1999).

6Hodrick and Prescott (1997) interpret � as the ratio between the variance of the cycli-
cal component and the variance of the second difference of the growth component. Without
estimating the variances, the authors suggest to use � = 100 as a rule of thumb for annual
data.
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4 Empirical Analysis

We study convergence patterns across 161 US Metropolitan Statistical Ar-

eas in terms of real per capita personal income net of current transfer receipts.

We prefer to employ personal income rather than GDP7 because the industrial

reclassification from the Standard Industrial Classification (SIC) to the North

American Industry Classification System (NAICS) prevents the availability of

GDP data before 2001. The whole period of analysis ranges from 1969 to

2012. The main source of the data is the Bureau of Economic Analysis, which

provides the historical series for population, personal income and personal cur-

rent transfer receipts. We remove from aggregate personal income the amount

of transfers and we compute per capita average dividing by population. There-

after, we transform the series in real terms by using Consumer Price Index

provided by the Bureau of Labour Statistics.

Convergence analysis is evaluated on two different time series. The first

one considers per capita personal income as provided directly at the metropoli-

tan level by the Bureau of Economic Analysis that compute the values following

the constant area approach. In particular, BEA considers the last definition of

Metropolitan Statistical Areas released by the Office of Management and Bud-

get and fits it backwards up to 1969. The second series is computed according

to the floating area approach. Data are drawn from BEA at the county level

and then aggregated at the metropolitan scale according to the definitions pro-

vided every decade by the OMB. In the dataset, delineations change in 1970,

1980, 1990 and 2000.

We evaluate the sensitivity of the convergence results to the Modifiable

7Personal Income is computed as GDP minus: capital depreciation, corporate profits with
inventory valuation and capital consumption adjustments, contributions for government social
insurance, domestic net interest and miscellaneous payments on assets, net business current
transfer payments, current surplus of government enterprises, and undistributed wage accru-
als; plus: net income from assets abroad, personal income receipts on assets, and personal
current transfer receipts.
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Areal Unit Problem that emerges from different criteria according to which

data are aggregated at the metropolitan level both in the long as well as in the

short run. In both cases, the series on per capita personal income are smoothed

by means of the HP filter with the � parameter set to 40 for eliminating cyclical

fluctuations. In order to minimize the inaccuracies in the estimation of the end-

points, we reduce the series employed in the convergence analysis to a time

period ranging from 1971 to 2010.

The Distribution Dynamics approach is employed in the empirical analysis.

The output consists of a set of figures: a three-dimensional plot of the esti-

mated stochastic kernel, a Highest Density Region (HDR) plot as proposed by

Hyndman (1996) and a plot comparing the initial distribution with the ergodic.

The first figure allows to analyse convergence directly form the shape of the

three-dimensional plot of the stochastic kernel: a concentration of the graph

along the main diagonal describes the situation in which the elements of the

cross-sectional distribution do not change position from the initial to the final

year, i.e. the evolution of per capita personal income is characterised by a high

degree of persistence. On the other way round, a concentration of the graph

around the value one of the final dimension axis and parallel to the initial di-

mension axis means that the set of economies are converging; the formation

of different modes indicates polarization. The HDR plot represents conditional

densities for a specific value in the initial year dimension by vertical stripes

which are different in colours: the darker the greater the highest density re-

gion percentage. Finally, we compare the two ergodic distributions resulting

from the constant area and the floating area approach in a unique plot, where

the stationary distributions are evaluated on a common grid. Given the two

empirical Cumulative Density Functions, a Cramér - Von Mises test (Anderson,

1962) is performed to evaluate if they come from the same underlying distri-

bution.

