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1 Introduction

The US subprime and European sovereign bond crises sparked a renaissance in the re-

search fields related to contagion and systemic risk. Even though those concepts are

almost 20 years old, originating mostly in the description of the currency crisis at the end

of the last century (see Forbes and Rigobon (2001); Allen and Gale (2000); Bae et al.

(2003); Pericoli and Sbracia (2003) Eisenberg and Noe (2001); De Bandt and Hartmann

(2000); Rochet and Tirole (1996); Freixas et al. (2000)), there is still not complete con-

sensus around their definitions, as shown in De Bandt et al. (2009), Bisias et al. (2012),

and Forbes (2012). For this reason, we prefer not to use those terms and refer to the phe-

nomena we are investigating as variance and covariance spillovers. Our choice relates with

our focus on methodological contributions. According, we show how networks can be in-

tegrated within multivariate volatility models for the purpose of analyzing risk spillovers.

Furthermore, building on a classical model, we provide several new tools specifically de-

signed to take advantage of the knowledge of the spillover effects, due to the existing

connections (network links) across analyzed variables. These tools will allow us to filter

networks accounting for the model dynamic, and to disentangle the network spillover con-

tribution from the standard autoregressive-like risk dynamic. Moreover, from a forecasting

perspective, we provide the methodology for recovering the optimal network design, with

relevant implications for model users.

In line with the literature (Bekaert and Harvey (1997); Ng (2000); Billio and Pelizzon

(2003)), we define a variance spillover as the contribution to the time t variance (risk) of

a recipient entity due to the variance of, or shocks impacting on, a source entity before

time t. This definition is signed, directional, includes the time dimension and can account

for feedback effects. On the other hand, it excludes a systematic shift of variances due to

a common factor affecting the returns (our approach is meant either for a case in which

returns are not affected by a common factor or for modeling the residuals of a reduced-form

system of equations). A covariance spillover is the contribution to the time-t covariance

(thus dependence) of two entities due to the variance (risk) of an entity, the covariance
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between any two entities, or shocks affecting the covariance evolution, all before time t.

Those definitions are clearly related to contagion and systemic risk, but at the same time

they are rather restrictive since there could be other symptoms of the latter two broad

concepts going beyond what spillover evidences might suggest. Moreover, despite being

per se relevant, in the literature the detection of spillovers generally lacks an economic

intuition associated with the fundamental transmission channels, motivating the presence

of spillovers. For this reason, in this paper we give emphasis to both the detection of

spillovers and the identification of their potential sources.

In more detail, we aim at introducing economically grounded drivers of variance and

covariance spillovers. For this purpose, we take into account network structures among

entities. In fact, networks represent the set of connections existing across entities, and

thus the structure from which spillovers might originate.

In developing our methodology, we introduce and exploit a parallel between the net-

work approach and the tools commonly used in spatial econometrics. In particular, the

adjacency matrix, i.e. the companion representation of any network, is set equal to the

distance matrix in spatial econometrics. Clearly, since the network describes an economic

structure (and can be estimated with different and competing approaches), the distance

measured by the network is of a purely economic nature. Nevertheless, the parallel allows

us to take advantage of all the tools developed in the past decades in the spatial econo-

metrics literature. From an empirical point of view, there has been a surge of financial

economics contributions using economically based distances for the interpretation of con-

tagion and systemic risk (see Billio et al. (2015); Bianchi et al. (2015); Keiler and Eder

(2013); Schaumburg et al. (2014)). Our work belongs to this strand of literature and aims

at building a bridge between the contagion, volatility spillover and network, and systemic

risk fields.

The use of distances in spatial statistics and econometrics normally refers to physical

elements, with geographical neighboring relationships representing central elements in

several areas, for instance for real estate studies. Distances across financial entities are
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clearly more difficult to measure but, if available, they can be useful for taking advantage

of the tools of network science, which studies the existence of relationships (edges) among

many entities (nodes). Notably, in network science, entities are neighbors if they are

directly or indirectly connected, and the distance is associated with the network structure.

The intersection and interaction of different research fields, such as network sci-

ence, spatial econometrics, economics and finance, give rise to new developments and

tools. In particular, most advanced strands of the spatial econometrics literature (see

Keiler and Eder (2013); Schaumburg et al. (2014); Caporin and Paruolo (2015)) focus on

statistical, economic and financial relationships. The starting point of our paper is the

contribution of Caporin and Paruolo (2015) that introduces spatial econometrics tools to

the analysis of conditional volatility models, and thus to the estimation and measurement

of risks. We take a step further in two different aspects: First, we consider the proxim-

ity matrix (a generalization of the spatial distance matrix) used by Caporin and Paruolo

(2015) as a network structure. The focus on the risk dimension, therefore, distinguishes us

from recent related literature that mostly aims to explain expected returns, conditional to

a network structure, with only an indirect description of the drivers of covariances. To our

best knowledge, the only papers that introduce a functional dependence of the covariance

from a network are those of Bianchi et al. (2015) and (Billio et al., 2015). The first con-

siders inferred network relationship that are only of a statistical nature, while the second

is closer to our economic foundation of network links. However, both papers do not focus

on risk dynamics but rather on returns dynamics. On the contrary, our model belongs

to the GARCH literature and is thus a pure risk model. Moreover, our network relation-

ships are intended to be derived from financially relevant quantities (in our application,

cross-border exposures of national banking systems), which are commonly perceived as

potential transmission channels of shocks or associated with transmission channels. This

choice is made with the aim of investigating and measuring the amount of spillover that

could be explained by the transmission channels, as summarized by the network, and of

prescribing an intervention in order to reduce spillover and mitigate risk. Our methodol-
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ogy thus relates to previous analyses pointing at what is called direct contagion as opposed

to informational contagion (see Allen et al. (2009); Hasman (2013)).

The most important contributions of our work are on the methodological side. We start

by generalizing the model of (Caporin and Paruolo, 2015) with the introduction of time-

variation in the proximity matrices. This is a consequence of the use of financial quantities

in the estimation of networks. By construction, financial variables are time-varying and

thus networks are time-varying, with consequences on model estimation. By conditioning

on the networks, we are able to overcome the computational burden and the curse of

dimensionality. Notably, the model parameters becomes time-varying but still preserving

the model feasibility in moderate cross-sectional dimensions, an uncommon feature in the

multivariate GARCH literature. With our techniques, we are able to ascertain which part

of the spillover is driven by network connections. We analyze this aspect by resorting to

a decomposition of the risk in the system into different components. For each conditional

variance (covariance), we thus separate the impact of the own past shocks and variances

(covariances) from the contribution of shocks and variances (covariances) associated with

linked (through the network) assets. This is an important issue from the monitoring point

of view as it allows disentangling the role of the network from that of the autoregressive-

like variance (covariance) dynamic. The third methodological contribution combines the

model estimation outcomes with the financially-driven network. We show how to filter

out the network using the significance of the model parameters. In this way, we recover

information on the statistically relevant channels of spillover. Finally, by adopting proper

forecasting techniques, our modeling framework is capable of proposing policy intervention

strategies that aim to mitigate spillover and, in general, risk in the system, by acting on

direct transmission channels, represented by the network connections. We show how to

estimate the optimal networks by focusing on a specific criterion function.

We also present an empirical analysis that shows the potential benefits deriving from

our approach. The empirical analysis concerns the relevance of the network of cross-

country banking system exposures in explaining the European sovereign bond spillovers.
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Our results underline the role of Ireland and Spain as risk receivers and the importance of

Germany, Italy and, to a less extent, Greece as risk spreaders. In addition, we provide an

ex ante way to mitigate the risk in the system by representing the system by an equally

weighted index, and its risk with a forecasted variance proxy. We use this proxy as the

objective function to be minimized, to determine target exposures that, if hypothetically

enforced by the regulator before the sovereign bond crisis of the second quarter of 2010,

could have limited its impact.

The paper is organized as follows. In Section 2, we introduce the econometric model for

the spatial interpretation of risk. In Section 3 we discuss several model developments such

as inference-based networks, system variance decomposition, and forecast based otimal

target networks. In Section 4, we apply the methodology to bond yields for the major

countries of the Euro area during the subprime and sovereign debt crises. Finally, in

Section 5 we summarize our findings, outline their usefulness and trace a path for future

extensions.

2 Spatial Econometrics of Risk

In this section, we propose a method for introducing financial proximity into the treatment

of risk and dependence across financial entities or assets.1 After describing the model, in

the following section, we introduce several tools useful for inference and forecasting.

The first novelty of our methodology is provided by the fact we allow for time-varying

nature of the measure of financial proximity. This is in sharp contrast to the usual spatial

econometrics definition in which proximity relations are fixed, be they geographical, based

for instance on physical measures of distance, as in Anselin (2001) and Elhorst (2003),

or fixed economic quantities, such as the industry sectors used in Caporin and Paruolo

(2015). However, when phisical distances are replaced by economically based distances,

we can easily loose time invariance. Therefore, the introduction of time varying proximity

1In this section, we use the words entities, assets, subjects, and nodes as synonyms. The appropriate
choice depends on the data analyzed.
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relation is a novely but also a need. This aspect makes our estimation procedure more

difficult, but at the same time this additional complexity allows us to better explore

how the change in these time-varying relationships would impact on the risk and spillover

effects across assets. Moreover, this allows us to suggest potential interventions that could

be made by policy authorities and/or regulators.

2.1 Proximity and Networks

In the spatial statistics and econometric literature (see Anselin (2001),LeSage and Pace

(2009),Elhorst (2003) a proximity matrix is a matrix whose entries are related to some no-

tion of distance between entities. The prototypical example is real geographical distances.

