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Abstract

Water quality indicators are important to identify risks to the environment, society and human

health. The European Community Water Framework Directive establishes guidelines for the

classification of all water bodies across Europe and chemical and biological indicators were

used to this scope. In particular, the Chlorophyll type A index (Chl-a) is a shared indicator of

trophic status and monitoring activities may be useful to explain its spatial distribution and to

discover local dangerous behaviors (for example the anoxic events). Differently by the classical

approach based on an “average” values over a period, we propose a functional clustering

model that takes into account temporal and spatial dependence of Chl-a concentrations in the

Adriatic Sea for defining appropriate clusters of sites. We use satellite monthly data, during

the period 2002-2012, and we model the spatial dependence among the sites by means of a

Markov random field model. Compared to similar attempts in literature (Jiang and Serban,

2012) our formulation includes spatial covariates. This inclusion allows for more flexibility

to obtain more homogeneous and representative clusters of sites in the Adriatic Sea. The

estimation of the model and the identification of the number of clusters are carried out using

a pseudolikelihood function. A small simulation study complements the real data analysis.
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1. INTRODUCTION

According to the European Water Framework Directive (WFD; 2000/60/EC), water bodies

have to be monitored in order to achieve a “good ecological status” by 2015. Since the status

of most European water bodies is affected by human activities, a regular monitoring activity

includes the evaluation of the ecological status of each water body (such as bio-geochemical

and hydromorphological parameters) with the scope to protect the environment, society

and human health. A deterioration in water quality (i.e. eutrophication and cyanobacterial

blooms) presents substantial risk and can have detrimental effects on the local economy.

In the sea water, the Chlorophyll type A indicator (Chl-a) is used as biomass indicator of

primary producers (e.g. photosynthetic algae, from those unicellular to multicellular ones) in

the water. The Chl-a level also increases as in eutrophic conditions, i.e. in presence of high

concentration of nutrients and light availability. In such circumstance, marked algal blooms

may be followed by nutrient depletion and a rapid decrease in algal biomass. The subsequent

degradation may then lead to hypoxic or even anoxic events. The study related to the Chl-a

concentrations and its trend may be useful to discover areas with different trophic status.

This is particularly true for the Adriatic Sea (Marini et al., 2010; Giani et al., 2012). Time

series of data can be easily gathered by remote satellite sensing techniques. However, few

studies have classified areas on the basis of the entire temporal pattern of the time series. A

common practice is to consider classification methods that compare only average values in a

prefixed period (e.g. a month or a year). This limitation clearly leads to lose information

about the temporal pattern of the observed parameter.

Recent advances in environmental statistics provide new clustering methods based on

functional data analysis (FDA) (Ramsay and Silverman, 2005). In FDA each time series

is viewed as observations of a continuous function collected at a finite series of time points.

In this setting, observations are functions and the fundamental unit of interest is the entire

function or curve constructed from the observations collected over time. This approach has

been applied in several environmental contexts: to classify time series concerning air quality

3



indicators on sites as part of a monitoring network (Ignaccolo et al., 2008) or to regroup time

series on water quality indicators (Pastres et al., 2011; Haggarty et al., 2012). Although with

different approaches or formulations, these applications share the feature of grouping different

sites together only when the observed time series have some common features, preserving

sample information about the temporal pattern. However, they did not consider the spatial

dependence in the clustering process and were limited to few sites.

In this respect a notable exception are two recent papers (Haggarty et al., 2015; Gaetan

et al., 2016) where spatial dependence is accounted for by adjusting the L2 dissimilarity

measures calculated between two curves by means of a functional variogram (Giraldo et al.,

2012). Another possibility still unexplored for environmental data is given by the bagging

Voronoi classifiers (Secchi et al., 2013).

In this paper we follow a model based functional clustering approach (James and Sugar,

2003; Pastres et al., 2011; Haggarty et al., 2012, 2015) in which time series are supposed to

be generated by a mixture of latent distributions. Because in our motivating example time

series are collected on a regular grid or network we take into account the spatial dependence

using a Markov random model as mixing distribution (Jiang and Serban, 2012). In addition

we extend the modelling proposal of that by including different level of spatial dependence in

the latent process, namely in the conditional mean and in the interacting potentials. This

inclusion, motivated by our real problem, leads to more spatially homogeneous and consistent

clustering of the water bodies in the Adriatic Sea based on Chl-a concentrations according to

the current knowledge on the Chl-a dynamics in that zones.

