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Abstract Flood damage assessments are often based on stage-damage curve (SDC)

models that estimate economic damage as a function of flood characteristics (typically

flood depths) and land use. SDCs are developed through a site-specific analysis, but are

rarely adjusted to economic circumstances in areas to which they are applied. In Italy,

assessments confide in SDC models developed elsewhere, even if empirical damage

reports are collected after every major flood event. In this paper, we have tested, adapted

and extended an up-to-date SDC model using flood records from Northern Italy. The model

calibration is underpinned by empirical data from compensation records. Our analysis

takes into account both damage to physical assets and losses due to foregone production,

the latter being measured amidst the spatially distributed gross added value.

Keywords Flood risk management � Stage depth-damage curves � Economic damage �
Disaster losses � Italy

1 Introduction

The EU Floods Directive (FD, 2007/60/EC) manifested a shift of emphasis away from a

structural defence approach to a more holistic risk management, with structural and non-

structural measures having the same importance. The FD compels the identification of

areas exposed to flood hazard and risk, and the adoption of measures to moderate flood

impacts. A sound, evidence-based risk assessment should underpin public disaster risk

reduction and territorial development policies. Stage-damage curves (SDCs) are a
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customary tool used for assessing risks arising from the physical disruption of physical

tangible assets (Genovese 2006; Messner et al. 2007; Thieken et al. 2009; Jongman et al.

2012), typically as a function of flood characteristics (primary water depth, in some cases

speed and persistence) over different land use (LU) categories (Messner et al. 2007; Merz

et al. 2010). SDCs are either empirically determined from observed damage events or

inferred from bibliographic sources. Most flood risk assessment studies employ empirical

SDC models that are developed elsewhere and neither tested nor calibrated for the specific

study area (Sargent 2013). The lack of practical corroboration compromises the reliability

of the model results. In addition, the SDC models are afflicted by substantial uncertainties

stemming from the variability of assets value and vulnerability (Messner et al. 2007; Merz

et al. 2010; De Moel and Aerts 2011). To some extent, these uncertainties can be reduced if

the damage models are designed to reproduce the economic conditions of households and

businesses (Luino et al. 2009; De Moel and Aerts 2011). Different SDC models have been

reported in the literature, but most of them have been developed for site-specific appli-

cation and are rarely tested for transferability. SDCs based on empirical material from Italy

are rare (Molinari et al. 2013; Scorzini and Frank 2015). This is so despite the common

practice of state compensation for household (private) losses, for which certified damage

reports are collected. In addition, the SDC models often assume that the potential damage

is constant throughout the year. This does not hold true for agricultural land, where crop

value varies depending on crop maturity. Furthermore, SDC models address physical assets

damage and hence are not able to determine output losses in terms of foregone production

that arises from impairment of economic activities until after the production process is

fully recovered. Spatially distributed economic and social variables such as population

density and GDP can help to estimate the impact on the economic flow from natural

hazards. Different methodologies are employed for this purpose, such as econometric

models (Cavallo et al. 2012), input–output (IO) models (Hallegatte 2008; Koks et al. 2014)

and computable general equilibrium (CGE) models (Bosello et al. 2012; Rose and Wei

2013; Carrera et al. 2015). These are useful for estimating the impact of a hazard on the

economy up to the regional level, but require disaggregated data that are rarely available at

lower scales. The availability of sound flood risk models appropriate for the Italian eco-

nomic and social circumstances is essential for well-designed and informed flood risk

management policies. In this paper, we explore ways to improve the damage and loss

assessments for the sake of a better risk assessment and management. Methods such as

those explored in this paper have been tested elsewhere at national (Winsemius et al. 2013)

and international levels (Ward et al. 2013).

The paper is structured as follows. First, we test the applicability and transferability of

up-to-date SDCs against household damage declarations in the aftermath of the 2014

Modena flood in the Emilia–Romagna region. Subsequently, we describe a detailed crop-

specific model for agricultural losses, better suitable for compensation claims. Ultimately,

we explore the use of gross value added (GVA) as an indicator of exposure for production

losses (Peduzzi et al. 2009).

2 Materials and methods

Most commonly, flood risk R is determined as a function of hazard probability (H),

exposure (E) and vulnerability (V): R = H 3 E 3 V (Crichton 1999; Kron 2005; Messner

et al. 2007; Barredo and Engelen 2010). Hazard is expressed as observed or modelled
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probability p of river discharges exceeding the holding capacity of river embankments.

