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easonally forced model

a b s t r a c t

We propose and analyze an important extension of standard cholera epidemiological models, explicitly
accounting for fluctuations of water availability to the human community under study. The seasonality
of water input in the reservoir drives the variation of concentration of Vibrio cholerae. Two compartments
are added to the Susceptible-Infected-Bacteria model. First, the recovered individuals, which, over many
seasons, lose their immunity to the disease and replenish the Susceptible group. Second, the water volume
of the reservoir, which determines bacterial dilution and, consequently, the probability of contracting
cholera by ingesting contaminated water. By forcing the model with a seasonally varying hydrologic
input, we obtain simulations that can be compared to available data for various regions of the World
characterized by different hydrological and epidemiological regimes. The model is shown to satisfactorily
haotic time-series
ydrologic seasonality and cholera

reproduce important characteristics of disease insurgence and long-term persistence. Using bifurcation
analysis of nonlinear systems, we also explore how different degrees of seasonality and values of the
basic reproductive number can change the expected long-term epidemiological time series. We find that
there exist parametric conditions where the model shows chaotic patterns – i.e. high unpredictability
especially in the amplitude of prevalence peaks – which very much resemble actual data on long-term
cholera insurgence.
ntroduction

Cholera is an intestinal disease that can cause death of the host
y dehydration due to profuse diarrhoea and vomiting. As the
ecent and violent Haiti epidemics testifies (Bertuzzo et al., 2011;
AHO, 2011; Tuite et al., 2011), cholera outbreaks can be a major
hreat for developing countries. In this context, mathematical mod-
lling is becoming a subject of increasing epidemiological interest
Tuite et al., 2011; Bertuzzo et al., 2008; Mari et al., 2012; Chao
t al., 2011), both for acute epidemics, which tend to have self-
ustained dynamics driven by exposure to excess concentrations of
athogens through dispersal by water pathways and human mobil-

ty, and for recurrent events in endemic regions, i.e. outbreaks due
o hydrometeorological seasonality and to the ecology of the Vib-
io cholerae. In particular, research is needed to better understand
he mechanisms of its recurring insurgence in endemic regions, i.e.
here outbreaks of the disease are cyclically observed. The role
f many environmental drivers has been examined to date (see
.g. Akanda et al., 2009; Colwell, 1996; Pascual et al., 2002), but
here is no clear indication of a robust, unambiguous correlation
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between one exogenous forcing factor and long-term cholera pat-
terns. Viability of V. cholerae in riverine and marine environments
is obviously a key factor, which depends on many hydroclimato-
logical variables, such as water temperature and precipitation or
flooding indices as symptoms of increased exposures (Pascual et al.,
2002; Bouma and Pascual, 2001; Altizer et al., 2006; Ruiz-Moreno
et al., 2007). On the other hand, bacterial concentration in the local
water reservoir, i.e. in the water volume that is commonly utilized
by the local community for its daily needs, is directly related to
the hydrological cycle. The dilution effect is the expected mech-
anism underlying the link between the seasonal fluctuations of
water reservoir volumes and the insurgence of the disease – the
intensity of droughts has, in fact, been found to be positively cor-
related with the intensity of the disease Akanda et al. (2009). Our
aim is to systematically analyze via a newly proposed model the
influence of different hydrological regimes on cholera long-term
temporal patterns to understand whether this factor has indeed a
key role in determining the observed periodicities and bursts of the
disease in various geographic regions.

To focus on temporal fluctuations, we will use a spatially implicit

description and discuss the different epidemiological patterns that
can affect a single human community as a result of time-varying
water availability. We thus assume that the time scale of spatial
spread of the disease in the whole region considered (through

dx.doi.org/10.1016/j.epidem.2011.11.002
http://www.elsevier.com/locate/epidemics
mailto:lorenzo.righetto@epfl.ch
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the symbols used for parameters is in Table 1. To mathematically
simplify the analysis, the model is reformulated in terms of dimen-
4 L. Righetto et al. / E

ispersion in waterways and human mobility) is much shorter
han the time scale of the local epidemics (see Bertuzzo et al.,
010 for details). Under this circumstance, spatially explicit and
patially implicit models basically show a very similar behavior,
s individuals move rapidly inside the region without introducing
arge delays at the epidemic time scale. Spatially detailed mod-
ls relating transport of bacteria along river networks and cholera
nsurgence were previously addressed in the literature (Bertuzzo
t al., 2010, 2008; Righetto et al., 2011; Tuite et al., 2011; Chao et al.,
011), but the seasonal variations of water volumes in the river net-
ork were not considered therein. This is a factor that needs to be

ddressed, because there is ample evidence that the variable condi-
ions of water supply are tightly linked to cholera temporal patterns
Akanda et al., 2009).

The core of our model is based on Codeco’s Susceptible-Infected-
acteria (SIB) compartmental model Codeco (2001), suitably
odified to explicitly incorporate temporary immunity of hosts

nd the water reservoir dynamics. In the original formulation of
odeco (2001) the host population was subdivided into susceptible
nd infected compartments alone. The disease was indirectly trans-
itted via ingestion of water contaminated by V. cholerae. Because
e want to study long-term (i.e. several years) cholera patterns,
e need to account for the process of immunity loss by individuals
ho recovered from the disease. We therefore add a third com-
artment in the population. Also, as first proposed by Pascual et al.
2002), here we consider the variation over time of the volume of
ater available to the community, expressed as a mass balance

quation. The amount of water available in the system influences
n a nonlinear way not only the concentration of bacteria, but also
he probability of contracting the disease.