These are generally summarized into a weight matrix W , whose entries [W ]i,j correspond

to the geographical distance involved in moving from i to j. The matrix W is obviously

static and symmetric. Making a parallel with network studies, W corresponds to the ad-

jacency matrix of a weighted undirected network. Usually, as discussed in Elhorst (2003),

the proximity matrix W is row normalized in order to maintain reasonable magnitudes for

the parameters. In addition, in the classical spatial statistics and econometrics literature,

the spatial impact is measured by means of a single coefficient ρ that pre-multiplies the

weight matrix W . This implies only a common and unique impact across the entities

involved in the analyses.2

Following Caporin and Paruolo (2015), we consider a more general viewpoint, and in-

troduce the proximity matrix P as a linear combination of a weight matrix W and an

identity matrix I, P = ρ0I + ρ1W , where, I is an identity matrix, ρ1 and ρ0 are scalars,

ρ1 representing the global impact of a network on the variables of interest, and ρ0 being

a constant common to all the variables. The advantage of this formulation for proximity

matrices relates to the possibility of distinguishing between a common constant impact

2The two most common specifications are the spatial auto regressive model (SAR), where a vector
(a cross-section) of observations Y obeys the linear model Y = ρWY + ε, and the spatial error model
(SEM), where, for the same observation, we have Y = ε+ ρW ε. In both cases, the coefficient ρ monitors
the spatial impact, that is, the response of Y to the neighbors’ values (in the SAR model) or to the
neighbors’ shocks (in the SEM model).
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and the additive one associated with the neighbors. A first and immediate generaliza-

tion for the use of spatial econometrics in finance, as opposed to economics, is that the

parameters are not constrained to be scalars. We generalize the scalar coefficients into

diagonal parameter matrices, thereby introducing variable-specific coefficients. Thus, we

have P = diag (ρ0) I + diag (ρ1)W . Caporin and Paruolo (2015) refer to such a specifica-

tion as the heterogeneous case, given that each variable/asset has its own response to W ,

and we can thus introduce heterogeneity into the relationship with neighbors. We stress

that, similarly to Caporin and Paruolo (2015), we want variable-specific parameters and

this requires the use of diagonal matrix coefficients in the definition of proximity matrices,

which thus become affine functions of the network.

We further elaborate on these matrices, going beyond what is discussed in Caporin and Paruolo

(2015) in two directions:

• First, we note that these proximity matrices are not flexible enough to deal with

financial relationships. In particular, we need to account for time-dependence in the

weight matrix W .

• Second, symmetry in W is not necessary, consistent with the adjacency matrix that

characterizes a weighted directed network.

The introduction of the time-varying dimension is relevant since financial markets

move quickly and thus it is too restrictive to impose stable and time-invariant relation-

ships among financial entities. In the previous literature, many applications of spatial

methods to financial markets average these time-varying relationships to obtain a static

framework (see, as an example, Schaumburg et al. (2014)). This clearly leads to a relevant

information loss.

It is also important to consider asymmetry. In spatial econometrics, the matrix W is,

in general, symmetric as, if A is a neighbor of B with a given distance between them, the

reverse is also true. However, in a financial framework, symmetry is not usual. As an

example, we can consider financial claims to define whether two financial institutions are
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neighbors. It is highly improbable that the amount of claim that A has on B will be the

same amount that B has on A; thus, the relationship is likely to be asymmetric; moreover,

considering net claims would mean losing relevant information as investors could perceive

the connection differently depending on its direction.

These two features are not new and have already been taken into account in the recent

financial network literature, as shown by Billio et al. (2015) and Schaumburg et al. (2014).

However, these recent papers miss the opportunity to exploit the combination of asymme-

try and vector coefficients. In fact, these two elements lead to a non-commutativity of the

resulting model; that is, pre- and post-multiplication of the weight matrix by the coeffi-

cient matrix lead to two different models. This allows us to exploit and underline different

features of the analyzed series. Accordingly, we consider two alternative representations

for the proximity matrices and thus two alternative models:

PL (Wt) = diag (ρ0,L) In + diag (ρ1,L)Wt (1)

PR (Wt) = diag (ρ0,R) In +Wtdiag (ρ1,R) (2)

where n is the number of series and In is the n× n identity matrix.

To better highlight our contributions, in Table 1 we briefly compare our approach to

the classical spatial econometrics one. To summarize, the differences we introduce are (i)

the use of time variation in spatial proximity as opposed to the use of constant and phys-

ical proximity relationships, (ii) asymmetry in defining neighboring relationships, making

the approach coherent with the use of weighted directed networks in defining proximity,

(iii) generalization of the proximity matrices’ construction through the exploitation of

heterogeneity in defining the impact from neighbors, and (iv) the introduction of left and

right multiplication proximity matrices and thus models to highlight different features of

the data. We also introduce an additional distinguishing element that refers to the use

of a normalization step in the construction of the spatial matrix W . In fact, the pres-
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ence of time variation requires the use of specific normalization rules, which necessarily

go beyond the traditional row normalization. Given its relevance in our framework, we

discuss aspects of normalization in a later subsection. We stress here that our approach

also differs from the classical one in the choice of normalization.

Table 1: Proximity Models

Classical Spatial Statistics Our Proximity Model

Static Time varying
Wt = W Wt

Weighted undirected network Weighted directed network
W ′ = W W ′

t ̸= Wt

Proximity is a linear combination Proximity is a left or right affine function
ρ0 + ρ1W diag (ρ0,L) I + diag (ρ1,L)Wt

Idiag (ρ0,R) +Wtdiag (ρ1,R)
ρ0, ρ1 scalars ρ0,L, ρ1,L, ρ0,R, ρ1,R vectors

Row normalization Economic magnitude Mt,j normalization
∑

j [W ]i,j = 1 [Wt]i,j →
[Wt]i,j
Mt,j

2.2 Model and Parameter Estimation Procedure

The introduction of proximity matrices allows us to recover the role of networks, once

they have been introduced in a dynamic model. Since we are interested in risk analysis,

we need to introduce a dynamic variance model. A popular specification adopted for the

estimation of conditional variance matrices is the BEKK model of (Engle and Kroner,

1995). Given a vector yt of n cross-sectional observations at time t, we define ut = yt− ȳ,

where ȳ is the vector of sample means. We do not further specify the mean model, since

we are interested in the risk dynamics. The simplest BEKK model is given by

ut = Σ1/2
t ϵt ϵt ∼ N (0, In) , t = 1, . . . , T (3)

Σt = CC ′ + Aut−1u
′

t−1A
′ +BΣt−1B

′ M = L,R (4)
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where C is a lower triangular matrix, Σ1/2
t is the Cholesky decomposition of Σt,3 and A

and B are n× n parameter matrices.

The full BEKK model described in equation (4) is computationally unfeasible even

for moderate values of n due to its large number of parameters (2n2 + 0.5n (n + 1)). For

this reason, the standard practice is to restrict A and B to be either scalar or diagonal.

Unfortunately, despite being feasible, these restricted specifications impose strong limita-

tions on the interpretability of the model outcomes as they exclude or sensibly limit the

presence of risk spillovers, included in A, and variance feedbacks, coming from B.

To overcome these critical aspects, Caporin and Paruolo (2015) introduce the spatial-

BEKK GARCH model, in which the full parameter matrices A and B are replaced by

proximity matrices. As discussed in Caporin and Paruolo (2015), the spatial version of

the BEKK model has the main advantage of being more parsimonious than the full

BEKK case, but at the same time it is much more flexible than the diagonal specification.

Moreover, the inclusion of proximity matrices allows us to model, with limited additional

parameters, spillovers and feedback effects.

As already anticipated, we extend the spatial-BEKK GARCH model by introducing

time variation in the proximity matrices to take into account time-varying weight matrices

Wt, and by allowing for two different forms of proximity. The model we consider thus has

the following structure:

ut = Σ1/2
t ϵt ϵt ∼ N (0, In) , t = 1, . . . , T (5)

Σt = CC ′ + AM (Wt) ut−1u′

t−1AM (Wt)
′ +BM (Wt)Σt−1BM (Wt)

′ M = L,R (6)

where the parameter matrices are proximity matrices as in equations (1) and (2)

and thus include either left multiplication or right multiplication. Consequently, the

3Alternatively to the Cholesky, we can compute the square root by resorting to the spectral decom-

position and set Σ1/2
t = DtP

1/2
t D′

t where Dt is the matrix of eigenvectors and Pt is the diagonal matrix
of eigenvalues.
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parameters matrices might have the following structure

AL (Wt) = A0,L + A1,LWt = diag (a0,L) I + diag (a1,L)Wt (7)

BL (Wt) = B0,L +B1,L = Wt = diag (b0,L) I + diag (b1,L)Wt (8)

AR (Wt) = A0,R +WtA1,R = Idiag (a0,R) +Wtdiag (a1,R) (9)

BR (Wt) = B0,R +WtB1,R = Idiag (b0,R) +Wtdiag (b1,R) (10)

and where a0,M , a1,M , b0,M and b1,M , with M = L,R, are n× 1 vectors.Note that the

L and R matrices are substitute and do not co-exist in a single model.

We note that the two specifications, with left and right multiplication, only provide

different results if the spatial matrices Wt are not symmetric. Under symmetry of Wt, the

two specifications lead to the same result.4

Within the Spatial-BEKK framework, left and right multiplication parametrizations

allow researchers to focus on different aspects of risk propagation. To better understand

this aspect, it is advisable to recall the notions of direct and indirect effects of shock dif-

fusions, previously introduced in the spatial econometrics literature, see LeSage and Pace

(2014), and generalized here for the Spatial-BEKK model with right or left multiplication.

The starting point is the Spatial Error Model (SEM), where the n−variate dependent vari-

able vt depends on an n−dimensional vector of shocks ut, on a weight matrix W , and on

a scalar parameter θ

vt = (In + θW )ut. (11)

LeSage and Pace (2014) decompose the error term in the direct effect v0t and the local

indirect effect v1t as follows:

4This is a consequence of symmetry. Suppose we focus on the shock component and assume a con-
stant W . We have ALut−1u

′
t−1A

′
L = (A0,L +A1,LW )ut−1u

′
t−1 (A0,L +W ′A1,L) thanks to the diagonal

form of the parameter matrices. Moreover, by symmetry, (A0,L +A1,LW )ut−1u
′
t−1 (A0,L +W ′A1,L) =

(A0,L +W ′A1,L)ut−1u
′
t−1 (A0,L +A1,LW ). The latter is equal to the right multiplication case ifW = W ′.
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vt = v0t + v1t (12)

v0i,t = [Inut]i = ui,t (13)

v1i,t = [θWut]i = [W θut]i = θ
n
∑

j=1

ωi,juj,t (14)

where [X ]i,j identifies the element of position i, j of the argument matrix X with one

single index if X is a vector, ωi,j represents the “distance”between subject i and subject j

coming from the spatial weight matrixW (time invariant, for simplicity), and by definition

ωi,i = 0.