Figures 1 and 2 present the results for the whole period, i.e. 1971-2010. We

present in Figure 1 the three-dimensional plot of the estimated stochastic ker-
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nel (left), the High Density Region plot (middle) and the comparison between

the initial (dashed) and the ergodic (solid) distribution (right) for the fixed area

approach (above) and the floating area approach (below). Moreover, the com-

parison between the two ergodics resulting from the application of the two

methods is represented in Figure 2: the fixed area stationary distribution is

the dotted one, the floating area the dashed. Finally, we report the results of

the Cramér - Von Mises (CVM) test and two indexes of dispersion, i.e. the In-

ter Quantile Range (IQR) and the Coefficient of Variation (CV) measured both

for the ergodic distributions and for the difference between the initial and the

ergodic distributions.

Figure 1 show a tendency to divergence regardless of the method used

to compute per capita personal income time series at the metropolitan level.

Nonetheless, some differences exist between the two approaches. In particu-

lar, the floating area approach highlights the presence of a thicker right tail

while the rest of the graph is concentrated around a peak below the average.

As a matter of fact, the three-dimensional and the HDR plots describe a situ-

ation of persistence and moderate convergence up to average relative income

values that changes into divergence as we approach higher levels. On the other

hand, fixed area approach shows a flatter stationary distribution and does not

emphasis the emergence of a high income levels cluster. Despite some common

features, the Cramér - Von Mises (CVM) test indicates that the two ergodics

in Figure 2 do not come from the same underlying distribution, i.e. they are

significantly different. Despite this, the dispersion indexes are quite similar

across the two approaches.

As highlighted by Gerolimetto and Magrini (2014), if we identify a tendency

towards convergence or divergence over a long time period, nothing may be

said about cross-sectional evolution patterns over shorter sub-periods. As a

matter of fact, a tendency towards convergence over several decades may

hide a period of divergence lasting just for some years. For this reason, and

in order to understand if results differ according to the approach used even
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in relatively shorter time periods, we perform the Distribution Dynamics for

three sub-periods of different lengths, i.e. 1971-1978, 1979-1985, 1986-2010.

Figures 3 and 4 refer to the former time span. The plots present a number of

interesting features: first of all, per capita personal income have persistently

remained in the position where they started; secondly, most of the economies

are concentrated on an unique mode that is set around the average value; fi-

nally, the alternative use of the floating area rather than fixed area approach

does not deliver any significantly different result. In fact, Figure 4 and the

Cramér - Von Mises test show that the two ergodic distributions are almost the

same. The results indicate that, despite the floating and the fixed series of

per capita personal income differ especially in these initial years, the average

internal composition of MSAs remains almost unaltered.

Things change a lot when moving to the subsequent period. The pattern

of convergence across economies identified for the time span 1971-1978 re-

verses and a clear tendency towards divergence emerges between 1979 and

1984 (Figures 5 and 6). In general, the ergodic distributions show the emer-

gence of two peaks, respectively, at the top and at the bottom of the distri-

bution. The existence of a high per capita income club of economies is more

evident when using the floating area approach, as it was for the tighter right

tail in the long run. High numbers are associated with both the Coefficient of

Variation and the Inter Quantile Range, thus indicating substantially dispersed

ergodic distributions. Moreover, also the Dispersion Indexes evaluated for the

difference between the initial and ergodic distributions underline how we are

moving from a situation of relative equality to a more unequal state.

Finally, let us discuss the findings for the last sub-period which ranges be-

tween 1985 to 2010 (Figures 7 and 8). In this case, it is clear that using either

the floating area approach or the fixed area method delivers completely dif-

ferent results. By adopting the latter, it seem that most of the economies are

converging around a mode that departs only marginally from the average peak-

ing on a value slightly lower than one. In fact, the three-dimensional plot as
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well as the High Density Region plot (Figure 7, above) reflects a situation of

persistence for most of the values and the graph is concentrated on the main

diagonal with the exception of the initially higher income levels, which evolve

by increasing the gap with respect to the mean. On the other hand, Figure 7

(below) represents a situation in which economies diverge when moving from

the initial to the final year. If the evolution follows a time homogeneous Markov