We specifically aim at investigating the role played by hydro-
ogical seasonality in the processes leading to cholera insurgence.

e do not restrict our focus only to areas of historically acknowl-
dged endemicity of the disease (Pascual et al., 2002, 2000), but we
xtend the analysis to countries with sporadic cholera outbursts
o understand whether hydrological seasonality alone can repro-
uce – at least qualitatively – some of the global patterns that have
een identified at different latitudes (Lipp et al., 2002; Emch et al.,
008).

To investigate which causal factors are key for the insurgence
f various epidemiological patterns, we use bifurcation analysis of
onlinear systems (Kuznetsov, 1995). To this end, in fact, it is the
ost effective tool, because it permits to systematically classify

he different possible behaviors of the model and to link them to
articular model parameterizations. Since the majority of model
arameters can be given reliable estimates from the literature
Codeco, 2001; Hartley et al., 2006; Neilan et al., 2010) and do not
isplay very pronounced geographical variations, we concentrate
ere on a few, significant quantities that are either characterized by
ncertainty or do vary appreciably in different regions of the world.

n particular, we have singled out the basic reproductive number R0,
he variability of the hydrological cycle (also called degree of sea-
onality) and the water reservoir residence time. Lastly, we have
ested how different dynamics of loss of immunity, whose dura-
ion has also been questioned (see King et al., 2008), may affect the
ehavior of the model.

The paper is organized as follows. ‘The model’ section introduces
he model which includes the dynamics of the local reservoir of
ater. In the ‘Epidemiological patterns originated by the model’

ection, we exemplify the temporal patterns of the forced behavior
roduced by the model for a set of parameter values and compare
odel outputs with data observations. In the ‘Bifurcation analy-

is of the model’ section we completely analyze the patterns of
odel behaviors as a function of the focal parameters via bifurca-
ion analysis. A discussion and some final remarks close the paper
‘Conclusions’ section).
ics 4 (2012) 33–42

The model

To analyze the role played by the dynamics of the water reservoir
in determining the epidemiology of cholera, we reformulate the
basic model by Codeco (2001) as follows:

dS

dt
= � (H − S) − ˇ

B

kW + B
S + � R

dI

dt
= ˇ

B

kW + B
S − (� + ˛ + �) I

dR

dt
= � I − (� + �)R

dB

dt
= −�B B + p I − � B

dW

dt
= q(t) − � W

(1)

where S, I and R are respectively the number of susceptible, infected
and recovered individuals in the host community of size H; B is the
total number of V. cholerae bacteria, contained in the water reser-
voir of size W (thus bacterial concentration is B/W). The human
population is assumed to be at demographic equilibrium in the
absence of cholera, with � being the natural background mortality
rate and H the demographic equilibrium. Infection is regulated by
the contact rate ˇ and depends on the number of bacteria B through
the logistic dose–response curve introduced by Codeco (2001), i.e.
B/(kW + B); the parameter k represents the concentration of bacteria
that grants 50% probability for a susceptible of contracting the dis-
ease. Once infected, individuals can die either from natural causes
(�) or from cholera infection (˛), or they can recover from the dis-
ease at a rate � . As for V. cholerae dynamics, we assume that bacteria
would not persist in the natural environment, at least in appre-
ciable quantities (�B being their mortality rate), in the absence
of contamination due to faecal excretion by infected individuals
(occurring at rate p). We note that I includes asymptomatic indi-
viduals as well, whose excretion represents an important input to
V. cholerae concentration in the water (King et al., 2008).

As anticipated in the ‘Introduction’ section, we have added two
model compartments to the Codeco model Codeco (2001). The first
is the recovered class R. Infection from V. cholerae does not con-
fer total immunity from cholera. Therefore recovered individuals
have an active role in the long-term epidemiology of the disease,
because they replenish the susceptible compartment at a rate �,
which is compatible with the decadal temporal scales of our inter-
est. Most studies indicate in fact a long-lasting immunity of about
5 years (Clemens et al., 1990; Koelle et al., 2005), even though a
shorter immunity duration of 12 weeks has been advocated for in
other studies (see e.g. King et al., 2008). Second, as suggested in
Pascual et al. (2002), we explicitly incorporate a description of the
hydrologic dynamics of the water reservoir volume W. The water
reservoir receives an input q(t) and it is depleted at a rate �, which is
here assumed to be mainly due to drainage (i.e. evaporation is con-
sidered small with compare to drainage). The outflux of water from
the water reservoir (�W) determines also an output of V. cholerae
proportional to the actual concentration B/W. This is indeed the
simplest possible hydrologic assumption, not devoid of practical
appeal (Brutsaert, 2005). We define the characteristic size of the
water reservoir as W = q0/�, where q0 is the time average of q(t)
(i.e. q0 = 1/T

∫ t0+T

t0
q(t) dt, for T � 1/�). The interactions among the

model compartments are illustrated in Fig. 1, while a summary of
sionless variables, i.e. S � (S/H), I � (I/H), R � (R/H), W � (W/W) and
B � (B/k W).
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ig. 1. Schematic graph with the interactions among compartments of model (2)
nd the basic processes involved in the dynamics of the system.