This means that the target variable vi,t depends on its own shock, as monitored by

v0t , the direct impact. Further, it is also affected by the indirect impact v1t . The latter

captures the effect coming from neighboring elements vj,t with i ̸= j and with an impact

only from those j such that ωi,j ̸= 0. We note that in the SEM model, left and right

multiplication are identical due to the presence of a scalar parameter θ.

We translate these elements into the Spatial-BEKK model and provide a novel decom-

position.

We start from the left multiplication case and we focus on the ARCH part of the

model as we point at highlighting the role of innovations. We note that

vL,t = AL (W ) ut = (A0,L + A1,LW )ut = v0L,t + v1L,t (15)

v0L,i,t = [A0,Lut]i = a0,L,iui,t (16)

v1L,i,t = [A1,LWut]i = a1,L,i

n
∑

j=1

ωi,juj,t. (17)

We have that the i−th element of vL,t depends on its own past shock, weighted by the

coefficient a0,L,j (direct effect), and on the past shocks of its neighbors weighted by the

distance, all loaded with the same coefficient, a1,L,j (indirect effect).
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Consequently, bearing in mind we are discussing properties of a conditional covari-

ance model, the left multiplication specification allows us to investigate which are the

risk receivers or the systemically fragile entities, since in this case the model parameters

emphasize the role of the risk recipients. The model parameters included into the vector

a1,L monitors the reaction of risk receivers to shocks originated from the neighbors or, in

a network framework, from the connected nodes.

If we consider the right multiplication case and still refer to the ARCH part of the

model, we have

vr,t = AR (W )ut = (A0,R +WA1,R) ut = v0R,t + v1R,t (18)

v0R,i,t = [A0,Rut]i = a0,R,iui,t (19)

v1R,i,t = [WA1,Rut]i =
n
∑

j=1

ωi,ja1,R,juj,t. (20)

Differently from the left multiplication case, the coefficients in the indirect effect are

not pointing at the subject we are monitoring (subject j) but at the subject originating the

shock (subject i). Consequently, with the right multiplication version of the model, the

parameters magnify the effect of the source of risk, allowing us to focus on risk spreaders

or on systemically important entities. In addition, indirect effects v1R,i,t now depend on

more parameters compared to the left multiplication case. In fact, we can rewrite the

indirect effect as follows

v1R,i,t = [W ]i,. (a1,R ⊙ ut−1) (21)

where [W ]i,. the i−th row of the W matrix and ⊙ is the element-by-element matrix prod-

uct (or Hadamard product). This stresses that the indirect effect depends on the entire

vector of parameters a1,R.

Since the two competing models, with left and right multiplication, do provide insights

into two very different aspects of risk propagation, we suggest estimating both of them on

the same dataset. Moreover, using results from two estimated models we can easily recover
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two different rankings for the countries, one based on their risk spreading effectiveness

(systemic importance) and one based on their risk receiving propensity (fragility). This

clearly opens the door for further economically relevant insights into risk propagation

mechanisms.

Differently from Caporin and Paruolo (2015), our specifications can include time-

varying proximity matrices. In this paper, we assume these matrices are known before

the estimation of the BEKK model. Consequently, the model evaluation is conditional on

the availability of the full sequence Wt for t = 1, 2, . . . , T . The estimated model parame-

ters are time-invariant, and correspond to the diagonal vectors in the proximity matrices.

However, the presence of Wt makes the traditional full BEKK parameter matrices time-

varying and this is certainly an important innovation compared to the current literature,

since we are not aware of a closed-form methodology for estimating BEKK-type models

with time-varying parameters (even if the time variation is driven by exogenous terms).5

If the Wt are not known, we consider a two-step estimation procedure. The first step

focuses on the estimation of the spatial matrices Wt, while the second one is devoted to

the estimation of the spatial-BEKK parameters, and is conditional to the first step.

We also highlight that the spatial matrices Wt could have a smoothly evolving pattern;

that is, they are time varying but on a lower time scale than that adopted for the evolution

of the entities in the system. A similar assumption has already been used in Billio et al.

(2015).

The parameter estimation of our spatial-BEKK with time-varying parameters uses

quasi maximum likelihood estimation (QMLE) methods with robust standard errors. If we

denote by θ ≡ (vec (C) , a0,M , a1,M , b0,M , b1,M) the vector of parameters, the log- likelihood

is
5For DCC-type and BEKK models, time variation could be modeled through a Markov switching

mechanism (see Billio and Caporin (2005); Pelletier (2006); Lee and Yoder (2007)), but the estimation
would require some approximation due to the path-dependence structure of the models.
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ℓ (θ) = −
n

2
log (2π)−

1

2
det (Σt)−

1

2
ut (Σt)

−1 u′

t. (22)

Following Caporin and Paruolo (2015), a simple identification restriction consists of

constraining the first element of the vectors vec (C) , a0,M , a1,M , b0,M and b1,M , to be posi-

tive. We stress that this identification restriction allows for the presence of coefficients of

both signs in a0,M , b0,M , a1,M and b1,M . Such a flexibility in the sign allows for the pos-

sibility of negative spillovers, that is, terms that reduce the variance. Such a possibility

could be of the upmost relevance in portfolio construction as it could boost diversification

benefits.

With respect to the asymptotic properties of the estimators, following Boussama et al.

(2011) and under the Gaussian assumption for innovations, we can ensure the ergodicity

and stationarity of the process by constraining the maximum spectral radius:

max
t∈[1,T ]

ρ (AM (Wt)⊗ AM (Wt) +BM (Wt)⊗BM (Wt)) < 1. (23)

Moreover, combining the stationarity constraint with an assumption on the finiteness

of the sixth-order moments of innovations ut, we can obtain the consistency and asymp-

totic normality of the QMLE procedure (with robust standard errors and conditional on

the availability of the Wt matrices); see Hafner and Preminger (2009).6 The latter result

allows us to perform classical inferential and model specification procedures.

6The conditions for ergodicity given in Boussama et al. (2011) are less restrictive, allowing for inte-
grated processes as well, but are very difficult to impose in the optimization procedure.
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3 Model Developments and Improvements for Risk

Analyses

In the following subsections, we present several advantages and potential improvements

provided by the spatial-BEKK model with time-varying parameters, focusing on (i) the

flexibility allowed by different normalization rules, (ii) the insight provided by inference-

based networks, (iii) the decomposition of system variance, and (iv) the determination

of potential regulatory intervention thanks to the identification of optimal network re-

lationships through forecasting techniques. Their practical impact is highlighted in the

empirical analysis presented in Section 4.

3.1 Normalization Rules

Taking into account time variation for the spatial proximity matrices Wt obliges us to pay

particular attention to the way in which we normalize these matrices. In fact, a simple

row normalization at each time would make the comparison of the proximity matrices over

time very difficult. Furthermore, a time-specific or matrix-specific normalization would

lead to a loss of information, as both disregard the evolution over time of the network

structure. In order to be able to obtain parameters of a reasonable magnitude, but also

to retain differences in matrix norms across time (which could be an important driver of

dependence), we consider different types of normalizations. We thus suggest employing

normalizations that are either time-invariant or divide each row of Wt by an (economic)

measure of the magnitude of the entities. The first case refers, for instance, to the max row

normalization adopted by Billio et al. (2015), in which the row normalization of spatial

matricesWt considers the maximum row sum over time and not the time-specific row sum.

The time-invariant normalization Mi corresponding to the i-th row thus corresponds to

Mi = max
t

{

N
∑

j=1

[Wt]i,j

}

(24)
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In the second case, the normalization starts from the availability of a quantity monitoring

the size or the (economic) relevance of the entities, which we denote as Mi,t. Note that

this quantity is time varying to account for changing conditions, states or entities. As

examples of possible measures, we mention the use of gross domestic products or public

debt for networks of countries, and the use of revenues or balance-sheet-based indicators

for networks of companies. If we adopt this second approach, we stress that the spatial

matrices Wt will not have maximum eigenvalue equal to 1 as is standard in spatial econo-

metrics. However, we stress that, within the spatial-BEKK framework, the matrices Wt

are just a tool for solving the curse of dimensionality, and therefore the presence of a

maximum eigenvalue differing from 1 is not a concern.

3.2 Inference-Based Networks

Within our spatial-BEKK model, time-varying parameter matrices are composed by two

elements: the series Wt that we assume to be observed without errors, and the parameters

estimates, which we assume to be characterized by an asymptotic normal distribution.

By combining these two components, we can revise our knowledge of the underlying

network by building several “inference-based”networks, whose characterization derives

from the dependence on specific inferential aspects of the BEKK model parameters. We

first note that the spatial-BEKK model depends on the Wt matrices but, ex post, the

network information might be revised and filtered from two different parameter sets:

those associated with the A matrices, the so-called ARCH parameters, and those coming

from the B matrices, the GARCH parameters. Moreover, as already discussed, left and

right multiplication proximity matrices correspond to risk spreaders (systemic important)

and risk receivers (fragile) entities, leading to two different interpretations of the results

and also two different inferred structures. Therefore, when considering inference-based

networks, we can distinguish between four possible cases, depending on the information

used to filter out the network:

• the use of either ARCH or GARCH parameter matrices;
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• the use of either left or right multiplication in the proximity matrices.

We focus here on the A matrices with left multiplication and note that the same line

of reasoning can be applied to B matrices as well as to right multiplication.

We propose building an inferred network by taking into consideration both the size

and the uncertainty associated with the estimated parameters. We define the new inferred

weight matrix WA,L
t and obtain it as follows. First of all, let us consider the estimated

parameter matrix

ÂL,t = diag (â0) + diag (â1,L)Wt. (25)

Then, focus on the off-diagonal element at position i, j, with i ̸= j, that is â1,L,iωt,i,j.

The test statistic for the null hypothesis of a1,L,iωt,i,j = 0 is

t-stat (a1,L,iωt,i,j = 0) =
â1,L,iωt,i,j

√

Var (â1,L,iωt,i,j)
(26)

=
â1,L,iωt,i,j

ωt,i,j

√

Var (â1,L,i)
= t-stat (a1,L,i = 0) for each j

if we consider the network to be observed without error. This also means that the p-values

for the null hypothesis a1,L,iωt,i,j = 0 and a1,L,i = 0 are equal, with the equivalent result

for right multiplication.

