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Abstract 
According to the definition of Financial Stability Board (FSB), Systemically Important 
Banks (SIBs) are the banks “whose disorderly failure, because of their size, complexity and 
systemic interconnectedness, would cause significant disruption to the wider financial 
system and economic activity”. The current methodology for their determination is based 
on balance-sheet variables and expert judgment. We use permutation tests to investigate the 
relevance of equity-based systemic risk measures in the SIBs choice. Restriction of the 
analysis to European Banks, for which full information is available, allows understanding 
the importance of equity-based systemic risk measures also for size, interconnectedness, 
substitutability/financial Institution Infrastructure, complexity and cross-jurisdictional 
Activity categories.  
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2 Systemically important banks

1. Introduction and Objectives

The framework of Systemically Important Financial Institutions (SIFIs) was introduced by
the Financial Stability Board (FSB) in October of 2010 as the institutions “whose disorderly
failure, because of their size, complexity and systemic interconnectedness would cause signifi-
cant disruption to the wider financial system and economic activity”, FSB (2010). The current
methodology to determine the Globally Systemically Important Banks (G-SIBs) is outlined
by the Bank for International Settlements, BIS (2013). In particular, the banks included in
the analysis have to fulfill any of the following criteria:

• Banks that the Committee identifies as the 75 largest global banks, according to the
leverage ratio exposure measure, based on Basel III and at the end of the financial year.

• Banks that were designated as G-SIBs in the previous year (unless supervisors agree
that there is a compelling reason to exclude them).

• Banks, with a score produced by the indicator-based measurement approach that ex-
ceeds a cut-o↵ level set by the Committee.

• Banks that have been added to the sample by national supervisors using supervisory
judgment (subject to certain criteria).

The regulator builds the selection process on proprietary annual data. The collection of the
dataset is time-consuming and delays the publication of the selection. For example, the FSB
published the last release based on end-2014 data only in November 2015. The European
Banking Union provides full disclosure of the data used to define the European SIBs for the
year 2014 (using data from 2013) and 2015 (using data from 2014). For a review of the lit-
erature on the G-SIBs and a critique of the methodology see Iwanicz-Drozdowska (2014) and
Barth, Nolle, Li, and Brummer (2014). Bongini, Nieri, and Pelagatti (2015) discuss the finan-
cial impact of the SIFIs selection. In parallel, several papers proposed systemic risk measure
based on stock returns. For a clear description of those measures refer to the recent survey
Bisias, Flood, Lo, and Valavanis (2012). In this way, market participants are able to compute
them at any moment due to their easy access to this type of data. Furthermore, Scholars use
them in ranking timely the systemic importance of single institutions. Recently, Giglio, Kelly,
and Pruitt (2016) investigate their macroeconomic meaning and substantiated this practice.
The study of their relationship with the variables used by the FSB is new in the literature
to our knowledge. A bridge between those two set of measures could bring a more timely
and accurate choice of the SIBs. All the above reasons justify the present investigation of the
linkage among them. In particular, we consider as given the choice made by the FSB about
the two groups of SIBs and non-SIBs. Combining statistics from permutations of several vari-
ables is a well-known possibility, see Pesarin and Salmaso (2010). We propose a combination
based on the systemic risk measures to test the identity of the two FSB groups. Rejection
of the null hypothesis implies the reproduction of the choice using equity information. So,
we choose the combination weights by minimizing the p-value of the combination test. If the
weights add up to one, one can interpret them as the measure relevance in the FSB choice.
Also, we are able to associate a SIBs selection to each macro category using a heuristic.
Then, we repeat the procedure for size, interconnectedness, substitutability, complexity and
cross-jurisdictional Activity. Non-smoothness of the p-value as a function of weights requires
a global optimization method. The parallelizable Particle Swarm Optimization (PSO) is valid
candidate, see Kennedy (2010). In fact, we exploit the multi-core architecture of the Sistema
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per Calcolo Scientifico di Ca’ Foscari (SCSCF) for computations1. The paper is organized
as follows. In Section 2 the methodology is presented, in Section 3 we show the results for
the FSB selection and for macro categories driven selections, then in Section 4 we discuss the
results and propose some possible extensions.

2. Methodology

In this Section, we review the permutation and combination test methodology, following
Pesarin and Salmaso (2010), introduce our optimization procedure and justify the use of
Particle Swarm technique. Let be I(·) the indicator function, that is equal to 1 if the condition
in parenthesis is satisfied and zero otherwise.