The rescaled model therefore reads as:

dS

dt
= � (1 − S) − ˇ

B

W + B
S + � R

dI

dt
= ˇ

B

W + B
S − (� + ˛ + �) I

dR

dt
= � I − (� + �)R

dB

dt
= −�B B + pH

kW
I − � B

dW

dt
= Q (t) − � W

(2)

here Q (t) = q(t)/W . Consistently with Codeco (2001), we find
hat model (2) – when Q(t) is kept constant – has two epidemiologi-
al equilibria, namely the disease-free equilibrium X0 = [1 0 0 0 1]T

the symbol T stands for matrix transposition) and the non-trivial,
ndemic equilibrium X+ = [S+ I+ R+ B+ 1]T . In particular, X+ is pos-
tive and the model converges to endemicity only when the basic
eproductive number of cholera, R0 (Anderson and May, 1992), i.e.

0 = ˇpH/kW

(� + ˛ + �)(�B + �)
(3)

s larger than unity. It can be shown that at equilibrium the preva-
ence I+ (the fraction of infected individuals) increases with R0.

hen R0 < 1, X0 is stable. Note that, at R0 = 1, there is a so-called
ranscritical bifurcation of the system: equilibria X0 and X+ coincide
nd exchange stability (Kuznetsov, 1995).
R0 is directly proportional to the contact rate ˇ and the excretion
ate p, to the total size of the human community H and to the times
f residence in the compartments of infectives (� + ˛ + �)−1 and
acteria (�B + �)−1. On the other hand, it is inversely proportional

able 1
escription of the parameters used in the model.

Symbol Description

ˇ Rate of exposure to contaminated water (day−1)
� Population natality and mortality rate (day−1)
p Per capita contamination rate (cells day−1 infected−1)
H Human population size at demographic equilibrium
� Recovery rate (day−1)
k Concentration of V. cholerae in water that yields 50%

chance of being infected with Cholera (cells/m3)
˛ Cholera mortality rate (days−1)
�B Natural mortality rate of V. cholerae in the aquatic

environment (day−1)
� Rate of drainage from the water reservoir (day−1)
� Loss of immunity rate (day−1)
ics 4 (2012) 33–42 35

to the critical dose k and to the characteristic water volume W (the
dilution effect).

Model (2) has 8 parameters, each with a specific epidemiolog-
ical or hydrological meaning. Ranges for the numerical values of
the majority of these parameters can be found in the literature (see
Bertuzzo et al., 2008; Codeco, 2001 for references). As for the aver-
age transition time from recovered to susceptible state, we assume
here that immunity is lost after 5 years (Koelle et al., 2005), so
� = 0.00055 days−1. This assumption will be relaxed in ‘Bifurca-
tion analysis of the model’ section. Hydrologic parameters will be
discussed in the next section.

Epidemiological patterns originated by the model

As outlined in the ‘Introduction’ section, our goal is to investigate
how epidemiological dynamics are connected to the hydrological
regime. To this end we introduce an idealized seasonal pattern for
the water input Q(t), which qualitatively mimics the seasonality
of river flow and/or rainfall. Such fluctuations represent the typical
hydroclimatic conditions of many regions in the world. In formulas,
we set:

Q = Q0

[
1 + � cos

(
2�t

365

)]
(4)

where Q0 is the annual average normalized flow and t is measured
in days. The parameter � is a measure of the flow variability –
the larger is �, the larger is the ratio of the variance to the mean.
This simplified formalism corresponds to a unimodal hydrological
pattern, characterized by one annual peak occurring in the appro-
priate season depending on the region. It is worth noting that not
all regions of the world have a unimodal precipitation pattern.
For instance some regions display bimodal patterns (Ruiz-Moreno
et al., 2007).

A first question concerns whether the processes described by
the seasonally forced model can reasonably reproduce, at least
qualitatively, epidemiological behaviors observed in data. Unfor-
tunately, available studies that point at the role of seasonality in
cholera transmission (e.g. Pascual et al., 2002; Lipp et al., 2002;
Emch et al., 2008) do not discuss in quantitative detail the interplay
between hydrological drivers and cholera insurgence. In a recent
and exhaustive review on seasonality of cholera, Emch et al. (2008)
show data for the disease in areas of the world at different latitudes.
Among many other examples of the same kind, cholera in Iran
shows a pattern of insurgence that clearly suggests periodicity, with
yearly outbreaks concentrating in October. Rainfall data from the
Iran Meteorological Service are available online (Iran Meterological
Service, 2011). By aggregating throughout the whole region data
from rain gauges for the months between 1973 and 2004, we obtain
a clearly unimodal pattern (Fig. 2A, blue bars), with a wet season
(late winter/early spring), followed by a dry summer. The red bars
in the same Fig. 2A show the sum of cholera outbreaks occurred in
Iran month by month between 1974 and 2005, as reported in Emch
et al. (2008). Note that an outbreak is defined therein as the pres-
ence of at least one reported cholera case in any calendar month,
which cannot be referred to as an actual peak of prevalence, but
simply testifies the occurrence of cholera in the region during the
specific month. Although such an aggregated indicator must not
be confused with disease prevalence, it is plausible to consider the
number of outbreaks recorded in a month during the study period
as a proxy for the infected in that month.