The structure of the paper is the following. In Section 2 we highlight the main features of

the data that we used. In Section 3 we introduce our model proposal and a small simulation

study is presented in Section 4 for demonstrating the clustering performances. Section 5

reports our finding for the classification. A brief discussion about the results (Section 6) ends

the paper.
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Figure 1: Observed grid-points (412 sites) in the Adriatic Sea and 3 examples of time series extracted from

the dataset (Chl-a concentrations).

2. CHL-A CONCENTRATIONS OVER THE ADRIATIC SEA

Among the European waters, the Adriatic Sea reports some singular characteristics: it’s

almost land-locked basin separated from the central Mediterranean by the Strait of Otranto;

although a fairly small size, it encompasses a significant diversity of properties, from eutrophic

or oligotrophic in the northern to bloom conditions in the southern; the Italian coasts report

the presence of fresh water from the rivers while in the Croatian coasts the rivers have a

relatively short length and flow. Due these conditions, the Adriatic Sea is formed by an

heterogeneous combination of ecosystems and its northern part is well recognized as degraded

and under severe pressure (Lotze et al., 2006; Diaz and Rosenberg, 2008).

We have considered the monthly mean values of the Chl-a concentration in the Adriatic

Sea from January 2002 to December 2012. Chl-a is averaged over a month because we are

interested to long-term variations. Data were obtained by calibrating Ocean Colour data

provided by different satellite missions, such as MERIS, SeaWiFS and MODIS, and the data

set was made available by ACRI (http://hermes.acri.fr) in the framework of the GlobColour

Project (Maritorena et al., 2010). For each month, we have extracted data with a resolution
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of 192 x 240 grid points (longitude: 12.02o E to 21.98o E; latitude: 38.02o N to 45.98o N;

4Km scale). However only 8 217 points cover the area over the Adriatic Sea. Starting from

this set of points (8 217) we obtain a valid measurement of the Chl-a concentration. However,

satellite data are affected by a measurement error due to many physical factors and a quality

control of data has been performed. In particular, we report that the low bathymetry and

the tide level affect the quality of the measurement and lead to lack of several data. In our

dataset 72.4% of extracted time series turns out to be without missing values. On the other

hand 5% of time series contains eleven missing values or more. Therefore we decided to

analyze a coarser resolution with an aggregation factor equal to 5, i.e. 52 is the number of

grid points in the aggregating window. The resulting grid contains 412 sites over the Adriatic

Sea (Figure 1-a). For each grid point the Chl-a concentration is calculated by averaging the

values of the 25 starting curves. This aggregation increases the number of time series with

complete data up to 88.1% and only 5% of time series contains four missing values or more.

This dataset presents several features which makes the clustering task interesting. Chl-a

concentration is subjected to seasonal and annual changes. It is usually influenced by rivers

and their input of nutrients, climatic conditions (sunlight, rain, temperature, etc..), water

depth and hydrodynamics (see D’Ortenzio and Ribera d’Alcalà, 2009, for instance.)

In Figure 1(b) we show the temporal evolution of the Chl-a concentration in three sites

located at the same distance from the coast. In general we expect to observe higher spring

values and lower summer ones. However such seasonal pattern is masked by different grades

of heteroscedasticity or completely modified as in site 1. Note also that the sites 2 and 3 have

distinct mean level over the considered period due to the different sources of nutrients.

We think that a classification that takes into account the spatial dependence should

permit a more homogeneous classification with, for example, a substantial noise reduction. In

fact, meteorological conditions can induce severe measurement errors in the satellite images.

Moreover the spatial dependence could vary according the positions of the sites. In our case

we expect that spatial dependence is stronger offshore and weaker near to the sea coast.