The baseline permutation test for a single cross sectional variable, X, can be summarized in
the following steps:

1. The observed units, corresponding to di↵erent banks, are divided into two groups, g1
and g2, according to a given selection.

2. Given a cross sectional variable, X, observed on values x
i

, i = 1, . . . , n, compute a
relevant statistic for each group; in our case we use the empirical distribution function

F̂
k

for group k = 1, 2. The maximum of the di↵erence of the two functions KS
⇣
F̂1, F̂2

⌘
,

that is a two-sample Kolmogorov-Smirnov statistic, will be our test statistic, and its
observed value will be v

obs

.

3. Exchange randomly the participants in the groups, retaining only their sizes. We ran-
domly choose a permutation of the indices i, named ⇡

b

, b = 1, . . . , B, obtaining two new
groups gb1 and gb2. Then, considering the exchangeability assumption of X and under
the hypothesis of identical distribution for the two groups, H0 : F1 = F2, the statistic

vb = KS
⇣
F̂
g

b
1

, F̂
g

b
2

⌘
would have the same distribution of v

obs

.

4. Compute, according to Pesarin and Salmaso (2010), an approximated p-value by

P
B

=
1

B

BX

b=1

1 (v
b

� v
obs

) (1)

Figure 1 shows an example on permutation test for a simulation of n = 500 observations from
a bimodal distribution.

The combination of several partial permutation tests requires additional steps. After the defi-
nition of the size of each group, we apply the procedure outlined before to get the permutation

distribution of each partial test statistic t
j

, typically t
j,obs

= KS
⇣
F̂ j

1 , F̂
j

2

⌘
, j = 1, . . . , p, where

the empirical cumulative distribution functions, F̂ (j)
gk , k = 1, 2, refer to the observed values of

X
j

, furthermore we denote with tb
j

the partial test statistics computed on each permutation
b of the two groups, with b = 1, . . . , B. Then each dimension is transformed to an auxiliary
variable related into the single p-values

�
j

=
1

B + 1

 
1

2
+

BX

b=1

1
⇣
tb
j

� t
j,obs

⌘!
(2)

1This research used the SCSCF multiprocessor cluster system at University Ca’ Foscari of Venice.
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that takes values strictly inside the unit interval. So, it may be defined in such a way that
they can be aggregated in a single variable using a combination function. In our case, we use
a Fisher omnibus function with the same weights of the indices t = �

P
p

j=1wj

log (�
j

). In
addition, we get the value of the statistics in each permutation, by

�b

j

=
1

B + 1

 
1

2
+

BX

b=1

1
⇣
tr
j

� tb
j

⌘!
(3)

in such a way to produce an approximated permutation distribution. This procedure may be

extended to the combined variable for each permutation, tb = �
P

p

j=1wj

log
⇣
�b

j

⌘
. Given B

random permutations, according to Pesarin and Salmaso (2010), we can obtain an approxi-
mated p-value by

PB =
1

B

BX

b=1

1 (t
b

� t) (4)

and we can reject the global null hypothesis of equality the two groups H0 : F1 = F2 at ↵
significance level if PB  ↵.

The lower is the value of PB the higher is the significance of the test and the higher is the
di↵erence between the multivariate distribution of the two groups. For this reason we choose
to optimize the weights in order to minimize the p-value.

2.1. Particle Swarm Optimization

In order to test our procedure we consider an optimization problem in which the function
that have to be optimized depends on the weights used in the Fisher omnibus function that
combines several tests. Given the complexity of the optimization problem we consider the
bio-inspired iterative metaheuristic called Particle Swarm Optimization (PSO) introduced
by Kennedy and Eberhart (1995). This procedure, based on swarm intelligence, is a robust
stochastic method for unconstrained optimization problem although it is possible to treat also
constrained ones, seeCorazza, Fasano, and Gusso (2013). The PSO algorithm exploits the
concept of social intelligence and co-operation to mimic the intelligence that moves together
individuals of the same species looking for food.

To this aim, each member of the swarm explores the search area reminding its best position
reached so far, exchanging the information with the other ones. The whole swarm will converge
to the best global position.

Each member of the swarm is a particle and represents a possible solution to the investigated
optimization problem. The initialization of the particle placement is random as well as their
initial velocity. The movement of each particle of the swarm depends on its position with
respect to the best position. In the following, we give a description of the standard PSO
procedure.