In panel B of Fig. 2 we show the temporal pattern (red solid line)
of prevalence predicted after transient by model (2) when forced

with a fluctuating water input Q(t), as the light blue solid line. We
assume here � = 0.7143, which corresponds approximately to the
percent variation from the mean that is observed in rainfall data
shown in panel A. For values of R0 slightly larger than unity (we
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Fig. 3. Comparison between data on monthly averages for cholera insurgence (yel-
low dashed line) and rainfall (blue dotted line) for the province of Trichinopoly,
as shown in Ruiz-Moreno et al. (2007), and a model simulation (black solid line)
with R0 = 7.5, � = 0.2 day−1; � = 0.00055 day−1 and water input given by equation
verages from 1974 to 2003 and the number of cholera outbreaks in Iran from 197
orcing (see Eq. 4) and R0 = 1.2, � = 0.7143, Q0 = 0.02 days−1, � = 0.02 days−1; � = 0.000
= 0.2 days−1, ˛ = 0 days−1, �B = 0.228 days−1. (For interpretation of the references t

ssume in this case R0 = 1.2), the model exhibits a periodic behavior,
ith one yearly peak of cholera prevalence. The maximum number

f outbreaks in Iran occurs three or four months after the low-
st rainfall, which corresponds to the minimum bacterial dilution
Fig. 2A). Interestingly, the model reproduces correctly a similar
ime lag between the two patterns (Fig. 2B). Delays of the same kind
ave been observed also in other regions, such as Central Amazonia
Pascual et al., 2002; Codeco, 2001). We obtain such patterns for a
easonable value of the retention time of the water reservoir, equal
o 50 days. This parameter is prominent in determining how much
he minimum water level should lag with respect to the minimum
ater input, because it sets the response time of water reservoir

olume with respect to the input. The delay between the mini-
um water volume and the epidemiological peak is then set by

he basic reproductive number R0, as it determines the threshold
n susceptible population for the epidemic to occur.

Other hydrological regimes, not displaying a single rain period
er year, are worth being considered, to investigate whether the
esulting epidemiological patterns can be mimicked by our model.
ome studies (Pascual et al., 2002; Altizer et al., 2006; Ruiz-Moreno
t al., 2007) point out that bimodal rainfall patterns throughout the
ear can cause dramatic changes in the epidemiological patterns.
n the ‘wet’ regions of the Indian districts of Madras Presidency
the Administrative subdivision for British colonies), where two
ain seasons are present (one around May, the other in October),
holera appears quite regularly every year. On the contrary, in
adras regions, where one rainfall peak per year is registered, dis-

ase outbreaks are recurrent but with irregular frequencies and
mplitude.

We run our model by taking as water input the actual monthly
verages of rainfall shown in Ruiz-Moreno et al. (2007) for the wet
rovince of Trichinopoly (India), normalizing the quantities shown
here so that:

(t) = Q0
rTr(t)

max rTr(t)
(5)

here rTr(t) is the monthly averaged rainfall pattern as reported in
uiz-Moreno et al. (2007).

Fig. 3 shows rTr(t) (blue dotted line) and cholera normalized
revalence ITr(t) (yellow dashed line), also derived from data on
holera mortality shown in Ruiz-Moreno et al. (2007) as a proxy.

e then compare the latter to the long-term simulation (black solid
urve) of our model (2), when forced assuming that the water input
attern follows each year the rainfall pattern depicted in Fig. 3.

aily prevalences obtained from the model have been aggregated

o monthly values and normalized. Note that, if the rainfall input
epeated every year in the same way as in our case, the simulated
symptotic pattern would be periodic. This allows us to ascribe the
(3); other parameters as in Bertuzzo et al. (2008): � = 0.00005 days−1, ˇ = 1 days−1,
� = 0.2 days−1, ˛ = 0 days−1, �B = 0.228 days−1. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of the article.)

dynamics shown in Fig. 3 to the intrinsic dynamics of the model,
which proves quite effective in grasping the overall mechanics
of disease insurgence. In fact the winter peak occurs in January,
when rainfall is decreasing, but before the rainfall minimum. The
epidemiological peak drains the Susceptible basin; so, when con-
ditions for disease outbreak (i.e., high vibrio concentration) occur
again, near the second rainfall minimum (in June), the subsequent
spring peak of cholera prevalence is approximately 60% lower. This
result highlights the non-triviality of the interplay between human
compartments, concentration of V. cholerae and the fluctuations of
the water reservoir, as no unique relationship between the water
input timing and the timing of the epidemic can be identified.