We thus define as a filtered network, or inference-based network, the network whose

adjacency matrix has been filtered with the p-values of the model parameters. If we focus

on the ARCH parameters and left multiplication, the filtered network equals

[

WA,L
t

]

i,j
= a1,L,iωt,i,j × (1− p-value (a1,L,iωt,i,j = 0)) = a1,L,iωt,i,j ×

(

1− p-value
(

aLi = 0
))

(27)

Using a similar approach we can derive filtered networks from the GARCH parameters

and/or from right multiplication. The network that can be filtered from the ARCH

matrices represents the response to a shock in the previous period, while that associated
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with the GARCH matrices represents the covariance persistence, that is, the response

to the whole history of past shocks. Moreover, the left and right multiplication cases

are associated with a focus on systemically important and fragile entities respectively.

The possibility of obtaining an inference-based network through the filtration of model

parameter estimates can offer further insights into the network’s relevance.

3.3 Decomposition of System Variance

The introduction of proximity matrices in the dynamic of BEKK models allows the esti-

mation
(n+ 1)n

2
series of filtered conditional covariance elements. For n ≥ 3 it is difficult

to interpret directly all the recovered series, and it is therefore desirable to have sum-

mary measures backed by some theoretical line of reasoning. This is a classical issue in

spatial econometrics, where we observe the same difficulty in interpreting the impact of

explanatory variables or innovations. The complexity stems from the large cross-sectional

dimension of the analyzed data (or series) as in our case. The traditional solution is to

resort to summary measures of the direct and indirect effects of explanatory variables and

shocks; see LeSage and Pace (2009) and LeSage and Pace (2014).

We follow a similar approach and introduce a decomposition of the sequence of con-

ditional covariances provided by the Spatial-BEKK model. Nevertheless, there are two

important distinctions: first, focusing on conditional covariance matrices, we deal with

quadratic forms where spatial spillovers appear twice with an increase in the terms ap-

pearing in the decomposition; second, being the Spatial-BEKK a spatio-temporal model,

we have a decomposition conditional to the past.

We propose a four term decomposition of the system conditional covariance:

1. Costant Contribution: it represents the part of the covariance which is unrelated to

the model dynamic and is thus independent from the network;

2. Direct Contribution: it represents the covariance contribution from each entity’s own

past; it is the variance due to past direct effects and, therefore, has no dependence

19



on the network;

3. Indirect contribution: it represents the covariance contribution due to indirect ef-

fects, that is due to the network exposures of the assets;

4. Mixed contribution: it represents the covariance contribution originating from the

quadratic form of the model and due to the interaction of both direct and indirect

elements.

To introduce the algebra of our decomposition we take as a working example a case

where we have non-null values in the time-invariant matrices W 7 and we focus on the left

multiplication model.

From equation (6), the conditional covariance at time t is given by the sum of three

elements: the constant, a quadratic term associated with the shocks; a quadratic term

associated with the past conditional covariance.

In our decomposition, the constant term is simply given by constant of the conditional

covariance, thus CC ′.

We now focus on the shock response term, the ARCH part of the model. We remind

that we introduce in equations (16) and (17) a definition of direct v0L,i,t and indirect effects

v1L,i,t within the ARCH part. We now decompose the entire shock response term as follows:

AL (W )ut−1u
′

t−1AL (W )′ = A0,Lut−1u
′

t−1A
′

0,L

+ A1,LWut−1u
′

t−1A
′

0,L + A0,Lut−1u
′

t−1W
′A′

1,L

+ A1,LWut−1u
′

t−1W
′A′

1,L.

We take a closer look at the decomposition focusing on the element i, j of the matrix

AL (W ) ut−1u′

t−1AL (W )′. Note that if i = j we deal with variances, while for i ̸= j we

consider covariances.
7The diagonal elements remain null. Note that if off-diagonal elements are zero, some simplification

might be present in the equations we report.
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The first element in the ARCH term decomposition refers to the variance (or covari-

ance) own shock:

[

A0,Lut−1u
′

t−1A
′

0,L

]

i,j
= v0L,i,t−1v

0
L,j,t−1 = a0,L,ia0,L,juit−1uj,t−1.

This is comparable to a direct shock contribution. The fourth term, represents the

contribution faced by element i, j of the covariance due to network exposures:

[

A1,LWut−1u
′

t−1W
′A′

1,L

]

i,j
= v1L,i,t−1v

1
L,j,t−1 = a1,L,ia1,L,j

n
∑

k=1

ωi,kuk,t

n
∑

l=1

ωj,lul,t,

This corresponds to an indirect effect, that is the shocks impact due to the network,

The second and third terms can be interpreted as mixed effects as they combine both

direct and indirect elements:

[

A1,LWut−1u
′

t−1A
′

0,L

]

i,j
= v1L,i,t−1v

0
L,j,t−1 = a1,L,ia0,L,j

n
∑

k=1

ωi,kuk,tuj,t

and

[

A0,Lut−1u
′

t−1W
′A′

1,L

]

i,j
= v0L,i,t−1v

1
L,j,t−1 = a0,L,ia1,L,juj,t

n
∑

k=1

ωj,kuj,t.

Moving to the GARCH part of the model, similarly to the ARCH part, we first intro-

duce two additional terms, which are associated with the direct and indirect persistence

effects. These two terms equal

m0
L,i,t = [B0,Lut]i = b0,L,iui,t (28)

m1
L,i,t = [B1,LWut]i = b1,L,i

n
∑

j=1

ωi,juj,t. (29)

They differ from the terms v0L,i,t and v1L,i,t in their dependence on the GARCH param-
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eters. The direct, indirect and mixed contributions we can recover from the GARCH part

of the model correspond to covariances between the terms in equations (28) and (29).

In fact, for the indirect contribution originating from the GARCH part of the mode,

using the bilinearity of the conditional covariance operator and conditionally on the net-

work W we have:

[

Ω1,1
L,t−1

]

i,j
= Cov

(

m1
L,i,t−1, m

1
L,j,t−1

∣

∣ It−2,W
)

= Cov

(

b1,L,i

n
∑

j=1

ωi,kuk,t−1, b1,L,j

n
∑

l=1

ωj,lul,t−1

∣

∣

∣

∣

∣

It−2,W

)

= b1,L,i

n
∑

j=1

ωi,kb1,L,j

n
∑

l=1

ωj,lCov (uk,t−1, ul,t−1| It−2,W )

= b1,L,i

n
∑

j=1

ωi,kb1,L,j

n
∑

l=1

ωj,l [Σt−1]k,l

=
[

B1,LWΣt−1W
′B′

1,L

]

i,j
.

We can recover similar equalities for the direct and mixed contributions. In Table (2)

we summarize the elements appearing in the conditional covariance decomposition.

Table 2: Decomposition of [Σt]i,j in the left multiplication model

shock response (ARCH) persistence (GARCH)

Costant [CC ′]i,j
direct v0L,i,t−1v

0
L,j,t−1

[

Ω0,0
L,t−1

]

i,j

indirect v1L,i,t−1v
1
L,j,t−1

[

Ω1,1
L,t−1

]

i,j

mixed v1L,i,t−1v
0
L,j,t−1 + v0L,i,t−1v

1
L,j,t−1

[

Ω1,0
L,t−1

]

i,j
+
[

Ω0,1
L,t−1

]

i,j

Further, we highlight that the decomposition is time-varying by construction and it

might be also affected by the dynamic in the network structure.

Using the definitions in equations (19) and (20) for right direct and indirect effect,

and following the derivation detailed above for the left multiplication case, it is possible

to derive a similar decomposition for the right multiplication case.

The variance decompositions outlined above are specific to a single element of the

covariance matrix. However, we might be interested in recovering a synthetic measure of
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the decomposition at the entire covariance level. We propose defining this synthetic (and

time-varying) measure starting from a composite representation of the system. Among

the many possible choices, we choose the simplest one and thus consider a portfolio

characterized by equal weights for each financial institution or entity whose risk is being

analyzed using the spatial-BEKK model. The use of different weighting schemes, with

potentially better economic explanations, is left for further empirical research.

The conditional variance of the equally weighted portfolio is obtained by averaging

the conditional covariance matrix of the system. Therefore, the equally weighted portfolio

variance decomposition is equal to8

Var

(

1

n
1′yt

∣

∣

∣

∣

It−1

)

=
(

σConstant
t

)2
+
(

σDirect
t

)2
+
(

σIndirect
t

)2
+
(

σMixed
t

)2
(30)

(

σConstant
t

)2
=

1

n2

n
∑

i,j=1

[CC ′]i,j (31)

(

σDirect
t

)2
=

1

n2

n
∑

i,j=1

(

v0L,i,t−1v
0
L,j,t−1 +

[

Ω0,0
L,t−1

]

ij

)

(32)

(

σIndirect
t

)2
=

1

n2

n
∑

i,j=1

(

v1L,i,t−1v
1
L,j,t−1 +

[

Ω1,1
L,t−1

]

ij

)

(33)

(

σMixed
t

)2
=

1

n2

n
∑

i,j=1

(

v0L,i,t−1v
1
L,j,t−1 +

[

Ω0,1
L,t−1

]

ij
(34)

+ v1L,i,t−1v
0
L,j,t−1 +

[

Ω1,0
L,t−1

]

ij

)

(35)

Since the model specifications allow for the possibility of having positive and negative

signs on both ARCH and GARCH coefficients, in principle, we expect that diversification

benefits could arise from all four contributions. An equivalent decomposition can be

derived for the right multiplication case.

8Again we report here only the left multiplication case, because the right case is completely analogous

23



3.4 Optimal Network and Target Exposures

Another interesting aspect of our model relates to the possibility of obtaining, given

past information, the optimal network, that is the weight matrix W ⋆ that minimize the

future evolution of the entire system variance. Accordingly, it is possible to define target

exposures that minimize the (future) risk in the system.