The reason is that the increasing load of nutrients from human activities (sewage effluents,
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aquaculture farms and industrial facilities) or natural causes (river fluxes, lagoons) locally

increments the Chl-a concentrations jointly with their spread. Thus different degrees of

spatial dependence may be accounted for using external spatial information as the distance

of a site from the coast, for instance.

3. METHODOLOGY

3.1 A functional spatial clustering model

Let Yi = (Yi(ti,1), . . . , Yi(ti,mi
))′ a time series of mi values collected on the site si, i = 1, . . . , n.

The value mi corresponds to the number of observations included in the i− th time series.

We suppose to observe n time series and we want to cluster them in C clusters. In a

mixture-model based approach to clustering the cluster membership of the i-th time series is

represented by a latent random vector Zi = (Zi,1, . . . , Zi,C)
′, where Zi,c = 1 if the time series

belongs to the cluster c, Zi,c = 0 otherwise. Then a model for the complete data (Yi,Zi),

i = 1, . . . , n is specified in a hierarchical way (McLachlan and Peel, 2000).

Given the cluster membership Zi, we suppose that Yi is a discrete and noised measurement

of a smooth time-varying curve fc(t), namely

Yi(ti,j) = fc(ti,j) + εi(ti,j), j = 1, . . . ,mi.

The smooth function fc(t) is described by a linear combination of K B-spline basis functions

Bk(t), k = 1, . . . , K, evaluated at K − 1 equally spaced in knots, namely

fc(t) =
K∑
k=1

ψc,kBk(t)

where ψc = (ψc,1, . . . , ψc,K)
′ is a vector of unknown parameters.

In view of our application, it does not seem too restrictive to assume that εi(ti,j) are

temporally and spatially independent Gaussian random errors with zero mean and cluster

specific variance σ2
c . It turns out that time series Y1, . . . ,Yn are conditionally independent

on Z1, . . . ,Zn and

Yi(ti,j)|Zi ∼ N

(
K∑
k=1

ψc,kBk(ti,j), σ
2
c

)
, j = 1 . . . ,mi. (1)
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4-NN 8-NN 12-NN

Figure 2: Three examples of nearest neighbourhoods on a 2D regular grid. Sites (◦) are neighbours of the

site (•).

In the first attempts to clustering time series of water quality data (Pastres et al., 2011;

Haggarty et al., 2012), the memberships Z1, . . . ,Zn have been supposed independent and

identically distributed multinomial variables with distribution

Pr(Zi = zi) =
exp

{∑C
c=1 αczi,c

}
∑C

c′=1 exp{αc′}
, (2)

In (2) we assume that the cluster C is the reference cluster and we set αC = 0 for the

identifiability of the parameters. We refer to the equations (1) and (2) as Functional

Clustering Model (FCM).

Jiang and Serban (2012) models possible spatial dependence among the memberships by

means of a Markov Random Field (MRF). The distribution of MRF is specified in terms of

the conditional distribution of a random variable in a site si given the values observed in the

sites belonging ito its neighbourhood Examples of k−nearest neighbourhood (k-NN) of a site

on a 2D regular grid are showed in Figure 2.

We denote by i ∼ l that si and sl are neighbours and the set ∂i = {l : i ∼ l} indicates

the neighbourhood of si. Given a neighbourhood system, i.e. the set of the neighbourhood

G = {∂i, i = 1, . . . , n}, the MRF specification assumes that

Pr(Zi = zi|Zl = zl, l 6= i) = Pr(Zi = zi|Z∂i = z∂i)
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with Z∂i = (Zl, l ∈ ∂i). Jiang and Serban (2012) have considered the Potts model (Potts,

1952), namely

Pr(Zi = zi|Z∂i = z∂i) =
exp

{∑C
c=1(βvi,c)zi,c

}
∑C

c′=1 exp{βvi,c′}
, (3)

where vi,c =
∑

l∈∂i zl,c.

On a 2D regular grid the resulting model is isotropic and the parameter β plays the role

of regularization parameter: the larger β is, the more the clustered regions are geometrically

regular. The value β = 0 corresponds to no spatial interaction, i.e. a multinomial distribution

(2) with equal class probabilities Pr(Zi = zi) = 1/C. We refer to the equations (1) and (3) as

the Spatial Functional Clustering Model (SFCM).