Data on long-term dynamics of cholera insurgence show high
variations in the magnitude of prevalence peaks (King et al., 2008;
Koelle et al., 2005; Ruiz-Moreno et al., 2007; de Magny et al., 2008;
Glass et al., 1982; Huq et al., 2005; Islam et al., 2009; Pascual et al.,
2008). Some studies have explicitly highlighted the large unpre-
dictability of prevalence peaks (Pascual et al., 2002; Altizer et al.,
2006). This might lead to the conclusion that a chaotic behavior can
be characteristic of long-term cholera patterns.
Bifurcation analysis of the model

To understand the full complexity of seasonal epidemiologi-
cal patterns, it is helpful to conduct a systematic analysis of the
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ig. 4. Bifurcation diagram of model (2) in the parameter space (�, R0 for � = Q0 = 0
s in Fig. 2.

ualitative long-term behaviors of our model. The most effective
ay of cataloguing the functioning modes of nonlinear systems

uch as (2) is bifurcation analysis (Kuznetsov, 1995). By using
oftware that implements continuation techniques (e.g. AUTO or
ATCONT; Dhooge et al., 2003), it is possible to compute in relevant

arameter spaces the bifurcation surfaces partitioning parametric
egions where the model phase portraits are topologically equiv-
lent. For example, parametric conditions for which the model
xhibits one attracting limit cycle of period 1 year are separated
y a surface from those where one single cycle of period 2 or a
haotic attractor emerges.

This kind of analysis is especially suited to the case at hand,
ecause, as explained in the Introduction, uncertainties and varia-
ions are mainly limited to three parameters, two characterizing the
ydrological regime (�, �) and one the epidemiological process (R0).

n particular, the amplitude of the forcing or degree of seasonality �
s representative of the climatic regime of a region and can widely
ary throughout the world, while the basic reproductive number
f the disease R0 is very seldom estimated in the cholera literature.
he retention time of the water reservoir is also an important uncer-
ainty factor when describing the hydrological dynamics and thus
overns the interactions between environment and vibrio concen-
ration: for this reason the robustness of the analysis with respect to
his parameter will be tested. Fig. 4 shows the bifurcation diagram
f the model in the parameter space (�, R0), obtained for a reservoir

haracterized by a retention time of 1/� = 100 days, together with
ypical temporal patterns of the disease obtained by the model.
ach panel shows an example of the prevalence fluctuations corre-
ponding to a different parametric region. To the far right we also
s−1. Line types and symbols explained in the Appendix A. Unspecified parameters

show the characteristic power spectra of the chaotic time series
depicted aside.

Appendix A contains a detailed description of the structures
depicted in the main bifurcation diagram (Fig. 4). We particularly
underline the presence of regions in which there is bistability,
namely the coexistence of periodic attractors of different charac-
teristic period. Three main stable limit cycles, in fact, can be found
indifferent regions of the parameter space under study, with a char-
acteristic basic periodicity of 1, 2 and 3 years. The formation of the
2(3)-year cycle via a tangent of cycles bifurcation is marked by the
blue(green) solid line, while the red solid line locates the disap-
pearance of the 1-year cycle (For interpretation of the references
to colour in this text, the reader is referred to the web version of
the article.). In regions B and C, thus, bistability between the 1-year
period – which, though, acquires biannual periodicity in region C –
and the 2-year period attractors is encountered, whereas regions D
and F show coexistence between the 2-year period and the 3-year
period attractors. This is a feature that holds important epidemi-
ological significance, as simple variations in the values of state
variables – say, in the number of vibrios – can strongly influence
the general epidemiological pattern, shifting the system trajec-
tories to another attractor. The formation of bistability regions
was also observed in other bifurcation diagrams of epidemiolog-
ical models, chiefly in Kuznetsov and Piccardi (1994) and in Earn
et al. (2000), for low-intermediate levels of the contact rate of the

disease, which can be taken as a proxy of the basic reproductive
number for comparison with our results. In fact, in our model too
we find that bistability is to be expected for low or intermediate
values of R0.
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At increasing values of the degree of seasonality �, we also ver-
fy the appearance of chaotic behavior, which occurs as periodic
ttractors progressively double their characteristic period via what
s called a Feigenbaum cascade of flip bifurcations – detailed with
ashed, dashed-dotted and dotted lines in Fig. 4; colors refer to
ifferent attractors, as explained above. Two chaotic regions are
ound, originated by different periodic attractors. More specifically,
n region E one may find chaotic patterns generated by the limit
ycle of annual period, while in region D there exists bistability
etween the chaotic attractors generated by the biannual and the
riannual limit cycles. The trajectories arising from such parametric
onditions show non-trivial signatures, as shown in the far right

anels DPS, EPS and FPS of Fig. 4. There we show the normalized
alues of the Fast Fourier Transform (FFT) spectra of suitably long
indows of model simulations of cholera incidence (aggregated on
monthly basis), for values of the parameters corresponding to the
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ig. 5. Normalized power spectra of monthly aggregated weekly epidemiological
eports (WHO) for Niger, Philippines and Cameroon.
ics 4 (2012) 33–42

respective areas of the bifurcation diagram. The characteristic peri-
odicity of the cycle from which each chaotic attractor was generated
leaves its fingerprint, as one can detect spikes located at 1-year
(EPS), 2-year (FPS) and 3-year (DPS) periodicities. Interestingly, how-
ever, many other frequencies, greatly attenuated when trajectories
are simply periodic, emerge as important from the spectral analy-
sis of chaotic patterns. Biannual frequencies arise where a 1-year
periodicity is preponderant (panel EPS), while annual frequencies
emerge when 2-year and 3-year peaks explain much of the fluctu-
ations of incidence trajectories (panels DPS and FPS).