3.4.1 Multistep Forecast

Since analytical expressions for the multistep volatility forecast are not available in closed

form, the most common way to obtain a robust multistep forecast involves the use of

bootstrapping techniques Andersen et al. (2006). In particular, we proceed with the fol-

lowing methodology: Consider an estimation window t ∈ [1, . . . , T ] from which estimates

for Ĉ, Â, B̂ and the series of filtered conditional covariances Σ̂t can be obtained, and that

we are interested in computing the path of the forecasted covariance matrix from T +1 to

T + h. The first step is to compute the n× 1 vector of filtered innovations (standardized

residuals) ϵ̂t for each time in the estimation period t ∈ [1, . . . , T ], by multiplying the vector

ut by the inverse of the Cholesky decomposition of the estimated conditional covariance

Σ̂t:

ϵ̂t = Σ̂
−

1

2

t ut, t ∈ [1, . . . , T ] . (36)

The second step is to bootstrap NB samples of length h from the n× T matrix of filtered

innovations [ϵ̂1, . . . , ϵ̂T ], using a bootstrap procedure that preserves as much as possible

the residual longitudinal dependence in the data, so that it is robust to misspecification in

the model. We use a circular block bootstrap Politis and Romano (1992) with automatic

block length selection Politis and White (2004)9. In this way, we obtain the bootstrapped

innovations ϵ̃[b]T+l with b ∈ [1, . . . , NB] and l ∈ [1, . . . , h].In turn, these allow computing the

bootstrapped mean innovations uT+l and the bootstrapped covariances for each l and b:

9In particular, we apply the procedure for selecting the block length to each univariate series and then
take the maximum of the obtained lengths.
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ũ[b]
T+l = Σ̂

1

2

T+lϵ̃
[b]
T+l (37)

Σ̃[b]
T+l = ĈĈ ′ + Âũ[b]

T+lũ
[b′]
T+lÂ +BΣ̃[b]

T+l−1B
′ (38)

Finally, we set the covariance matrix forecast equal to the average across the NB paths.

Σ̂F
T+l =

1

NB

NB
∑

b=1

Σ̃[b]
T+l. (39)

Note that even quantiles could be considered in place of the mean, thus focusing on

low/high states for volatility forecasts and that the previous approach is valid for any

parametrization of the covariance dynamics, thus including the case of the Spatial-BEKK

model. However, we stress that when the parameter matrices are function of a time-

varying network, the forecast are conditional to the last observed network. Alternatively,

if there exist a model to forecast the network evolution, this can be integrated with the

previous covariance forecast approach, allowing the computation of forecasts accounting

for the network variability.

3.4.2 Optimal Network

Conditional on the bootstrapped innovations ϵ̃[b]T+l with b ∈ [1, . . . , NB] and l ∈ [1, . . . , h],

and assuming that the network is constant over the forecast horizon, the forecasted co-

variance path is a function of the network at time T , WT "→ Σ̂F
T+l (WT ) l ∈ [1, . . . , h]. This

raises the interesting possibility of obtaining the target network that can reduce the risk

of the system. To define optimal target exposures, we require that they, at least locally,

minimize the variance of the system, which we approximate by the equally weighted index

of all the series. Such an approach is of particular interest when there exists a frequency

mismatch between the data used to estimate the network and the series for which the

risk is evaluated. Such situations are not rare, as financial networks might be built from
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lower-frequency data (using, for instance, balance sheet data), while financial market data

are certainly available at a daily or even higher frequency.

We thus assume that the network data are available at a lower frequency than the

entities data. In particular, we assume that the network changes every q observations.

That is, in the full sample T , we have [T/q] = Q networks, or alternatively we have Q

sub-periods in which the networks is stable. In the forecast exercise, we assume that

WT+l = WQ for each l ∈ [1, . . . , h], such that T + 1 and T + h are the beginning and

end of the period Q + 1. We thus require that the average forecasted volatility of the

equally weighted index over period Q+1, i.e. the first sub-period following the estimation

sample, conditional on the bootstrapped innovations, is minimized by numerically solving

the following constrained optimization problem:

min
vecW ⋆

1

h

h
∑

l=1

1

n2
1′Σ̂F

T+l (W
⋆) 1 (40)

s.t. 0 ≤ [W ⋆]i,j ≤ 1 for i, j = 1 . . . n (41)

Tr (W ⋆) = 0 (42)

where 1 is the n × 1 column vector whose elements are all equal to 1 and Tr (.) is the

trace operator. It is important to note that the estimated network W ⋆ is weighted and

directed but is totally unrelated to the last available network. We thus also consider a

more realistic constraint in which the out (in) strengths of the nodes defined as the row

(column) sums of the optimal network are set to be the same as the out (in) strengths of

the nodes of the last network WQ. For the row-sum case, we impose

n
∑

j=1

[W ⋆]i,j =
n
∑

j=1

[WQ]i,j , (43)

and we can write a similar constraint for the column sum. These constraints avoid a

change in the strengths of the nodes and correspond to a simple redistribution of the

weights across the system. The use of out strength or in strength imposes a redistribution
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among the receivers or the donors in the network. The choice of preferred constraint

depends on the application and on the purposes of the analysis.

To evaluate the performance of the proposed out-of-sample methodology, we suggest

comparing two estimates of the model, one excluding the out-of-sample data, and the

second including the forecasted data. This enables one to compute the filtered innovations

for the forecasted periods, conditional on the true, observed Q + 1 network:

ϵ̂T+l = Σ̂
−

1

2

T+l (WQ+1)uT+l l ∈ [1, . . . , h] (44)

Then, we can reconstruct the us and the proxy for the equally weighted index’s con-

ditional variance as if the realized network for the period of interest is the optimal one

W ⋆:

ũ⋆
T+l = Σ̂

1

2

T+l (W
⋆) ϵ̂T+l (45)

Var

(

1

n
1′y⋆T+l

∣

∣

∣

∣

IT+l−1

)

= Var

(

1

n
1′u⋆

T+l

∣

∣

∣

∣

IT+l−1

)

≃

(

1

n
1′u⋆

T+l

)2

(46)

In this way, we can compare the obtained optimal volatility proxy with the realized

volatility proxy, the latter being robust against model misspecification.

Finally, we highlight that the output of the previous optimization also includes the

target exposures that can be helpful to policymakers in order to enforce claims redistri-

bution in the financial system. Clearly, the quality and reliability of recommendations

depend on the quality of data on which the model has been estimated.

3.5 Implications for Forecasting and Network Evaluation

Our results in terms of inferred networks, system variance decomposition and an optimal

network of exposures are relevant and of interest even from a forecasting perspective.

First, the inferred networks can be determined over the parameters estimated on a

rolling basis. Consequently, the monitoring of the evolution of the inferred networks could
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provide relevant insights on the future dynamics of the system. In fact, information on

the system’s evolution could be obtained by analyzing the sequence Wm,p
t,n with m = A,B,

p = L,R, where t refers to the observed weight matrix available at time t and n identifies

the size of the estimation window used to fit the spatial-BEKK model. If the spatial

matrices evolve at a rate lower than that of the entities, the inferred networks enable the

evaluation of the impact of parameter changes on the network structure.

Second, the decomposition of the risk in the system can be achieved in-sample, as

well as in an out-of-sample analysis. In this last case, the decomposition of the system

variance becomes central in the construction of optimal portfolios of the analyzed assets.

The spatial-BEKK model can be used to provide forecasts of the conditional covariance

matrix. From these, we can obtain forecasts of the system variance decomposition, thus

obtaining
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In turn, these forecasts might form the basis for the construction of optimal portfolios

in a forecasting perspective. Moreover, as the forecasts are functions of the network

available at time t, impacts on network changes can also easily be obtained. In particular,

if we highlight the dependence on the network, we can compute the following differences

caused by the change from Wt to W ⋆:
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These differences can be further decomposed into the differences among the four com-

ponents of the system variance. This also helps in the evaluation of the optimal target

exposures. As an example, if we consider the network representation of the banking sys-

tem, by comparing the actual network Wt with the target network W ⋆ and looking at the

variance decomposition, regulators could evaluate the total maximum impact they could

achieve by moving from the actual design of the network to the optimal one. Moreover,
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they could decompose the (relative) advantage in the diagonal, holding and overlapping

components. Finally, they could determine how minor or partial changes to the network

could affect the system variance and what fraction of the maximum gain, that is the

maximum variance reduction associated with the optimal network, they would achieve.

4 Empirical Analysis: The Example of European

Sovereign Bond Risk Spillovers

To better clarify the advantages and potential of our methodology, we consider an appli-

cation to publicly available data, and in particular we consider the European sovereign

bond yields. We use two different data sources: (i) the changes in the ten-year sovereign

bond yields for a selection of European countries and (ii) the matrices of foreign claims

collected by the BIS. As we detail in the following subsection, these data refer to the

claims that the banking sector of a country A has with respect to the banking (public and

private) sector of another country B. There is clearly an asymmetry between the depen-

dent variable and the data source for the weighting matrices. Nevertheless, by taking the

claims reported by the banking sector as a proxy for the claims of the entire country, we

believe we achieve a good compromise, allowing us to evaluate the risk of the sovereign

market while also accounting for the presence of interdependence among countries due

to foreign claims. The aim of the analysis is to characterize, identify and evaluate the

sovereign risk of the system, considering the total sovereign risk of the Euro area as the

volatility of a weighted-average portfolio of European sovereign bonds. Risk spillovers are

driven by the weight matrices, based on cross-country cross-credit exposures.
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4.1 Data Description

4.1.1 BIS Banking Statistics

We use data at a quarterly frequency to describe the network of foreign claims among

Greece, Italy, Ireland, Spain, France and Germany from 2006 to 2013, as they are pro-

duced by BIS in the consolidated banking statistics (ultimate risk basis). The quarterly

claims are converted to a daily basis by repeating them for each day in the quarter, thus

obtaining the sequence of daily matrices. Implicit in this interpolating choice is the as-

sumption that foreign claims variation is much slower than the changes in bond yields. BIS

consolidated banking statistics provide internationally comparable measures of national

banking systems’ exposures to country risk (McGuire and Wooldridge (2005)). Country

risk refers to country-wide events, which can lead to systemic instability that prevents

obligors (whether direct debtors or guarantors of claims on other borrowers) from fulfilling

their obligations. Banks contributing to the consolidated statistics report a full country

breakdown of claims booked by their offices worldwide. Only assets are reported. The

residency of the ultimate obligor, or the country of ultimate risk, is defined as the country

in which the guarantor of a financial claim resides or the head office of a legally depen-

dent branch is located. Foreign claims, in the ultimate risk basis, reported by country