A limitation of the SFCM is that it does not allow for spatial covariates to be incorporated

into the clustering approach. This limitation has been noted by James et al. (2012) and they

suggested a simple extensions of (2) through

Pr(Zi = zi|Z∂i = z∂i) =
exp

{∑C
c=1(βvi,c + δcxi)zi,c

}
∑C

c′=1 exp{βvi,c + δcxi}
, (4)

where xi is a spatial covariate. However there are situations where the spatial interaction is

not identical for each cluster or is potentially modulated by a spatial covariate, xi. For this

reason we propose the following extension of the model (3)

Pr(Zi = zi|Z∂i = z∂i) =
exp

{∑C
c=1 zi,c(αc + β

′
cvi + γc(xi)

′vi + δcxi)
}

∑C
c′=1 exp{αc′ + β

′
c′vi + γc′(xi)

′vi + δcxi}
, (5)

where vi = (vi,1, . . . , vi,C)
′. The parameters α = (α1, . . . , αC)

′ , βc = (βc,1, . . . , βc,C)
′,

δ = (δ1, . . . , δC)
′ and the functions γc(x) = (γc,1(x), . . . , γc,C(x))

′, are supposed unknown.

Setting the cluster C as reference cluster, the constraints αC = δC = 0, βC = γC(x) = 0

make the model identifiable.

The model is not stationary and it can be easily extended to consider several spatial

covariates. Moreover it is a special case of the conditioned MRF model (Divino et al.,

2000, equation 3). In that paper the authors considered γc(x) as a smooth non parametric
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function, but in our application we prefer to consider a simpler parametric setting, namely

γc(x) = γch(x), where h(x) is a known function. In the sequel we term the model defined by

(1) and (5) Spatial with covariates Functional Clustering Model (ScFCM).

Finally we note that FCM and SFCM are nested models of ScFCM. In fact, if βc =

γc(x) = δ = 0, it reduces to the multinomial distribution (2). Under the constraints

α = γc(x) = δ = 0 and βcc′ = β, for c = c′, βcc′ = 0 for c 6= c′, it reduces to Potts model (3).

3.2 Model estimation and selection of number of clusters

The ScFCM is an instance of a mixture model for which parametric estimation is usually

resolved by the Expectation-Maximization (EM) algorithm (Dempster et al., 1977). However

a standard application of EM is not suitable because exact computations of the expected

values in the E-step as well as the objective function in the M-step are not practical (Qian and

Titterington, 1991). Here we adapt a Restoration-Maximization (RM) algorithm proposed by

James et al. (2012) to overcome this problem.

We denote by θY = (ψ′1, . . . ,ψ
′
C , σ

2
1, . . . , σ

2
C)
′ the collection of observation distribution

parameters and θZ = (α1, . . . , αC−1,β
′
1, . . . ,β

′
C−1,γ

′
1, . . . ,γ

′
C−1)

′ the collection of the MRF

parameters. Moreover f indicates a probability mass function or a probability density function

depending upon which random variable is considered.

Given the observations y = (y′1, . . . ,y
′
n)
′ and the current values θ(k)Y , θ(k)Z , and z(k),

M-step - we obtain the estimate θ(k+1)
Y maximizing the conditional likelihood

LY (θY |z(k);y) =
n∏

i=1

f(yi|z(k)i ;θY );

- we obtain the estimate θ(k+1)
Z by maximizing the pseudolikelihood (Besag, 1974)

PLZ(θZ ; z
(k)) =

n∏
i=1

f(z
(k)
i |z

(k)
∂i ;θZ);

R-step - we restore z with z(k+1) = (z′
(k+1)
1 , . . . , z′(k+1)

n )′, using the Iterative Conditional

Mode (ICM) algorithm (Besag, 1986), based on θ(k+1)
Y and θ(k+1)

Z . Precisely, we

obtain z
(k+1)
i in turn by
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z
(k+1)
i = argminw Pr(Zi = w|y, z(k+1)

1 , . . . , z
(k+1)
i−1 , z

(k)
i+1, . . . , z

(k)
n )

= argminwf(yi|w;θY ) f(w|z(k+1)
1 , . . . , z

(k+1)
i−1 , z

(k)
i+1, . . . , z

(k)
n ;θZ).