Let us consider the unconstrained optimization problem

min
x2Rd

f(x)

where f : Rd ! R is the objective function in the minimization problem. At the k-th iteration
of the PSO algorithm, the following objects are associated to the j-th particle {j = 1, . . . ,M}:
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• xk
j

2 Rd: position of the j-the particle at step k;

• f(xk
j

) 2 R: fitness of the j-th particle at step k;

• vk
j

2 Rd: velocity of the j-the particle at step k;

• p
j

2 Rd: best position visited so far by the j-th particle at step k.

Furthermore pbest
j

denotes the objective function in the position p
j

of the j-th particle.

• Set k = 0. Randomly generate xk
j

and vk
j

.

• Set k = 1. Set pbest
j

= +1 for all j and set gbest = +1.

The overall PSO algorithm is described in the following.

1. Evaluate f(xk
j

) for all j.

2. If f(xk
j

) < pbest
j

then p
j

= xk
j

and pbest
j

= f(xk
j

) for all j. If f(xk
j

) < gbest then

p
g

= xk
j

and gbest = f(xk
j

).

3. Update velocity and position for all j:

vk+1
j

= wk+1vk
j

+ U1 ⌦ (p
j

� xk
j

) + U2 ⌦ (p
g

� xk
j

)

xk+1
j

= xk
j

+ vk+1
j

where U1, U2 2 Rd such that each their dimension is a realization of uniform random
variables over [0, ✓1] and [0, ✓2], respectively. The symbols ⌦ denotes the component-
wise product and p

g

is the best position of the j-th particle in a neighborhood. The
value assumed by the inertia weight wk will be discussed in the following.

4. If a convergence criterion is not satisfied then update k = k + 1 and go to step 2.

The convergence criterion is either the maximum number of iterations or if there are no
movements among particle.

The choice of the inertia weights wk a↵ects the convergence of the swarm. In literature, the
parameters wk, k = 1, . . . ,K are generally proposed as linearly decreasing together with the
number of steps, i.e.

wk = wmax +
wmax � wmin

K
· k

where common values of wmax and wmin are respectively 0.9 and 0.4, while K is usually the
maximum number of allowed steps.

One of the great advantages of the particle swarm optimization is that it is highly paralleliz-
able. In fact, the updating of particles characteristics is independently computable given the
previous iteration. As already remarked, the SCSCF cluster performed the computations.
This allows us to use 200 hundred particles handled by 100 cores of the cluster. Instead one
of the main drawbacks of particle swarm optimization is that is stochastic in nature. In our
case also the permutation test is randomized doubling the source of stochasticity. Robustness
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Table 1: Systemic Measures and Indicators: correlations

Kendall’s ⌧ 2013
in out in out eigenvector

-MES -�CoVaR connections connections connections 1/closeness centrality PCA
Size -0.01 0.20 -0.15 -0.04 -0.13 -0.01 -0.05 -0.04

(0.9816) (0.1699) (0.3693) (0.8419) (0.4229) (0.9808) (0.7618) (0.7993)
Interconnectedness -0.03 0.23 -0.11 -0.06 -0.12 -0.07 -0.07 -0.07

(0.8715) (0.1076) (0.5167) (0.727) (0.4515) (0.648) (0.6861) (0.6273)
Substitutability 0.00 0.09 0.08 0.02 0.06 -0.07 0.04 -0.09

(1.000) (0.5631) (0.6535) (0.9205) (0.7156) (0.648) (0.8006) (0.5631)
Complexity -0.06 0.15 -0.04 -0.03 -0.04 0.00 -0.10 -0.09

(0.6943) (0.3187) (0.8419) (0.881) (0.7893) (1.000) (0.5444) (0.5322)
Cross-Jurisdictional 0.06 0.28 -0.20 -0.09 -0.23 -0.08 -0.06 -0.09
Activity (0.6943) (0.0519) (0.2124) (0.5832) (0.1385) (0.6138) (0.7236) (0.5322)

Kendall’s ⌧ 2014
in out in out eigenvector

-MES -�CoVaR connections connections connections 1/closeness centrality PCA
Size 0.03 0.16 0.22 0.04 0.07 0.09 -0.07 -0.05

(0.8715) (0.2755) (0.1582) (0.7907) (0.637) (0.583) (0.7066) (0.7288)
Interconnectedness -0.01 0.12 0.32 -0.01 0.09 -0.07 -0.13 -0.07

(0.9447) (0.4176) (0.041) (0.9808) (0.5396) (0.6501) (0.4516) (0.6605)
Substitutability -0.07 0.07 0.19 -0.11 -0.07 -0.01 -0.23 -0.13