A with country B as a counterparty, are all on-balance-sheet financial assets, with the

exclusion of derivative contracts, guaranteed by public or private entities of country B,

and owned by the banking system of country A. Due to the mixed nature of the data and

the importance of the local banking system in international financial intermediation (see

McCauley et al. (2010)), we consider these statistics as a good proxy for cross-country

holdings. We expect that, if A reports a claim with B as a counterparty, investors will

perceive the sovereign bonds of A to be dependent on the sovereign bonds of B in terms

of the claim amount, and the same could be true for our matrix Wt. We report some

summary statistics of BIS claims in billions of US Dollars in Table 3.
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Table 3: BIS Ultimate Risk Basis Consolidated Banking Statistics: Foreign Claims Sum-
mary Statistics (Millions of US Dollars)

mean
FR DE GR IE IT PT ES

FR 136550.2 47211.43 436.2857 7465.476 7329.333 1325.857 11209.24
DE 2890.476 10024.86 7991.143 0 1494.857 126.0476 54.57143
GR 111.0952 640.1905 0.666667 0 275.9048 0 11.66667
IE 8346.81 16033.9 90.7619 0 1799.429 321.1905 2823.143
IT 0 210087.9 1478.286 24707.67 42704.9 8145.429 50101.76
PT 404612.4 204933.5 584.6667 44803.76 0 5213.667 39768.9
ES 125015.8 159029.1 1839.857 15542.52 24742.67 7230.81 28595.71

s.d.
FR DE GR IE IT PT ES

FR 78357.55 8143.641 400.2512 1943.93 2523.868 626.4275 4448.87
DE 768.4744 2428.127 1897.988 0 706.0261 62.18639 26.23656
GR 79.03791 190.3546 0.966092 0 190.2845 0 2.516611
IE 1734.736 2265.344 137.4681 0 754.3077 359.7015 739.2039
IT 0 25274.26 509.562 4681.422 9344.833 1442.989 15052.39
PT 107050.7 32002.6 255.3107 11389.74 0 1557.107 7562.398
ES 22050.09 15443.13 1549.368 4140.974 5260.584 3570.141 14442.01

min
FR DE GR IE IT PT ES

FR 0 35141 61 5385 4211 411 4261
DE 1181 5691 4712 0 198 44 10
GR 8 412 0 0 6 0 8
IE 5554 13150 1 0 782 32 1458
IT 0 172867 673 16264 25578 5813 26523
PT 161227 153721 179 13054 0 3021 29986

ES:Spain 75710 131263 524 6284 14380 2228 17512
max
FR DE GR IE IT PT ES

FR 310131 59015 1468 12680 11687 2494 19925
DE 4257 13973 10963 0 2493 253 87
GR 305 1354 3 0 589 0 17
IE 12007 20245 407 0 3416 1298 4116
IT 0 266302 2579 32451 56983 11778 77135
PT 531133 269532 1034 57326 0 8216 51376
ES 166332 188566 4825 22172 31599 12696 63684

median
FR DE GR IE IT PT ES

FR 117696 46701 341 6738 6289 1185 11510
DE 2920 10771 8403 0 1788 103 54
GR 134 628 0 0 338 0 11
IE 8414 15754 9 0 1665 122 3057
IT 0 201625 1417 24883 44534 7849 49713
PT 446638 201532 606 46669 0 5232 39250
ES 126819 159520 1016 16366 25687 5183 23282

31



4.1.2 Normalization and Robustness

As discussed in Section 3.1, we consider several alternatives for the economic magnitude

to be used for the normalization. Our final choice for Mjt of the j-th reporting country

is its quarterly time series of total ultimate risk basis claims, which includes claims from

the selected countries but also from the rest of the world. The other choices investigated

for normalization were no normalization, row normalization, the GDP of the reporting

country, and the public debt of the reporting country. In the full sample estimation,

total claims outperform, in likelihood terms, the alternative normalization schemes in the

vast majority of models, and when this is not the case the difference in likelihoods is

negligible10. We report some summary statistics of BIS claims normalized by the total

claims in Table 4, and network representations for selected periods in the first column of

Figure 1.

4.1.3 Sovereign Bond Yields

We use the daily changes in the ten-year yields of sovereign bonds, from 1/3/2006 to

12/30/2013, for France, Germany, Greece, Ireland, Italy, Portugal and Spain, as down-

loaded from Datastream. The choice of the ten-year maturity is due to data availability,

in particular for the Greek bond. As can be seen from Table 5, the asymmetry of some

series, in particular that of Greece, but also those of Portugal and Ireland, is striking.

Correlation is high between specific pairs, namely, France and Germany, Spain and Italy,

and Ireland and Portugal, highlighting the closeness between those economies. Despite

all being positive, several correlations display relatively small values. Most interestingly,

the smallest correlations are those between Germany and the other European countries

(France excluded). Although a multivariate GARCH methodology is not sufficient for

handling the big movements in the yield series, we consider it a good approximation for

monitoring the risk evolution by accounting for network dependence, leaving for future

research the explicit inclusion of jumps in the model.

10Estimation results for these alternatives are available upon request.
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Table 4: BIS Consolidated Banking Statistics: Ultimate Risk Basis Foreign Claims Nor-
malized by Total Claims by Reporting Country. Summary Statistics

mean
FR DE GR IE IT PT ES

FR 0.000 0.072 0.018 0.020 0.123 0.009 0.050
DE 0.058 0.000 0.011 0.047 0.059 0.012 0.067
GR 0.018 0.023 0.000 0.007 0.009 0.001 0.003
IE 0.041 0.105 0.015 0.000 0.077 0.011 0.051
IT 0.054 0.269 0.007 0.028 0.000 0.010 0.034
PT 0.061 0.072 0.046 0.028 0.042 0.000 0.180
ES 0.049 0.046 0.001 0.016 0.036 0.064 0.000

s.d.
FR DE GR IE IT PT ES

FR 0.000 0.010 0.005 0.004 0.017 0.002 0.004
DE 0.003 0.000 0.001 0.009 0.002 0.002 0.004
GR 0.009 0.010 0.000 0.005 0.007 0.001 0.002
IE 0.006 0.045 0.004 0.000 0.011 0.002 0.001
IT 0.017 0.102 0.004 0.012 0.000 0.006 0.010
PT 0.017 0.022 0.013 0.005 0.014 0.000 0.021
ES 0.011 0.009 0.000 0.004 0.003 0.002 0.000

min
FR DE GR IE IT PT ES

FR 0.000 0.057 0.009 0.014 0.084 0.007 0.045
DE 0.054 0.000 0.009 0.034 0.055 0.010 0.057
GR 0.007 0.010 0.000 0.003 0.002 0.000 0.001
IE 0.034 0.054 0.012 0.000 0.066 0.007 0.048
IT 0.041 0.086 0.000 0.018 0.000 0.006 0.024
PT 0.041 0.033 0.026 0.020 0.024 0.000 0.135
ES 0.027 0.036 0.001 0.010 0.030 0.060 0.000

max
FR DE GR IE IT PT ES

FR 0.000 0.086 0.024 0.027 0.144 0.012 0.057
DE 0.062 0.000 0.014 0.057 0.065 0.015 0.073
GR 0.036 0.050 0.000 0.019 0.024 0.003 0.009
IE 0.052 0.179 0.025 0.000 0.098 0.015 0.054
IT 0.086 0.353 0.012 0.052 0.000 0.022 0.054
PT 0.092 0.104 0.074 0.039 0.062 0.000 0.208
ES 0.063 0.069 0.001 0.022 0.042 0.068 0.000

median
FR DE GR IE IT PT ES

FR 0.000 0.074 0.018 0.019 0.128 0.009 0.049
DE 0.059 0.000 0.011 0.050 0.059 0.011 0.068
GR 0.016 0.020 0.000 0.006 0.005 0.001 0.002
IE 0.039 0.078 0.014 0.000 0.073 0.009 0.051
IT 0.046 0.311 0.009 0.023 0.000 0.007 0.032
PT 0.053 0.075 0.044 0.028 0.037 0.000 0.185
ES 0.052 0.044 0.001 0.017 0.036 0.063 0.000
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Table 5: Daily Changes in Ten-Year Sovereign Bond Yields from 1/3/2006 to 12/30/2013.
Summary Statistics

FR DE GR IE IT PT ES

mean 0.000 0.000 0.000 0.000 0.000 0.000 0.000
s.d. 0.014 0.018 0.028 0.014 0.014 0.017 0.014
min 0.097 0.061 -17.405 -0.912 -0.562 -1.332 -0.984

Skewness 6.935 6.602 543.084 26.474 14.103 41.015 14.152
Kurtosis -0.080 -0.132 -0.907 -0.194 -0.137 -0.265 -0.156

max 0.093 0.094 0.169 0.093 0.091 0.144 0.065
median 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Correlations
DE GR IE IT PT ES

FR 0.69 0.11 0.30 0.39 0.22 0.40
DE 0.01 0.14 0.03 0.07 0.09
GR 0.35 0.24 0.39 0.28
IE 0.48 0.61 0.53
IT 0.44 0.80
ES 0.49

4.2 Parameter Estimation

In Table 6, we report QMLE results for the relevant parameters of the model. The

estimation is obtained using a numerical constrained optimization in order to satisfy the

ergodicity condition (23).11 We have estimated three models: (i) a restricted diagonal

model in which there is no network dependence, (ii) a left multiplication model that

allows us to focus on fragile nodes of the network, and (iii) a right multiplication model

that underlines the important nodes. As Table 6 shows, both the risk receivers (left

multiplication) and risk spreaders (right multiplication) spatial models outperform the

diagonal model and this is also formally demonstrated by the likelihood ratio test statistics

reported in the table. Notably, the test strongly rejects the null, thus supporting the

relevance of networks in variance spillover analysis. Our first important result confirms

the relevance of foreign claims in explaining conditional covariances for bond yields. One

11Regarding the restriction on the sixth-order moment, we checked, after conducting the estimation,
for the finiteness of the fourth moments, following Hafner (2003), but we are not aware of any closed
form restriction for sixth-order moments and their derivation is outside the scope of the present paper.
The Matlab-based estimation software we used is available upon request.
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important aspect to consider is that the period under consideration is a turbulent one,

and we cannot exclude that foreign claims are less important in normal times.