process, two distinct modes arise, as shown by the stationary distribution. The

High Density Region plot offers additional insights. Poorest economies move

above the main diagonal and form a cluster with the other economies slightly

below the average, which instead remain where they started. The same hap-

pens for the elements above the average: those relatively closer to the mean

value stay where they were at the beginning of the period, the highest-income

economies form a club at the top of the distribution. Obviously, by looking at

Figure 8, it is easy to see even by eye that the two ergodic distributions are to-

tally different, and the Cramér - Von Mises test statistically demonstrates it. As

expected, the Indexes of Dispersion evaluated for the difference between the

initial distribution and the stationary one show how, when using the fixed area

approach, the distributions changes only marginally while a discrepancy up to

0.42 (IQR) is experienced when adopting the floating area approach. For the

ergodic distribution estimated using the dataset relative to the floating area

method, the same measure of dispersion arrives at 0.64, thus highlighting the

character of divergence between MSAs.

In sum, the use of a floating area approach to build per capita personal

income time series for Metropolitan Statistical Areas highlights some features

of the convergence dynamics otherwise impossible to detect. In particular,

both in the long-run and in the short-run, the presence of a cluster of rich

economies is identified, either in the form of a mode or as a long and tight right

tail. On the contrary, the internal composition of MSAs in terms of per capita

personal income that derive from the application of the fixed area approach

may bias the convergence results hiding the existence of a second peak.
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Figure 1: Fixed Area (above), Floating Area (below): 1971-2010

Figure 2: Ergodic Distributions: 1971-2010

Statistics p-value

CVM Test 15.0403 0.000

� from t CV IQR

Fixed 0.1073 0.1757

Floating 0.1270 0.1190

Ergodic CV IQR

Fixed 0.2562 0.3613

Floating 0.2772 0.3123
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Figure 3: Fixed Area (above), Floating Area (below): 1971-1978

Figure 4: Ergodic Distributions: 1971-1978

Statistics p-value

CVM Test 0.1573 0.3742

� from t CV IQR

Fixed 0.0238 0.0584

Floating 0.0111 0.0435

Ergodic CV IQR

Fixed 0.1789 0.2455

Floating 0.1746 0.2406
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Figure 5: Fixed Area (above), Floating Area (below): 1979-1984

Figure 6: Ergodic Distributions: 1979-1984

Statistics p-value

CVM Test 2.2464 0.0000

� from t CV IQR

Fixed 0.1777 0.2693

Floating 0.2107 0.4165

Ergodic CV IQR

Fixed 0.3245 0.4608

Floating 0.3648 0.6229
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Figure 7: Fixed Area (above), Floating Area (below): 1985-2010

Figure 8: Ergodic Distributions: 1985-2010

Statistics p-value

CVM Test 118.5684 0.0000

� from t CV IQR

Fixed 0.1529 0.0022

Floating 0.1202 0.4193

Ergodic CV IQR

Fixed 0.3154 0.2075

Floating 0.2907 0.6422
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5 Conclusions

The paper provides a contribution over the empirical literature on per capita

income levels evolution across Metropolitan Statistical Areas in the United

States. The use of core-based city regions as spatial units of analysis in conver-

gence studies have a number of advantages over administratively defined ones:

they are as self contained as possible in terms of commuting patterns; there-

fore, local statistics are not biased for the fact that income levels are measured

at workplaces and population at residences. Nonetheless, over a long time pe-

riod such as the one analysed in the empirical section, Metropolitan Statistical

Areas change their size and shape. By ignoring their spatial evolution, we are

introducing a bias on the statistics about population, mean income levels and,

thus, average per capita incomes which may be interpreted as a Modifiable

Areal Unit Problem in dynamic terms. Results of the convergence analysis

change when the geographic extent of the MSAs is allowed to vary over time

and disclose the presence of a cluster of economies characterised by high in-

come levels.
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