Halogen metathesis in $\operatorname{Pd}(I I) \sigma$-butadienyl complexes

Thomas Scattolin ${ }^{\text {a }}$, Fabiano Visentin ${ }^{\text {a }}$, Luciano Canovese ${ }^{\text {a }}$ and Claudio Santo ${ }^{\text {a }}$
${ }^{\text {a }}$ Dipartimento di Scienze Molecolari e Nanosistemi, Universita` Ca’ Foscari, Venezia
e-mail: thomas.scattolin@unive.it

Irrespectively of the involved mechanism, the formation of aryl or alkyl Pd (II) species is comparatively easier and faster when aryl- or alkyl-iodide, instead of bromide and chloride derivatives are reacted with $\operatorname{Pd}(0)$ substrates. ${ }^{1-2}$

The substitution of I^{-}with Cl^{-}or Br^{-}is usually obtained by de-halogenation of the iodo-species followed by addition of an appropriate soluble halide. ${ }^{3}$

In the present abstract, we report that σ-butadienyl palladium complexes bearing thioquinoline as spectators ligands undergo substitution of the iodide bound to $\operatorname{Pd}(I I)$ by bromide or chloride by one pot reaction between the above complexes and the interhalogens IBr and ICl , respectively (Scheme 1). ${ }^{4}$

Scheme 1

Scheme 2

In one case we were able to substitute simultaneously the iodides bound to palladium and terminal butadienyl carbon with two bromides simply by adding bromine to complex 1a (Scheme 2). ${ }^{4}$ We have explained this peculiar reactivity with a mechanistic hypothesis based on a sequence of selective processes of oxidative addition and reductive elimination involving $\operatorname{Pd}(I V)$ intermediates. ${ }^{4}$

References

1. Hartwig, J.F.; in " Organotransition Metal Chemistry", 2010, Chap.7, University ScienceBook.
2. Crabtree, R.H., in "The Organometallic Chemistry of the Transition Metals", 2005, Chap. 6, Wiley.
3. Tobe, M.L.; Burgess, J., in "Inorganic Reaction Mechanisms", 1991, Chap.3, Addison Wesley.
4. Scattolin, T.; Visentin, F.; Santo, C.; Bertolasi, V.; Canovese, L., Dalton Trans., 2016, submitted.