A comparison with the dominant frequencies of real long-term
time series of cholera incidence can be useful to determine the
significance of the above results. We have taken weekly epidemio-
logical reports on cholera cases, reported by WHO, and aggregated
them on a monthly basis (distributing cases between months
accordingly). We assume that no reports for a particular nation and
month correspond to zero cases. In Fig. 5 we show, again, the nor-
malized values of the FFT spectra of the time series of new cholera
cases in three countries, that we choose for their long and mostly
complete records (approximately 35 years for Cameroon and Niger,
20 for the Philippines). Spectral analysis is restricted to 5 years’ peri-
ods, as a significant analysis of lower frequencies would require
longer time series. Moreover, lower frequencies can be controlled
by interannual variation of climatic variable (e.g. ENSO for the
pacific regions (Pascual et al., 2000; Rodo et al., 2002)). Our model
does not account for interannual forcings and thus it cannot con-
sistently capture frequencies lower than 5 years of period. Despite
these shortcomings, we find important similarities between the
spectra we obtained from chaotic model trajectories and the ones
depicted in Fig. 5, not only qualitatively, but also quantitatively.
Cameroon and Niger show, in fact, strong biannual and triannual
periodicities respectively, which closely match the ones character-
istic of chaotic patterns in region D of Fig. 4 (see panels FPS and
DPS). Along with the main periodic component, both data and model
show many other excited frequencies, of intra-annual, annual and
multi-annual periodicities. More specifically, Niger FFT spectrum
shows important biannual and annual components, which can be
also observed in panel DPS of Fig. 4. Similarly, Cameroon epidemio-

logical pattern is characterized by a set of different periodicities, not
only involving the biannual main component, but also significant
frequencies of lesser – 1 year and less – and greater – 3 years and

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
1

2

3

4

5

6

7

8

Seasonality ε

R
ep

ro
du

ct
io

n 
nu

m
be

r 
R 0

Fig. 6. As Fig. 4, but for � = Q0 = 0.1 day−1.
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ore – period. This pattern is also caught by the spectrum of the
haotic trajectories of the biannual attractor, as seen in panel FPS of
ig. 4. The Philippines, instead, are characterized by an important
nnual component, with a much lower peak at the 2-year periodic-
ty, a pattern also emerging from the chaotic trajectories of region
of Fig. 4 (see panel EPS).

One might wonder whether adding random noise – e.g. a log-
ormal factor to water input, to simulate rainfall daily variability
to models with parameters corresponding to nonchaotic pat-
erns would lead to more realistic spectra. The answer is negative,
s it emerges from our simulations: there would be only slight
ariations in high frequency components, as expected. There-
ore, it looks like the broad and diversified spectra of actual time

ig. 7. Feigenbaum diagrams for varying values of loss of immunity rate: 1/� = 12 week
= Q0 = 0.01 days−1. Unspecified parameters as in Fig. 2.
ics 4 (2012) 33–42 39

series can only be obtained with parameters corresponding to
chaotic patterns, and not simply by adding noise to more regular
patterns.

These findings raise the question of whether the difference
between endemic regions, where cholera appears every year (the
Philippines, for instance), and epidemic regions (Cameroon and
Niger), where outbreaks are sparsely distributed along the years
(Sack et al., 2003; Ruiz-Moreno et al., 2007) may well be simply
ascribed to different values of R0, which cause outbreaks char-

acterized by different frequencies. It is also worth noting that,
compared to airborne diseases, such as measles (Kuznetsov and
Piccardi, 1994) or influenza (Casagrandi et al., 2006), environmen-
tal drivers of waterborne diseases such as cholera can display a

s (A.); 1 year (B.); 3 years (C.); 5 years (D.); 8 years (E.); 10 years (F.). R0 = 5.5 and
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analytical tools that can help not only to predict but also to under-
stand the basic processes underlying the intertwinement between
0 L. Righetto et al. / E

easonality degree � as high as 80% or more. In fact, we expect
he values of � in historically endemic regions, where monsoonal
egimes prevail, to be typically high, as water input is definitely
oncentrated in specific periods of time during the year. Accord-
ng to the model outcomes, we should therefore expect, in general,
omplex epidemiological patterns of the disease.