We repeat the previous steps until the convergence of the parameters. An initial guess z(0)

can be obtained by the unsupervised functional clustering procedure described in Abraham

et al. (2003).

The algorithm has been implemented using standard fitting procedures in R language.

Given the membership z
(k)
i the (conditional) likelihood of each time series f(yi|z(k)i ;θY )

is a multivariate normal density with unknown parameters ψc and σ2
c that can be easily

estimated using function lm. The pseudolikelihood PLZ(θZ ; z) corresponds to the likelihood

of a baseline multinomial logit model (Agresti, 2013) and θZ can be estimated using function

multinom in the recommended package nnet (Venables and Ripley, 2002). Finally the iterative

conditional mode (ICM) algorithm has been coded in C and integrated into R by using

RcppArmadillo package (Eddelbuettel and Sanderson, 2014).

The full implementation of the estimation procedure requires to select the number of

basis functions representing the membership curves and the desided number of cluster C. For

the FCM the use of likelihood based criteria like the Akaike Information Criteria (AIC) or

the Bayesian Information Criteria (BIC) has been advocated in the literature (Fraley and

Raftery, 1999; Pastres et al., 2011). However, for SFCM and ScFCM the evaluation of the

likelihood

L(θY ,θZ) =
∑
z1

· · ·
∑
zn

f(y1|z1;θY )× · · · × f(y1|zn;θY )f(z1, . . . zn;θZ) (6)

is not feasible because the sum involves all possible configurations of the hidden vectors .

With n sites and C clusters, there are Cn possible configurations, which is huge, making

this approach intractable. Stanford and Raftery (2002) have suggested to approximate the

11



required likelihood by the pseudolikelihood

PL(θY ,θZ) =
n∏

i=1

∑
zi

f(yi|zi;θY )f(zi|ẑ∂i;θZ) (7)

where ẑi, i = 1, . . . , n, are the restored cluster memberships obtained at the convergence of

the RM algorithm.

In view of our application we propose a practical and simpler solution. First of all we

choose K, the number of basis functions, by minimizing the overall criterion

BIC∗(K) =
n∑

i=1

(mi log(s
2
i ) +K log(mi)) (8)

with s2i = m−1i

∑mi

j=1{Yi(ti,j)−
∑K

k=1 ψ̂i,kBk(ti,j)}2.

Instead of summing over all possible configurations of zi in (7), we consider the ICM

restoration of z and we get

PL∗(θY ,θZ) =
n∏

i=1

f(yi|ẑi;θY )f(ẑi|ẑ∂i;θZ); (9)

as further approximation of (6).

Then we select C, the number of clusters, by minimizing the pseudolikelihood criterion:

PLIC(C) = −2 logPL∗(θ̂Y , θ̂Z) + (dim(θ̂Y ) + dim(θ̂Z)) log

(
n∑

i=1

mi

)
. (10)

We adopt a sequential approach to choosing C to maximize PLIC(C). We begin by computing

PLIC(C) for C = 1, and then incrementally increase the value of C. We take the first local

minimum of PLIC(C) to be our choice for the number of clusters.

4. SIMULATION STUDY

In this small simulation study we want to assess the ability of the selection procedure

introduced in the previous section to detect the ’true’ number of clusters. In particular we

consider a setup close to the real example we deal with and characterized by a non stationary

spatial dependence.
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Figure 3: On the left, fc(t) curves for C = 1, . . . , 4; on the right, the noised curves with error variance

σ2 = 0.04.

We simulate random curves, observed at one hundred time points t = 0.01, 0.02, . . . , 1,

from the model

Y (t) = fc(t) + ε(t)

where ε(t) is a Gaussian white noise with variance σ2. The curves belong to C clusters with

different patterns

fc(t) = 1 + t+ exp

{
20

(
t− c

C + 1

)2
}
, c = 1, . . . , C, (11)

according the values of the label c. An illustrative example of simulated curves is reported in

Figure 3.