(0.6273) (0.6273) (0.2238) (0.4841) (0.637) (0.9429) (0.1675) (0.3914)
Complexity -0.10 0.09 0.20 -0.15 -0.02 -0.08 -0.24 -0.17

(0.5022) (0.5631) (0.2059) (0.3226) (0.8874) (0.6161) (0.149) (0.2554)
Cross-Jurisdictional -0.01 0.17 0.31 0.05 0.11 0.01 -0.08 -0.17
Activity (0.9447) (0.2363) (0.0461) (0.7538) (0.4502) (0.9429) (0.6606) (0.2363)

checks reported in the next Section ensure reproducibility of the whole procedure. The use
of 200 particles and 10000 random permutations su�ces to get reliable results.

3. Empirical results

In this section, we begin introducing the used data. Then we derive the selection associated
with the macro categories. Finally, we report and comment our results on the optimal weights
obtained for 2013 and 2014.

As a preliminar result we can see the correlations among the indicators used by the Reg-
ulator and the Systemic measures suggested in literature: Table 1 report the Kendall ⌧
correlations between the pairs of variables denoting that only few relations are significative,
i.e. Cross-Jurisdictional Activity with �Covar in 2013 and Cross-Jurisdictional Activity and
Interconnectedness with in connections in 2014.

3.1. G-SIB score evaluation and data

Regulators chose SIBs using a composite indicator that considers di↵erent aspects of systemic
risk: Size, Interconnectedness, Substitutability, Complexity and Cross-Jurisdictional Activity.
Those macro categories are themselves composite. The finest subdivision comprises a total
of 12 variables detailed in Table 2 BIS (2014). Then a weighted sum of the indicators with
the weights as in the last column of Table 1 represents the score.
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Table 2: Indicators and relative score weights used by the Basel Com-
mittee for the evaluation of the Systemically Important Banks

Category Indicator Indicator weight

Size Total exposures 1/5=20%
Interconnectedness Intra-financial system assets 1/15= 6.66%

Intra-financial system liabilities 1/15= 6.66%
Securities outstanding 1/15= 6.66%

Substitutability/financial institution Payment activity 1/15= 6.66%
institution infrastructure Assets under custody 1/15= 6.66%

Underwritten transactions in debt and
equity markets 1/15= 6.66%

Complexity National amount of OTC derivatives 1/15= 6.66%
Trading and AFS securities 1/15= 6.66%
Level 3 assets 1/15= 6.66%

Cross-jurisdictional Cross-jurisdictional claims 1/10= 10%
activity Cross-jurisdictional liabilities 1/10= 10%

The BIS reports balance sheets included in the SIBs 2014 evaluation sample. The extraction
of the relevant indicators from them would be a nontrivial task. So we focus on the European
sample whose variables are available on the EBA website. Here EBA publishes balance sheets
variables in manageable excel format for 2013 and 2014. In 2013 within a pool of 36 European
Banks, 13 of them were considered SIBs. In 2014 within a pool of 37, 14 of them were chosen as
SIBs. To get alternative selection based on the 5 macro categories we proceed in the following
way. We consider values of the category corresponding to the institutions selected by the
regulator. We compute the minimum value among them. We include all the institutions
with values higher than the minimum in the new selection. We report in Table 3 the sizes in
the regulator sample and the percentage of institutions still in the selection. As you can see
selection sets obtained in this way always contain the regulator set. Unfortunately, not all the
considered European banks are listed companies. Stock prices are available for 25 of them. We
are able to compute systemic risk measures only for them. In Table 7 and 8 in Appendix we
report the names of the used institutions and the computation of the considered systemic risk
measure. For a description of the Marginal Expected Shortfall (MES) we refer to Acharya,
Pedersen, Philippon, and Richardson (2010). We did not use their SES measure because
it includes also information about leverage. The � CoVaR is introduced and described in
Adrian and Brunnermeier (2016). The remaining Interconnectedness measures come from
Billio, Getmanski, Lo, and Pelizzon (2012). For a description of several other measures using
also a di↵erent type of data refer to Bisias et al. (2012). We consider the opposite of MES
and � CoVaR and the inverse of the closeness to obtain comonotonicity among the measures.
With this convention, an higher measure corresponds to higher risk.