Table 6 shows the risk receiving propensity of Spain and Ireland in both the short

and long run. The two countries have statistically significant coefficients in the network-

related contributions, both when the network is included in the ARCH part of the model

and when it affects the GARCH part. Moreover, even though the coefficients are not

statistically different from zero, the different sign for Germany 12 evidences a diversifying

role of this country in the covariance contribution with respect to the other countries, in

both the short and long run. The relevance of Germany is also emphasized in the risk

receivers (right multiplication) spatial model, for which it is the most important country

in both the short and long run, with coefficients significant at the 1% level. This comes

as no surprise, as the German Bund is the European benchmark against which spreads

are computed. Italy comes second in this ranking, being important in the long and in

the short run at 5%. Italy’s relevance can be justified by the extent of its public debt,

together with its economic relevance. Then, in the short run and with a lower significance

(10%), we also see a role for Greece, despite the fact that it is usually recognized as

the source of troubles. In our opinion, these results are mainly driven by the different

economic magnitudes of these countries, and can be explained by the argument that the

majority of the big swings in the Greek bond can be reabsorbed by the other countries,

while small moves in the German and Italian bond markets greatly affect the behavior of

other countries’ bonds. There is no clear diversification pattern, aside from the fact that

the covariance contributions among the important countries are clearly positive.

4.3 Inferred Networks

The estimation of the coefficients of the model provides a good picture of the relevant

nodes in the claims network, which are important to monitor. However, it is possible,

using the methodology outlined in Section 3.2, to build a graphical representation that

12We recall, here, that it is the relative sign that matters, as discussed in subection 2.1.
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Table 6: Estimated Relevant Parameters of the Diagonal BEKK (Top Panel), Spatial risk
receivers (left multiplication) BEKK (Central Panel) and Spatial risk spreaders(right mul-
tiplication) BEKK (Bottom Panel) Models on Daily Changes in the Ten-Year European
Sovereign Bond Yields from 1/3/2006 to 12/30/2013

a0 DBEKK b0 DBEKK

FR 0.209*** 0.978***
DE 0.222*** 0.975***
GR 0.228*** 0.974***
IE 0.202*** 0.979***
IT 0.201*** 0.978***
PT 0.214*** 0.977***
ES 0.204*** 0.979***

log-likelihood 51406.87

a0 SBEKK L a1 SBEKK L b0 SBEKK L b1 SBEKK L

FR 0.260*** 0.000 0.965*** 0.000
DE 0.372*** -0.425 0.930*** 0.149
GR 0.267*** 0.163 0.963*** -0.044
IE 0.165*** 0.216* 0.986*** -0.047**
IT 0.212*** 0.086 0.977*** -0.027
PT 0.214*** 0.096 0.976*** -0.026
ES 0.171*** 0.388** 0.984*** -0.083**

log-likelihood 51646.81
likelihood ratio 479.89***

a0 SBEKK R a1 SBEKK R b0 SBEKK R b1 SBEKK R

FR 0.204*** 0.000 0.979*** 0.000
DE 0.232*** 0.133*** 0.973*** -0.034***
GR 0.286*** 0.361* 0.958*** -0.100
IE 0.177*** -0.116 0.984*** 0.019
IT 0.224*** 0.398** 0.972*** -0.101**
PT 0.174*** -0.147 0.984*** 0.020
ES 0.253*** 0.294 0.968*** -0.067

log-likelihood 51615.64
likelihood ratio 417.54***
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allows us to monitor directly the edges of the network, that is, the level of exposure

between two specific countries. Some of the results for selected periods are shown in

Figure 1. The complete representation is available upon request.

Given that in foreign claims networks the strongest linkages are among the major

economies (Germany, France and Italy) and between Spain and Portugal, in the filtered

network we can appreciate how the map changes after the inference step. The second

column in Figure 1 represents the short-term response to shocks in the changes of the

bond yields and shows that inference mainly magnifies the role of Spain in the short-run

response. A counterintuitive effect is instead the long-run response that may appear to

be a second-order effect. In this case, the figure shows that the most fragile country in

the long run is Germany and not Ireland or Spain as we would have expected from the

coefficient significance. This apparent contradiction comes from the fact that Germany has

(i) the lowest p-value among the non-significant ones (0.3), (ii) a coefficient that is almost

twice that of Spain, and (iii) strong claim relationships with the other countries. Only

the combination of these three effects in the filtered network can hint at the possibility

that Germany is fragile when it comes to long-term shocks, thus revealing the usefulness

of this kind of representation. The fourth column emphasizes the short-term shock role

of risk sources the. It appears to be the most crowded and this can be explained by the

fact that, in this case, the magnifying glasses of inference work for the two countries that

appear to have the strongest links in terms of foreign claims. In this case, Italy appears to

be a bigger source of risk than Germany because of the larger size of its coefficient. The

fifth column investigates the risk receivers effectiveness of persistence terms. Connections

are not so strong in this case, indicating the presence of negligible long-term sources of

risk. Finally, it is interesting to note that the claim network and consequently all the

others remain, virtually, the same during the subprime crisis (2008-Q3) and the sovereign

bond crisis (2010-Q2). This clearly justifies our decision, in the following, to consider for

our target network exercise an estimation sample that includes the subprime crisis and

to compute the forecast, on which we optimize, over the sovereign crisis quarter.
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Figure 1: Selected graphical representation of the normalized foreign claims network wt

in the first column, the shock response risk receivers (left multiplication) networks WA,L
t

in the second column, the persistence risk receivers (left multiplication) networks WB,L
t in

the third column, the shock response risk spreaders (right multiplication) networks WA,R
t

in the fourth column and the persistence risk spreaders (right multiplication) networks
WB,R

t in the fifth column, all obtained from data on daily changes in the ten-year sovereign
bond yield from 1/3/2006 to 12/30/2013.
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4.4 Decomposition of Variance of Equally Weighted Index

To have yet another, point of view, and to show the flexibility of our analysis as an instru-

ment of inquiry, we use the methodology of Subsection 3.3 on the variance decomposition

of the risk receivers (left multiplication) and risk spreaders (right multiplication) model.

Figure 2 and 3 reports the percentage of the system variance, constant, mixed and indi-

rect contributions. Note the we do not include the direct one since, although being the

biggest, it does not depend on the weights. In particular, we want to stress the presence,

in tranquil periods, of negative (diversifying) contributions coming from the mixed part.

The same contribution has instead, in turbulent periods, positive peaks leading to an

increase of risk in the financial system. This is particularly evident for the risk spreaders

case (fig.3) for which, during the second Greek bailout, the mixed contribution accounts

for more than one fourth of the system variance. The indirect part is, in contrast, negli-

gible, without noticeable diversification benefits. We also note that the relevance of the

constant term is high and this could suggest, as we have already argued, that the model

is only able to explain the dependence and variability in the data partially.

4.4.1 Estimated Target Exposures

Our methodology allows a proper ex-post analysis of spillover occurrences, in particular

after relevant events, such as the default of a financial instituition. In this subsection,

we show how our methodology could be of interest for regulatory interventions. In fact,

if the inferred networks have an economic and financial motivation as spillover channels,

as we showed previously for our bond yield example, the model allow to estimate the

impact of the networks on the system variance. Therefore, it is possible to draw policy

recommmendations from the estimated model, by focusing on the identification of the

optimal (in terms of the risk of the system) network design. In particular, we propose

to minimize the forecast path of the conditional system variance, looking for the optimal

network structure according to the methodology outlined in Subsection 3.4. In principle,

the regulator could then incentivize the achievement of such target exposures, obtaining
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Figure 2: Relative variance decomposition, risk receivers (right multiplication) model, of
the equally weighted index, obtained from data on daily changes in the ten-year sovereign
bond yields from 1/3/2006 to 12/30/2013, with the direct contribution omitted
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Figure 3: Relative variance decomposition, risk spreaders (right multiplication) model, of
the equally weighted index, obtained from data on daily changes in the ten-year sovereign
bond yields from 1/3/2006 to 12/30/2013, with the direct contribution omitted
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a reduction of market volatility and a mitigation of risk.

As already discussed, we choose to optimize the forecast path in the quarter of the

sovereign bond crisis (Q2 2010), while also including the subprime crisis in the estimation

sample (from Q1 2006 to Q1 2010). Our results convince us that the spillovers channeled

through foreign claims are the same on both occasions. We start by analyzing the re-

constructed effect on the variance proxy of the equally weighted index when we change

the network of the quarter Q2 2010, with one of the optimal networks coming from a dif-

ferent risk receivers(left multiplication), risk spreaders (right multiplication), constrained

and unconstrained model. For the constrained model, equation (43) implies that there is

only a redistribution of the claims among the considered countries; for the unconstrained

model, the total amount of claims changes for each country.

Figure 4 shows the realized and reconstructed variance proxy of the equally weighted

index during the sovereign debt crisis according to equations (45) and (46). Looking at the

figure, we can conclude that the entities that were fragile are still playing the same role, but

there is a significant reduction of the risk spread by systemically important entities, which

generates a sensible reduction of the realized variance proxy in both the constrained and

unconstrained cases, with differences among them that seem negligible. Table 7 shows that

the optimal network in the fragile (left multiplication) constrained case is the same as the

realized one, while the prescription coming from systemically important entities indicates

that Portugal should have had larger cross-border exposures to Italy and Germany. In

particular, considering the more realistic constrained case, Italy should have invested

more across borders and Portugal should have received more investments from the other

countries. To evaluate the feasibility of these redistributions, in Table 8 we report, for the

constrained risk spreaders (right multiplication) case only, the differences in millions of

US Dollars in the amounts needed to achieve the optimal network. In general, the sensible

variance reduction we obtain from our calculation is implied by redistributions that are

extreme and would be hard to enforce in a single quarter. In our opinion, a lower, but still

meaningful, variance reduction can be obtained by considering stricter and economically
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Figure 4: Variance proxy of the equally weighted index during the debt crisis of Q2 2010,
obtained from data on daily changes in the ten-year sovereign bond yield.

sound maximum redistribution constraints, leading to an implementable enforcement of

redistribution. This is already possible with a minor modification of our methodology

that enables us to account for any kind of constraint by simply changing equation (43).