The curves are located on a regular grid of 900 points si = (i1, i2), i1 = 1, . . . , 30, i2 =

1, . . . , 30, according to the cluster membership zi generated from the MRF with conditional

distribution

Pr(Zi = zi|Z∂i = z∂i, si) =
exp

{∑C
c=1[γh(si)vi,c]zi,c

}
∑C

c′=1 exp{γh(si)vi,c′}
, (12)

where h(si) = 1 if i2 ≤ 15 and h(si) = 0.5 otherwise. The role of the function h(·) is to
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account for different strength of spatial dependence (γ) according to the location si. In this

specification the spatial dependence in the 15 bottom rows of the grid is stronger than in the

remaining rows, encouraging the clustering in larger regions. The resulting spatial pattern

with C = 4 clusters and γ = 2 is illustrated in Figure 4 where the simulated image is obtained

running a Gibbs sampler.

X

Y
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10

15

20

25

5 10 15 20 25

Figure 4: Simulation from the MRF (12) with C = 4 clusters and γ = 2.

In the simulation setting we have considered different combinations according three factors:

the number of clusters C (C = 2, 4), the variance of the noise term σ2 (σ2 = 0.01, 0.04), and

the strength of the spatial dependence γ (γ = 2, 4).

Table 1 reports the frequencies of the number of clusters identified in 100 Monte Carlo

experiments by means of PLIC(C). In the fitting procedure the number of basis function,

K, is set to 9, according to overall BIC proposed in (8). The results from ScFCM have been

compared to the tables obtained by using the SFCM with MRF (3) and the simple FCM.

It is encouraging that we obtain the best results under ScFCM. This is especially trustwor-
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thy when the true number of cluster is C = 2. Moreover in such case the model seems robust

to the reduction of the signal-to-noise ratio. Note that SFCM still has a discrete ability to

classify the synthetic time series in all simulation instead the FCM yields to poorer results.

γ = 2 γ = 4

Identified clusters Identified clusters

C σ2 1 2 3 4 5 6 1 2 3 4 5 6

2 0.01 0 94 5 1 0 0 0 88 10 2 0 0 ScFCM

0 91 9 0 0 0 0 79 20 1 0 0 SFCM

0 0 0 0 0 100 0 0 0 0 6 94 FCM

2 0.04 0 95 5 0 0 0 0 93 7 0 0 0 ScFCM

0 89 11 0 0 0 0 82 16 2 0 0 SFCM

0 0 0 0 2 98 0 0 0 0 3 97 FCM

4 0.01 0 0 0 100 0 0 0 0 4 91 4 1 ScFCM

0 0 0 100 0 0 0 0 3 84 11 2 SFCM

0 0 0 0 3 97 0 0 0 0 2 98 FCM

4 0.04 0 0 0 100 0 0 0 0 3 88 7 2 ScFCM

0 0 0 99 1 0 0 0 2 85 7 6 SFCM

0 0 0 0 3 97 0 0 0 0 5 95 FCM

Table 1: Identified clusters in 100 Monte Carlo experiments.

5. CLUSTERING CHL-A CONCENTRATION DATA

Satellite Chl-a data show a log-normal distribution (Campbell, 1995) and we have considered

in our analysis log-transformed values. Moreover the time series of each site has been

standardized to have zero mean and unit variance. The standardization partially allows

to remove climatic effects: sites belonging to the Adriatic Sea are characterized by several

patterns of temperatures and precipitations producing a different variability and average
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value of Chl-a concentrations.

We choose a cubic B-spline basis with equally spaced knots over the interval [1, 132] to

represent the mean value of the individual random curve. The number of basis function has

been selected by means of (8). At K = 30 we have recorded the most pronounced minimum

(see Figure 5) of BIC∗(K). This choice corresponds approximately to one knot every four

months and allows to take properly into account a long term trend jointly with a seasonal

component.
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Figure 5: Values of BIC∗ for different choices of the number of basis functions.