3.2. Systemic Measures contribution to Selections

Table 3 summarizes the main findings of this work. For each SIB selection rows report
the optimal p-value and the optimal weights in 2013 and 2014. In Section 2 we gave a
plausible interpretation of the optimal weights. They represent the share of information
about the selection associated with each measure. Lower p-values lead to a higher probability
that measures with high weights are informative about the selection. In this regards, in
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Table 3: Systemic Measures contribution to Selections
2013 weights

SIBs SIBs pval MES �CoVaR in out in out closeness eigenvector PCA
partial included degree degree degree centrality

Regulator Selection n=13 0.002 0.001 0.572 0.023 0.001 0.378 0.023 0.001 0.001
Size 23 100% 0.1841 0.013 0.0000 0.0000 0.0000 0.9862 0.0004 0.0001 0.0004
Interconnectedness 19 100% 0.012 0.1320 0.3755 0.0000 0.0001 0.3450 0.0000 0.0000 0.1473
Substitutability/Financial 20 100% 0.016 0.0000 0.7884 0.0016 0.0564 0.0050 0.1486 0.0000 0.0000
Institution Infrastructure

Complexity 23 100% 0.053 0.0000 0.2010 0.0000 0.0000 0.0000 0.0000 0.0117 0.7873
CrossJurisdictional 23 100% 0.003 0.0016 0.3791 0.0973 0.0922 0.0000 0.0000 0.0247 0.4051
Activity

2014 weights
SIBs SIBs pval MES �CoVaR in out in out closeness eigenvector PCA
partial included degree degree degree centrality

Regulator Selection n=12 0.312 0.0000 0.0000 0.0000 0.0000 0.0211 0.0001 0.9782 0.0006
Size 16 100% 0.091 0.0005 0.5900 0.3546 0.0004 0.0000 0.0000 0.0000 0.0545
Interconnectedness 14 100% 0.190 0.0000 0.0000 0.9577 0.0000 0.0000 0.0422 0.0001 0.0000
Substitutability/Financial 16 100% 0.015 0.0000 0.0002 0.9471 0.0024 0.0000 0.0018 0.0484 0.0000
Institution Infrastructure

Complexity 15 100% 0.020 0.0000 0.0000 0.4531 0.0001 0.0000 0.0009 0.5459 0.0000
CrossJurisdictional 14 100% 0.231 0.0000 0.0079 0.0000 0.0000 0.0000 0.0002 0.0000 0.9919
Activity

2013, �CoVar and the sum of in and out degrees seems able to reproduce the choice of the
regulators. A similar conclusion, given a p-value above the 30%, is improbable in 2014 even
if the weight of eigenvector centrality is almost one. Analogous considerations derive from
alternative analysis based on the categories. In fact, we get a coherent picture in 2013. In this
year �CoVar has a weight over the 70% for substitutability. Also, it is largely participating
in interconnectedness complexity and cross-jurisdictional activity. In + out degree is the only
variable related to size and a relevant variable for interconnectedness. The role of PCA for
complexity, cross-jurisdictional activity and interconnectedness is also clear. For 2014 instead,
the alternative selections elect in degree as the most relevant variable. This variable is almost
the only one relevant for substitutability, it is also important for complexity and size. Instead,
eigenvector centrality is informative for complexity. In addition, we discover that �CoVar is
relevant for size.

The graphs in Figure 2 show in the two years the empirical cumulative distribution functions
for each risk measure in the two groups decided by the Regulator.

3.3. Robustness

In Table 4, we present some robustness check for the entire procedure. We considered 20
replications of the procedure with 200 hundred particles and 10000 random permutations in
four settings:

1. Random start: random starting points of the swarm and random swarm update.

2. Equal weights: start with the swarm concentrated in the center of the unit hypercube
and random swarm update. This corresponds to giving equal weights to all the measures.

3. Best Partial Test: start with the swarm concentrated on one edge of the unit hypercube
with the i-th weight one for the measure with minimum �

i

and zero for the others and
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Figure 2: Systemic Measures contribution to Selections
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random swarm update. This is done to check if the procedure goes beyond the intuitive
solution of choosing only the measure with the most significant partial test.

4. PSO const seed: the starting point of the swarm and the random number used for the
updates are kept constant during the 20 replications.

We report the mean and the standard deviation of optimal p-values and the mean and standard
deviation (in parentheses) of the weights. The set up are ranked in terms of ascending standard
deviation of the p-values and ascending maximum standard deviation among the weights.

Di↵erences among the four set up are not so relevant and we reach a precision on p-values
below the fourth decimal digit and around the second digit for weights.