5 Conclusions

This paper illustrates how financial networks can be efficiently integrated within a mul-

tivariate GARCH framework for risk analyses both in and out of sample. Our frame-

work, which we refer to as spatial econometrics of risk, for its relation with both spatial

econometrics and risk analyses, enables a number of evaluations and analyses aimed at

disentangling and understanding the role of asset interconnection in the evolution of the

risk of a system of assets. Our work builds on the introduction of spatial methods into

volatility models, as introduced by Caporin and Paruolo (2015). The model depends on

proximity matrices that represent the economic distances among assets, and thanks to
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Table 7: Target Exposures, Obtained from Data on Daily Changes in the Ten-Year
Sovereign Bond Yield

True Exposures

Location FR DE GR IE IT PT ES
Reporting

FR 0.0000 0.0833 0.0177 0.0135 0.1314 0.0104 0.0510
DE 0.0659 0.0000 0.0105 0.0464 0.0515 0.0125 0.0608
GR 0.0145 0.0424 0.0000 0.0034 0.0041 0.0009 0.0050
IE 0.0346 0.0556 0.0144 0.0000 0.0735 0.0096 0.0484
IT 0.0387 0.2998 0.0060 0.0168 0.0000 0.0053 0.0297
PT 0.0557 0.0290 0.0738 0.0257 0.0258 0.0000 0.1720
ES 0.0211 0.0315 0.0007 0.0111 0.0262 0.0619 0.0000

SBEKK L (Delta wrt true)

Location FR DE GR IE IT PT ES
Reporting

FR 0.0000 0.0610 0.1262 0.1304 0.0167 0.1336 0.0938
DE -0.0333 0.0000 0.0242 -0.0108 -0.0163 0.0232 -0.0275
GR 0.0199 -0.0073 0.0000 0.0307 0.0300 0.0332 0.0292
IE 0.0768 0.0504 0.0967 0.0000 0.0391 0.1013 0.0637
IT 0.1562 -0.0983 0.1887 0.1774 0.0000 0.1889 0.1652
PT 0.1364 0.1594 0.1187 0.1650 0.1650 0.0000 0.0250
ES 0.0503 0.0354 0.0706 0.0599 0.0455 0.0112 0.0000

SBEKK L Constrained (Delta wrt true)

Location FR DE GR IE IT PT ES
Reporting

FR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GR 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
IT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
PT 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
ES 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

SBEKK R (Delta wrt true)

Location FR DE GR IE IT PT ES
Reporting

FR 0.0000 0.0943 0.0604 0.0722 0.1250 0.0361 0.0626
DE 0.0548 0.0000 0.0619 0.0168 0.1419 0.0528 0.0382
GR 0.0202 -0.0060 0.0000 0.0316 0.0369 0.0357 0.0289
IE 0.0811 0.0728 0.0827 0.0000 0.0943 0.0827 0.0457
IT 0.1577 -0.0426 0.0374 0.0335 0.0000 0.0473 0.1180
PT 0.1293 0.2014 0.0309 0.0923 0.3019 0.0000 -0.0443
ES 0.0542 0.0515 0.0638 0.0399 0.0819 -0.0167 0.0000

SBEKK R Constrained (Delta wrt true)

Location FR DE GR IE IT PT ES
Reporting

FR 0.0000 -0.0172 0.0184 0.0231 -0.0400 0.0215 -0.0060
DE -0.0229 0.0000 0.0249 -0.0112 0.0109 0.0217 -0.0234
GR -0.0039 -0.0308 0.0000 0.0083 0.0093 0.0107 0.0063
IE 0.0041 -0.0131 0.0192 0.0000 -0.0187 0.0233 -0.0148
IT 0.0341 -0.2088 0.0512 0.0408 0.0000 0.0488 0.0339
PT 0.0067 0.0448 -0.0314 0.0201 0.0857 0.0000 -0.1259
ES 0.0040 -0.0046 0.0242 0.0110 0.0068 -0.0414 0.0000
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Table 8: Investment Needed to Reach Target Exposures (Millions of USD), Obtained
from Data on Daily Changes in the Ten-Year Sovereign Bond Yield

SBEKK R Constrained (Delta wrt true) Millions of USD

Location FR DE GR IE IT PT ES
Reporting

FR 0 -55512 59560 74745 -129067 69570 -19296
DE -68505 0 74248 -33318 32680 64723 -69828
GR -519 -4107 0 1102 1245 1432 847
IE 2259 -7205 10523 0 -10233 12799 -8142
IT 29720 -181735 44571 35510 0 42457 29477
PT 919 6126 -4296 2751 11720 0 -17220
ES 5040 -5725 30357 13855 8499 -52026 0

their presence the model is able to describe and investigate spillover effects. In this work,

we focus on proximity matrices that depend on financial/economic networks, and that

allow us to capture the interdependence across the modeled variables. In an empirical

example, we show that our methodology is suitable for dealing with a network of financial

institutions, using both structural and descriptive analyses, as well as being suitable for

policy purposes.

We make a number of contributions that go beyond the original contribution of

Caporin and Paruolo (2015). We show how we can take advantage of the non-commutativity

of matrices in modeling, and focus on both the risk receiving propensity (fragility) and

risk spreading effectiveness (systemic importance) of spillovers. We show in the empirical

application that our model is indeed able to give a reasonable description of European

spillovers during the sovereign crisis, both in terms of country roles, through the signifi-

cance of coefficients, and in terms of the network description of the events. We evidence

the fundamental role of Ireland and Spain as risk receivers and the risk spreading ef-

fectiveness of Germany, Italy and, to a lesser extent, Greece as risk spreaders. In this

respect, a natural evolution of the model would be to consider a bilateral multiplication

model estimating left and right matrices jointly. A richer specification of this sort would

have identification issues that would need to be dealt with, and we leave it for further

research.
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We also propose an interpretation of the right multiplication model, focusing on risk

absorbers, in terms of portfolio composition, from which we derive a covariance decom-

position that allows us to relate the holding and the overlapping of different portfolios to

the conditional variance of the system. Finally, we propose a forecast-based methodology

for computing target exposures that could be enforced by the regulator with the aim of

reducing the volatility in the system. We are aware of the limits of this optimization

and forecasting exercise but it could be considered an important tool for regulators to

use to monitor financial stability. According to the recent review by Toniolo and White

(2015) of the financial stability mandate across countries and across history, the principal

interventions central banks took to maintain financial stability were liquidity provision

and monitoring of the systemically important financial institutions. In our paper, we pro-

pose a new econometric tool with the ability to help the regulator fulfill the monitoring

requirement once the bilateral exposure data of financial institutions have been collected

and are available.
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an update. In A. Berger, P. Molyneux, and Wilson J., editors, Oxford Handbook of

Banking. Oxford University Press, 2009.

Larry Eisenberg and Thomas H Noe. Systemic risk in financial systems. Management

Science, 47(2):236–249, 2001.

J Paul Elhorst. Specification and estimation of spatial panel data models. International

regional science review, 26(3):244–268, 2003.

Robert F Engle and Kenneth F Kroner. Multivariate simultaneous generalized arch.

Econometric theory, 11(01):122–150, 1995.

Kristin Forbes. The” big c”: Identifying contagion. Technical report, National Bureau of

Economic Research, 2012.

Kristin Forbes and Roberto Rigobon. Measuring contagion: conceptual and empirical

issues. In International financial contagion, pages 43–66. Springer, 2001.

Xavier Freixas, Bruno M Parigi, and Jean-Charles Rochet. Systemic risk, interbank

relations, and liquidity provision by the central bank. Journal of money, credit and

banking, pages 611–638, 2000.

Christian M Hafner. Fourth moment structure of multivariate garch models. Journal of

Financial Econometrics, 1(1):26–54, 2003.

Christian M Hafner and Arie Preminger. On asymptotic theory for multivariate garch

models. Journal of Multivariate Analysis, 100(9):2044–2054, 2009.

Augusto Hasman. A critical review of contagion risk in banking. Journal of Economic

Surveys, 27(5):978–995, 2013.

Sebastian Keiler and Armin Eder. Cds spreads and systemic risk: A spatial econometric

approach. Discussion Paper N.01/2013 Deutsche Bundesbank, 2013.

47



Hsiang-Tai Lee and Jonathan K Yoder. A bivariate markov regime switching garch ap-

proach to estimate time varying minimum variance hedge ratios. Applied Economics,

39(10):1253–1265, 2007.

James LeSage and Robert Kelley Pace. Introduction to spatial econometrics. CRC press,

2009.

James P LeSage and R Kelley Pace. Interpreting spatial econometric models. In Handbook

of Regional Science, pages 1535–1552. Springer, 2014.

Robert McCauley, Patrick McGuire, and Goetz von Peter. The architecture of global

banking: from international to multinational? BIS Quarterly Review, page 25, 2010.

Patrick McGuire and Philip Wooldridge. The bis consolidated banking statistics: struc-

ture, uses and recent enhancements. BIS Quarterly Review, page 73, 2005.

Angela Ng. Volatility spillover effects from japan and the us to the pacific–basin. Journal

of international money and finance, 19(2):207–233, 2000.

Denis Pelletier. Regime switching for dynamic correlations. Journal of econometrics, 131

(1):445–473, 2006.

Marcello Pericoli and Massimo Sbracia. A primer on financial contagion. Journal of

Economic Surveys, 17(4):571–608, 2003.

Dimitris N Politis and Joseph P Romano. A circular block-resampling procedure for

stationary data. Exploring the limits of bootstrap, pages 263–270, 1992.

Dimitris N Politis and Halbert White. Automatic block-length selection for the dependent

bootstrap. Econometric Reviews, 23(1):53–70, 2004.

Jean-Charles Rochet and Jean Tirole. Interbank lending and systemic risk. Journal of

Money, Credit and Banking, 28(4):pp. 733–762, 1996.

48



Julia Schaumburg, Francisco Blasques, Siem Jan Koopman, and Andre Lucas. Spatial

gas models for systemic risk measurement. Mimeo, 2014.

Gianni Toniolo and Eugene N White. The evolution of the financial stability mandate:

From its origins to the present day. Technical report, National Bureau of Economic

Research, 2015.

49