We fit FCM, SFCM and ScFCM and we use the PLIC(C) for identifying the number of

clusters keeping the number of basis function fixed at K = 30. The number of clusters is

chosen at the first local minimum (see Figure 6).

In Figure 8-a we present the spatial distribution of the clusters we have obtained by FCM.

The sites are labelled using a greyscale according to the mean values of the clusters and the

highest values of Chl-a concentrations are associated to the darkest colours.

The resulting classification seems simplistic. In particular the first cluster embraces a

large portion of the Northern sites including the Venice and Grado lagoons in Italy and the

Karavasta Lagoon in Albania.

However it is well documented (Giani et al., 2012; Marini et al., 2010) how the fresh water
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Figure 6: PLIC(C) values for different number of clusters: (a) FCM; (b) SFCM; (c) ScFCM. For the last

two models the values according to different neighbourhood systems are depicted.

of dynamics related to the coast strongly influences the Chl-a dynamics. We note also that

the main influencing factors (rivers, lagoons, discharges, etc. . .) are located in the North of

the Adriatic sea. Our belief is that introducing this spatial information in the clustering

could pool the sites in more spatially homogeneous clusters and give a more detailed gradient

of the Chl-a concentration when we move away from the coastline.

Therefore we consider an instance of model (5). The Adriatic Sea is a semi-closed basin

and for any site si the distance di from a coast can vary from 0 to 97 km. As a covariate

we consider the indicator variable, xi, such that xi = 1 if distance di is less than 30 km and

xi = 0 otherwise (see Figure 7). The choice of the threshold 30 km is consistent to the results

in the literature (Kourafalou, 2001). In this respect the variable xi acts as modulating factor

and we set γc(xi) = γcxi into (5).

The resulting MRF has conditional distribution is given by

Pr(Zi = zi|Z∂i = z∂i) =
exp

{∑C
c=1[(β + γxi)vi,c + δcxi]zi,c

}
∑C

c′=1 exp{(β + γxi)vi,c + δcxi}
. (13)

We compare the specification (13) with (3) in which we assume that there is no modulating

factor (i.e. γ = 0 and δc = 0). Three neighbourhood systems have been considered: 4-NN,

8-NN and 12 NN where a large number of neighbours results in wider connected clusters.
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According the PLIC(C) values (Figures 6-b and 6-c) we select a number of clusters equal to

C = 9 for SFCM and C = 8 for ScFCM with a slight preference for the 12-NN system. We

find also that PLIC(C) does not provide a sharp indication in favour of one of two models.

It is also interesting to note that SFCM and ScFCM yield to different partitions of the

sites. We measure he agreement between two resulting partitions by means of the Adjusted

Rand Index (ARI) (Hubert and Arabie, 1985). An index value near to one (zero) indicates a

good agreement (weak agreement). Looking at Table 2, the resulting partitions seem quite

different.

Comparison ARI

FCM - SFCM 0.44

FCM - ScFCM 0.54

SFCM - ScFCM 0.62

Table 2: ARI values obtained comparing FCM, SFCM and ScFCM.

Moreover the clustering procedures which include the spatial dependence (SFCM: Figure

8-b; ScFCM: Figure 8-c) seem to be able to better catch the influence of the freshwaters

from the rivers defining a unique cluster (Cluster 1) closed to the Po river’s mouth, the main

river that discharges into Adriatic Sea. However we observe important differences in the

partition of the Northern Adriatic Sea in Figure 8-c. The spatial extension of the Cluster 1

is coherent with the influence of the Alpine rivers (especially from Po river), while Cluster

2 and 3 stretch, in anti-clockwise direction, from the Dalmatian coast to the offshore sites

of the Italian side, up the Intermediate Adriatic Sea; this finding is in agreement with the

superficial sea stream circulation (Giani et al., 2012).

Finally Figure 9 shows the time-varying curves related to the obtained clusters by ScFCM

model. In Cluster 1 the temporal pattern differs essentially from one of the other clusters

because the seasonal component is nearly absent. This pattern is consistent with an eutrophic

area due to the presence of fresh waters from the rivers and the rainfall regime. Cluster 2 and
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Figure 7: Spatial distribution of the sites (in dark colour) within 30 km from the coast.