Finally, we remark that we also conducted robustness checks substituting the coe�cient of
variation to the Kolmogorov-Smirnov statistic in the computation of the test. The results
with the coe�cient of variation showed much more variability and we opted for the more
robust Kolmogorov-Smirnov statistic.

Table 4: Performances based on Kolmogorov-Smirnov test statistic with B = 10000 random-
ized permutations

Year 2013
p-value mean s.d
Best partial test 0.0018 0.0004
PSO const.seed 0.0018 0.0005
Equal weitghs 0.0019 0.0005
Random start 0.0019 0.0006

Weights MES DeltaCoVaR in out in outs closeness eigenvector PCA max s.d.
mean on n = 20 degree degree degree centrality
Equal weitghs 0.002 0.605 0.011 0.001 0.358 0.019 0.002 0.001 0.044
sd (0.007) (0.044) (0.017) (0.002) (0.040) (0.040) (0.004) (0.003)
PSO const.seed 0.001 0.589 0.018 0.002 0.370 0.018 0.002 0.000 0.049
sd (0.001) (0.042) (0.028) (0.003) (0.049) (0.038) (0.003) (0.001) (0.049)
Best partial test 0.002 0.589 0.012 0.001 0.384 0.009 0.001 0.000 0.052
sd (0.006) (0.052) (0.026) (0.001) (0.035) (0.028) (0.003) (0.001) (0.052)
Random start 0.001 0.572 0.023 0.001 0.378 0.023 0.001 0.001 0.057
sd (0.003) (0.05)7 (0.041) (0.003) (0.051) (0.038) (0.001) (0.001) (0.057)

Year 2014
pval mean s.d
Random start 0.3120 0.0038
PSO const.seed 0.3148 0.0055
Equal weitghs 0.3143 0.0056
Best partial test 0.3133 0.0061

Weights MES DeltaCoVaR in out in outs closeness eigenvector PCA max s.d.
mean on n = 20 degree degree degree centrality
Random start 0.0000 0.0000 0.0000 0.0000 0.0211 0.0001 0.9782 0.0006 0.0071
sd (0.0000) (0.0000) (0.0000) (0.0000) (0.0069) (0.0002) (0.0071) (0.0007)
Equal weitghs 0.0000 0.0000 0.0000 0.0000 0.0224 0.0011 0.9761 0.0004 0.0078
sd (0.0000) (0.0000) (0.0000) (0.0000) (0.0078) (0.0039) (0.0062) (0.0005) (0.0078)
PSO const.seed 0.0000 0.0000 0.0000 0.0000 0.0187 0.0022 0.9787 0.0004 0.0083
sd (0.0000) (0.0000) (0.0000) (0.0000) (0.0083) (0.0064) (0.0056) (0.0005) (0.0083)
Best partial test 0.0000 0.0000 0.0000 0.0000 0.0204 0.0011 0.9783 0.0002 0.0104
sd (0.0000) (0.0000) (0.0000) (0.0000) (0.0104) (0.0042) (0.0093) (0.0002 (0.0104)

4. Conclusions
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We investigate the relationship between SIBs selections and equity-based systemic risk mea-
sures. The procedure proposed is completely nonparametric and requires only the hypothesis
of exchangeability of variables. We optimize using particle swarms on the weights of a com-
bination of permutation tests on the measures. The weights quantify how much the measure
is informative about the selection. The optimal p-value measures how much the result is
reliable. We consider regulator selections and selections based on macro categories. We found
coherent results for the year 2013. All the selections consider �CoVar and the sum of in
and out degrees as the most informative variables. For 2014 optimization on the regulator
selection gave an unreliable result. But alternative selections points to in degree measure as
the most informative. Although we consider our findings interesting we are obliged to point
out the lack of regularity that they carry. Unfortunately, di↵erences are already present in the
numerosity of the selections associated with categories. In general, the requirement on single
category seems much more stringent for 2014. Given the availability of only two years, it is
di�cult to understand where this variability comes from. The changes among the two years
are quantitative and qualitative. Di↵erent categories are associated with the di↵erent sys-
temic measure in di↵erent years. This feature hints maybe to a dynamical relationship among
categories and systemic measures. It seems that the equity-based systemic risk measures are
not able to track changes in the decision variables used by the regulator. In particular, for
2014, the measures are not informative about the interconnectedness category. In this light
it would be important to include also the measures proposed by Diebold and Yılmaz (2014).
Unfortunately, with 25 series, the curse of dimensionality does not allow to estimate the VAR
needed for computing the measures. The use of some penalization technique as in recent
Demirer, Diebold, Liu, and Yilmaz (2015) could solve the issue. It could also lead to better
Granger Causality Network on which measures of Billio et al. (2012) are based.