To verify the robustness of this global picture of our model
ehaviors we also analyze the bifurcation diagram for a different
alue of the water retention time �−1, which is the third param-
ter that can widely vary in different situations. We choose, in
articular, to increase the value of � to 0.1 day−1, thus shortening
he average water retention time to 10 days. The previous value
0.01 day−1), in fact, identifies reservoirs with residence time of
pproximately 3 months, which can refer to water provisioning
rom and disposal to, say, a small lake. In Fig. 6 we instead consider
he opposite extreme of very small ponds, which get inundated or
efilled by rainfall, but are rapidly drained, thus causing much faster
ydro-epidemiological dynamics in the system. This new parame-
er setting leads to a slightly more complicated diagram, as shown
n Fig. 6. In fact, for a fixed value of R0, the sequence of period
oubling bifurcations leading to a region of chaotic patterns occurs
or smaller �’s, compared to Fig. 4. For instance, chaos is possible
ith � = 0.2 and R0 = 2, whereas these parameters corresponded to
2-year cycle in the system with � = 0.01 days−1.

At the same time, the robustness of the previous analysis is
onfirmed by observing that the basic topological structure of the
ifurcation diagram is respected: one can still find the bistability
egion (again, between the blue and the red solid lines) and the two
haos regions, for different values of R0. The upper chaotic region
s closed and restricted by the seasonality range 0.25 < � < 0.85.
igher or lower values of the forcing amplitude will lead to peri-
dic dynamics, with return time of one year. Important differences
rise, however, from an epidemiological viewpoint, between period
cycles at low and high values of �. We find, for instance, that

he peak prevalence for � = 0.1 is 0.0129, while we obtain a value
f 0.065 for � = 0.9, at R0 = 6. Moreover, the tangent bifurcation of
eriod three cycles (t3 curve) is again observed.

Another parameter whose value has been recently questioned
s the duration of immunity after recovery from cholera infection.
ven if the great majority of immunological studies and model-
ng exercises indicate that immunity should last between 3 and
0 years, King et al. (2008) reconstructed from cholera incidence
ime series a short-term immunity of only 12 weeks. To compare
he behavior of the model for different values of the rate of loss
f immunity, we show in Fig. 7 the results pertaining four dif-
erent values of immunity duration, namely 12 weeks, 1 year, 3
ears and 5 years. The analysis here shown is a so-called Feigen-
aum diagram, displaying the values of cholera prevalence peaks
s a function of the degree of seasonality �, for a fixed basic repro-
uctive number R0 = 5.5. Results prove to be consistent with these
lso for R0 = 2.5 (not shown). Panels (A)–(C), corresponding to the
horter durations of immunity, do not show any complexity aris-
ng. Apart from an increasing amplitude of the prevalence peaks,
riven by the more pronounced seasonal oscillations of water input,
he annual periodic pattern is qualitatively maintained, except
or a flip bifurcation emerging in diagram (B), corresponding to
/� = 1 year, which does not affect the general annual periodic-

ty of such pattern. Chaotic patterns only appear in the diagram
elated to the longest immunity period, coherently with what we
btained in Fig. 4. The difference is explained by the fact that
he faster the loss of immunity is, the more a SIRS-based model
ike the one we presented resembles a simple SIS model, with
ractically no role of the R class. This induces faster replenish-
ent dynamics of the Susceptible compartment and a simple
ynchronization of epidemiological dynamics with the external
orcing.
ics 4 (2012) 33–42

Conclusions

We have proposed a new model to study cholera dynamics,
which explicitly takes into account temporal fluctuations of the
water volume hosting the pathogen V. cholerae. To this end, we have
added two compartments to the standard SIB model for cholera,
originally proposed by Codeco (2001): the recovered compartment
R, which is important to understand the long term dynamics of
the disease, and the hydrologic fluctuations of the water volume
W available to a certain human community. In order to mimic the
processes of dilution that control bacterial concentrations in the
system, the input (rainfall or runoff) to W, which varies over time
following a simple (and regular) seasonal pattern, is periodically
forced. We have shown that, even with this simple description of
hydrological phenomena, the model can reproduce the epidemi-
ological courses that characterize the periodic insurgence of the
disease in various areas of the world. In particular, the model can
quantitatively describe the delay between drought seasons – during
which there is a high vibrio concentration in the water – and preva-
lence peaks. This has been observed in countries where cholera has
been present for decades (e.g. Iran). We have also investigated the
effect of bimodal forcings which better describe the yearly rainfall
patterns of other geographical regions (e.g. India). If forced with
the actual values of water input that are observed for endemic
regions in the province of Madras, India, the model is able to quite
well reproduce the recorded patterns of seasonal cholera which, in
this particular case, occurs twice per year. Not only the timing, but
also the relative amplitude of peaks is in fact quite satisfactorily
reproduced. Finally, we have analyzed the whole range of model
behaviors in the parameter space of the degree of seasonality �
and of the basic reproduction number R0, which we choose as most
significant and subject to wider variations (other parameters are
assumed from the relevant literature or from available data). Bifur-
cation analysis revealed the presence of behaviors also found in real
data, including non-periodic, chaotic dynamics. We observed an
increased complexity of model behaviors for intermediate or high
values of � coherently with previous results Kuznetsov and Piccardi
(1994). Also, we have found two distinct parameter regions where
different chaotic attractors emerge, which however display differ-
ent average epidemic frequencies (which increase with R0). Power
spectra referring to chaotic trajectories show significant similarities
with real data time series in both endemic and epidemic coun-
tries. We thus hypothesize that the difference between endemic
and epidemic regions might be different intensities of the disease,
as expressed by different basic reproductive numbers. Moreover,
different values of the loss of immunity rate show that only a rela-
tively long time of immunity can induce complex dynamics in the
system.