3 reports a slight upward trend associated with an unsteady seasonal oscillation. Both clusters

represent sites relatively influenced from the fresh waters of local rivers and the seasonal

variability. They define a borderline condition where seasonal algal blooms and enriched

fresh waters mix. The sites in the clusters from 4 to 8 exhibit a clear seasonal pattern with

different cycles of positive peaks in the early spring and negative peaks during the summer

period. Looking more closely Cluster 4 presents a constant seasonality in agreement with the

annual stream of the rivers in the eastern side of the Apennines. The last three clusters (6, 7,

8), located far from the coasts, exhibit a flat trend and an evident seasonal pattern in the

period 2002-2008. Afterwards all of them show an augmented inter-annual variability in the

last part of the considered temporal period, associated to high peaks in the years 2010:2011.

6. DISCUSSION

In this paper we have proposed a model based approach to the functional clustering when time-

varying curves are spatially dependent. In particular we have considered data on a regular

19



1
2
3
4
5

1
2
3
4
5
6
7
8
9

(a) (b)

1
2
3
4
5
6
7
8

(c)

Figure 8: Spatial clustering resulting from (a)FCM model with 5 clusters, (b) FSCM with 9 clusters and (c)

ScFCM with 8 clusters.

grid and spatial dependence has been modelled using non stationary MRF. With respect to

existing methodological literature (James and Sugar, 2003) our model incorporates external

information for modulating the spatial dependence. Such inclusion has been motivated
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Figure 9: Log chl-a distribution of each cluster obtained by the ScFCM model with the number of sites

belonging to each cluster.

by analysing a temporal dataset of satellite measures of Chl-a concentrations over the

Adriatic Sea. The aim of the study was to provide a classification of the Adriatic Sea in

homogeneous zones with respect to the temporal pattern. It is worth noting that the dataset

has moderate size, namely 412 grid points monthly observed 132 times from January, 2002 to
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December, 2012. All calculations have been carried out on a laptop equipped with 1.80 GHz

4 core-processor and 8 GB of RAM. One iteration of the proposed RM algorithm requires

approximately 30 seconds. We have analysed a dataset with a reduced resolution in order to

decrease the presence of missing data and outliers and to achieve an acceptable computational

time. Actually the increasing resolution of satellite data from the new ESA Sentinel program

produces high resolution datasets and the number of sites in a grid increases with the square

of the resolution. Dealing with a dataset at the original resolution allows to avoid negative

effects of data scaling (Raptis et al., 2003), but the computational time for estimating the

model can be a serious problem. In fact parallel programming can only partially decrease the

computational time, especially in presence of sequential iterative algorithms such as in our

proposal.

Our modelling strategy helps to classify in a better way the areas affected by different

trends. It introduces a certain grade of flexibility in the spatial dependence specification

which may vary in accordance with the taken values of the spatial covariate.

Particular attention has to be paid to find the right possible covariate which can be

inserted in the spatial dependence. In this study we have included a physical measure related

to the spatial domain (distance of a site from a river mouth), but the proposed method may

admit many choices and parameterizations.

The inclusion of non stationary terms modifies the clustering and yields to a zonification

consistent with previous studies on the Adriatic Sea (Lazzari et al., 2012). In fact the

clustering is driven by enriched waters of the rivers and highlights the differences between

the eastern coast of the Adriatic Sea with respect to the Croatian coast. Only the Albanian

coastal area reports the presence of a behaviour similar to the Italian coastal waters in

accordance with the hydrological basin in that zone (Marini et al., 2010).

Comparing with simplest previous studies (D’Ortenzio and Ribera d’Alcalà, 2009) that

tried to classify the sea superficial Chl-a concentrations in the Mediterranean Sea using

a K-means procedure without exploiting the temporal patterns we have obtained a more

consistent classification.
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These promising results motivate future extensions of the model to cope with the infor-

mation coming from several physical attributes as in Li et al. (2016), Ramos et al. (2012)

and Haggarty et al. (2012).
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