Analogously refinement of MES (Brownlees and Engle (2010), Acharya, Engle, and Richardson
(2012)) and CoVaR (Girardi and Ergün (2013)) based on Multivariate GARCH were proposed.
Also, completely new equity-based measures are emerging from the literature. All those
refinements and new measure should be in the future included in this kind of analysis. this
preliminary analysis represents the first step of our research that would quest for better
tracking measures.

5. Appendix

5.1. Descriptive Statistics

In Tables 5 and 6, we report the main Statistics of Stock Returns for the European Banks
included in our analysis: Tukey five numbers, mean, standard deviation, Skewness and Kur-
tosis.

5.2. Systemic Risk Measures

In the following Table we report the names, the Bloomberg ticker and the associated systemic
risk measures used in our analysis.
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Table 5: Summary Statistics European Banks Stock Returns 2013
Mean Max Min S. D. Skewness Kurtosis Median Q5% Q95%

Banca Monte dei Paschi di Siena SpA (BMPS IM) -0.001 0.137 -0.099 0.033 0.584 5.339 -0.002 -0.051 0.061
Barclays PLC (BARC LN) 0.000 0.078 -0.066 0.017 0.046 4.740 0.001 -0.028 0.027

Banco Bilbao Vizcaya Argentaria SA (BBVA SM) 0.001 0.047 -0.049 0.017 -0.193 3.489 0.001 -0.028 0.029
Bankia (BKIA SM) -0.005 1.066 -0.922 0.130 0.111 35.991 0.000 -0.145 0.083

BNP Paribas SA (BNP FP) 0.001 0.052 -0.051 0.018 -0.134 3.691 0.001 -0.030 0.031
Commerzbank AG (CBK GR) 0.000 0.154 -0.094 0.030 0.612 6.649 -0.002 -0.049 0.046
Credit Agricole SA (ACA FP) 0.002 0.067 -0.060 0.021 -0.009 4.119 0.002 -0.032 0.035

Danske Bank A/S (DANSKE DC) 0.001 0.089 -0.063 0.016 0.476 7.268 0.001 -0.024 0.025
Deutsche Bank AG (DBK GR) 0.000 0.041 -0.050 0.016 -0.431 3.430 0.001 -0.027 0.025

DNB ASA (DNB NO) 0.001 0.075 -0.071 0.018 0.174 5.987 0.002 -0.026 0.029
Erste Group Bank AG (EBS AV) 0.000 0.060 -0.117 0.023 -0.509 5.676 0.000 -0.032 0.037

Svenska Handelsbanken AB (SHBA SS) 0.001 0.035 -0.058 0.014 -0.650 4.661 0.002 -0.025 0.023
HSBC Holdings PLC (HSBA LN) 0.000 0.038 -0.040 0.012 0.011 4.293 0.000 -0.016 0.018

ING Groep NV (INGA NA) 0.001 0.054 -0.066 0.020 -0.207 3.493 0.002 -0.036 0.034
Intesa Sanpaolo SpA (ISP IM) 0.001 0.062 -0.095 0.023 -0.437 4.476 0.001 -0.033 0.035
KBC Groep NV (KBC BB) 0.002 0.069 -0.072 0.022 0.036 3.804 0.002 -0.029 0.037

La Caixa Bank SA (CABK SM) 0.001 0.111 -0.105 0.023 -0.043 7.160 0.001 -0.033 0.036
Lloyds Banking Group PLC (LLOY LN) 0.002 0.079 -0.039 0.017 0.539 4.453 0.000 -0.024 0.030

Nordea Bank AB (NDA SS) 0.001 0.045 -0.046 0.015 -0.428 3.878 0.002 -0.025 0.024
Royal Bank of Scotland Group PLC (RBS LN) 0.000 0.061 -0.103 0.023 -0.468 4.684 0.000 -0.034 0.040

Banco Santander SA (SAN SM) 0.000 0.050 -0.059 0.018 -0.224 4.025 0.000 -0.029 0.029
Skandinaviska Enskilda Banken AB (SEBA SS) 0.002 0.041 -0.053 0.015 -0.562 4.451 0.003 -0.020 0.023