Despite the ability of such a simple model to describe many
actual temporal patterns of cholera, there exist some cases that
cannot be explained by the dilution mechanism only. Patterns, such
as those typically observed for certain Bangladesh regions (Matlab
in particular; see e.g. Emch et al., 2010), display two outbursts per
year - one between April and May (spring peak), the other around
October/November (autumn peak), even if there is only one rain-
fall peak per year. We speculate, though, that this peculiarity might
be due to the concurrence of two mechanisms: (a) the disruption
of sanitation systems during floods or hyper-supply of pathogens,
which counter the dilution effect, and (b) spatially explicit dynam-
ics, which we do not consider here but that are accounted for in
several studies (see e.g. Bouma and Pascual, 2001).

As the recent Haiti epidemics testifies, the development of
environmental variability and the insurgence of cholera is much
needed. Models including both the epidemiological compartments
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nd the environmental matrix in which the disease unfolds can
reatly help in setting up intervention policies and emergency man-
gement alternatives. Making them space and time-specific can
trengthen their effectiveness and reliability. Needless to say, such
ffort is most effective when supported by consistent data surveys,
hich can help in detailing the environmental and epidemiological

haracteristics of the area hit by the disease outbreaks.
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ppendix A.

We detail here the structure of the bifurcation diagram shown in
ig. 4. At small �’s (region A), the system exhibits a stable one-year
ycle. By varying the parameter values, such periodic attractor loses
tability in favor of other attractors that undergo a series of bifurca-
ions all depicted as red curves in Fig. 4. The dashed red curve f (1)

1 is
flip bifurcation which is subcritical within the interval (ZLV1, ZLV2)
nd supercritical elsewhere. Crossing the supercritical part of f (1)

1
rom left to right (regions G and I) causes the one-year cycle attrac-
or to lose its stability in favor of a cycle with a 2-year period. From
n epidemiological viewpoint, it is important to emphasize that
he period doubling does not reflect an actual temporal displace-

ent of prevalence peaks but a differentiation in their amplitude.
n other words, close to the right of the supercritical part of f (1)

1 ,
here is a periodic attractor whose prevalence peaks every year,
ut with two slightly different peaks in odd and even years. The
ed dashed and dotted line f (1)

2 is a supercritical flip bifurcation
f the 2-year cycle just described. Inside the convex parametric
egion H formed by the curve (and close to it) a 4-year period cycle
s stable. This 4-year cycle also loses its stability via period dou-
ling at the red dotted flip bifurcation curve f (1)

4 . A cascade of flip

ifurcations (Feigenbaum cascade) occurs nearby f (1)
4 and a para-

etric region where model (2) shows chaotic behavior is entered
region E). The corresponding temporal patterns shown in panel
E are indeed very resemblant to actual long-term time-series (as
xtensively discussed above). While the amplitude and the timing
f each peak is unpredictable for the chaotic attractors in this para-
etric region, the average return time of two prevalence peaks (i.e.,

f cholera outbreaks) remains rather close to approximately one
ear, yet decreases with increasing R0.

The solid red curve t1 is a tangent of cycles bifurcation that
nvolves the 2-year periodic attractor originated at the flip bifurca-
ion f (1)

1 and another unstable period 2 cycle. At t1, these two cycles
ollide and disappear for parametric values at the right of it (region
).

There is a second important structure, depicted with blue curves,
n the bifurcation diagram of Fig. 4. The blue solid line t2 is a tangent
ifurcation of cycles that identifies the formation of an attractor
f period 2 years sensu stricto. In other words, this cycle has an
pidemiological periodicity of 2 years, i.e. it has prevalence peaks
hat only appear every 2 years (solid time-series in Fig. 4 panel

). The parametric region between the solid blue and red curves is
herefore characterized by bistability, namely the system can alter-
atively converge to one cyclic solution of period 2 or another of
ither period 1 (region B) or 2 (with an interpeak period of 1 year
ics 4 (2012) 33–42 41

though, region C). The period 2 attractor emerged at t2 also under-
goes a cascade of flip bifurcations. The blue dashed curve f (2)

1 and

the dashed and dotted f (2)
2 curve are the first two flip bifurcations

of a sequence leading to a region (labeled as D) where the sys-
tem displays chaotic behavior. As noticed for the strange attractors
of region E, chaotic regimes obtained in region D also maintain to
some extent the characteristic periodicity of the original cycle that
underwent the Feigenbaum cascade. The mean return time of ape-
riodic patterns in region D ranges from values around 2.36 years
for R0 = 3, to values of nearly 1.64 years for R0 = 4.

Within the chaotic region D, other interesting structures
emerge, although it is difficult to continue the bifurcations, for
numerical reasons. As an example, we show a tangent bifurcation
of period three cycles (solid green curve, t3) and a supercritical flip
bifurcation (f (3)

1 ), where the period three cyclic attractor originated
at t3 doubles its period. In region F we therefore find bistability,
which implies the coexistence of a chaotic attractor and a stable
period 3 cycle (see panel F).
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