Societe Generale SA (GLE FP) 0.001 0.099 -0.062 0.023 0.184 4.354 0.002 -0.036 0.037
Standard Chartered PLC (STAN LN) -0.001 0.041 -0.068 0.016 -0.534 4.872 0.000 -0.024 0.023

Swedbank AB (SWEDA SS) 0.001 0.095 -0.082 0.017 -0.220 9.011 0.002 -0.026 0.024
UniCredit S.p.A. (UCG IM) 0.001 0.055 -0.088 0.024 -0.538 4.360 0.002 -0.039 0.038

Table 6: Summary Statistics European Banks Stock Returns 2014
Mean Max Min S. D. Skewness Kurtosis Median Q5% Q95%

Banca Monte dei Paschi di Siena SpA (BMPS IM) -0.004 0.346 -0.242 0.053 0.538 15.134 -0.002 -0.077 0.059
Barclays PLC (BARC LN) 0.000 0.085 -0.063 0.018 0.421 6.687 0.000 -0.026 0.026

Banco Bilbao Vizcaya Argentaria SA (BBVA SM) 0.000 0.066 -0.057 0.017 0.049 4.457 -0.001 -0.029 0.026
Bankia (BKIA SM) 0.000 0.080 -0.062 0.021 0.241 3.639 0.000 -0.033 0.035

BNP Paribas SA (BNP FP) -0.001 0.044 -0.047 0.016 0.052 3.219 0.000 -0.026 0.027
Commerzbank AG (CBK GR) 0.000 0.088 -0.063 0.022 0.296 4.690 0.001 -0.036 0.034
Credit Agricole SA (ACA FP) 0.001 0.073 -0.060 0.020 0.040 4.109 0.000 -0.029 0.031

Danske Bank A/S (DANSKE DC) 0.001 0.056 -0.034 0.013 0.423 4.536 0.001 -0.020 0.023
Deutsche Bank AG (DBK GR) -0.001 0.041 -0.044 0.016 -0.092 2.782 -0.001 -0.028 0.025

DNB ASA (DNB NO) 0.000 0.055 -0.064 0.016 -0.177 5.582 0.001 -0.027 0.025
Erste Group Bank AG (EBS AV) -0.001 0.059 -0.179 0.025 -1.968 14.977 0.000 -0.036 0.034

Svenska Handelsbanken AB (SHBA SS) 0.000 0.035 -0.052 0.012 -0.296 4.876 0.001 -0.018 0.020
HSBC Holdings PLC (HSBA LN) 0.000 0.031 -0.037 0.011 -0.187 3.496 0.000 -0.018 0.019

ING Groep NV (INGA NA) 0.000 0.056 -0.058 0.018 -0.121 3.623 0.000 -0.032 0.029
Intesa Sanpaolo SpA (ISP IM) 0.001 0.068 -0.064 0.022 -0.023 3.155 0.002 -0.036 0.041
KBC Groep NV (KBC BB) 0.001 0.060 -0.060 0.019 0.045 3.805 0.000 -0.031 0.034

La Caixa Bank SA (CABK SM) 0.001 0.094 -0.058 0.020 0.270 4.643 0.001 -0.033 0.032
Lloyds Banking Group PLC (LLOY LN) 0.000 0.055 -0.050 0.015 -0.303 4.132 0.001 -0.028 0.021

Nordea Bank AB (NDA SS) 0.000 0.050 -0.036 0.014 0.082 3.629 0.000 -0.026 0.024
Royal Bank of Scotland Group PLC (RBS LN) 0.001 0.104 -0.081 0.020 0.922 9.680 0.000 -0.026 0.026

Banco Santander SA (SAN SM) 0.000 0.049 -0.048 0.015 -0.145 3.920 0.001 -0.026 0.024
Skandinaviska Enskilda Banken AB (SEBA SS) 0.000 0.051 -0.050 0.013 -0.224 4.729 0.000 -0.021 0.022

Societe Generale SA (GLE FP) -0.001 0.054 -0.056 0.019 0.238 3.530 -0.002 -0.028 0.035
Standard Chartered PLC (STAN LN) -0.001 0.042 -0.094 0.015 -1.025 9.597 -0.001 -0.020 0.024

Swedbank AB (SWEDA SS) 0.000 0.046 -0.068 0.013 -0.465 6.987 0.001 -0.019 0.019
UniCredit S.p.A. (UCG IM) 0.000 0.067 -0.064 0.023 0.117 3.374 -0.001 -0.037 0.043
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