Exposure is the depreciated or replacement value of the tangible physical assets in hazard-

prone areas. Vulnerability is the susceptibility to damage under different levels of flood

submersion. The structural damage to physical tangible assets is also termed direct impact

or damage on stock (Merz et al. 2010; Meyer et al. 2013). When productive capital is

damaged, the impacts can also be evaluated in terms of production losses or foregone flows

of production. Sometimes, flow losses are equated to indirect impacts or damage. This is

misleading because production losses are an alternative manifestation of material damage

to productive capital assets, one that contemplates the value of output (goods and services)

that would have been produced during the time of suspended production, rather than the

depreciated value of the damaged assets. Flow losses are able to capture situations in which

production is disrupted as a result of dearth of critical input with no material damage to

productive capital, for example in the case of lifeline disruption (Przyluski and Hallegatte

2011). Here we avoid this ambiguity by referring to damage in terms of partial or total

physical asset destruction and losses in terms of foregone production flows. This is con-

sistent with economic theory, according to which the value of a stock is the discounted

flow of net future returns from its operation (Rose 2004). We estimate flood damage both

as asset damage, by using the SDC model, and as production losses in terms of affected

annual GVA (Fig. 1). Agricultural losses are estimated by using a complementary model

that accounts for crop production cost and the value of yields (Thieken et al. 2009).

2.1 SDC models for asset damage

Among the SDC models found in the literature, two have been found performing rea-

sonably well as compared to reported empirical damage in Italy (Scorzini and Frank 2015):

Fig. 1 Flood damage assessment methodological approach
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Damage Scanner (DS or SDC-1) (Klijn et al. 2007) and JRC (SDC-2) (Huizinga 2007).

SDC-1 has been recently updated (De Moel et al. 2013, 2014; Koks et al. 2014) with

additional subclasses for residential, rural and industrial damage (Sluijs et al. 2000). This

set estimates impacts on building surfaces separately from other sealed areas such roads. In

contrast, SDC-2 aggregates the impacts on mixed land use classes: the maximum value for

each of these main classes is calculated over the weighted sum of buildings and area,

including both their structure and content. This approach is adapted to work in conjunction

with low-resolution land use maps such CLC. Depth resolution also varies among the two

sets: SDC-1 takes steps of 0.1 m, while the other set has 0.5 m steps. All these curves are

based on expert judgment and none of them has been validated on empirical damage

records. SDC-1 and SDC-2 are selected as the best available options to date for trans-

ferability testing. We employ detailed regional land use data combined with the description

and location of buildings extracted from the regional spatial development plans (RER

2011). The LU classification is the same as in CORINE Land Cover (EEA 2006), but

includes an additional, more detailed and accurate disaggregation level. The damage is

estimated for sealed areas and agricultural land, while roads and natural areas are not

considered. For residential damage, we consider both the damage to the physical structure

of buildings and to their associated content. The model also accounts for damage to

passenger vehicles based on average prices from statistical registers (ACI 2014).

With this proposed methodology, we aim to simulate the impact of the flood event

which struck the Province of Modena in 2014. On January 19, an 80-m-wide levee breach

occurred on the Secchia River, which caused a spillage of 200 cubic metres per second in

the surrounding countryside, covering nearly 6.5 thousand ha of cultivated land (Fig. 2).

Seven municipalities were affected, above all the small towns of Bastiglia and Bomporto,

which were flooded for more than 48 h. The total volume of water pumped out of the

inundated area was estimated to exceed 20 million cubic metres (Fotia 2014).

For the purpose of this paper, we have used the hydrological simulation of the event

produced by D’Alpaos et al. (2014). The extent of the simulated flood is nearly five

thousand hectares, with an average depth of 1 metre. The damage estimated through SDC

is compared to household-declared damage made available by local authorities, while

damage to business activity will be made available later. The damage reports distinguish

between structure, mobile goods (furniture and common domestic appliances) and regis-

tered vehicles (private cars and motorcycles).

2.2 Agricultural losses

Expected losses in sparsely populated rural areas are often substantially lower than those in

residential areas, since the density of exposed value is lower. For this reason, agricultural

damage is often neglected or accounted for by using simple approaches with coarse esti-

mates. Yet a thorough loss assessment is necessary in areas where agricultural production

is the predominant activity (Messner et al. 2007), as it determines compensation where

compelled by liability or granted in the form of state aid (Forster et al. 2008; Tapia-Silva

et al. 2011; Twining 2014). Standard SDC models are suboptimal for this purpose as they

are not equipped to account for the variety in cultivated crops values, yields and the

progressive distribution of production costs. The SDC typically assumes a constant eco-

nomic value throughout the year, which is not consistent with the fact that the damage

depends on a flood occurrence (Ward et al. 2013). In our enhanced model, we determine

the representative full crop damage per hectare DMAX as a weighted average of all major
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crop values in the analysed area (Eq. 1) at any time during the growing session (Eqs. 2

and 3).

DMAX ¼
Xn

i¼1

Pi � Yi �
UAAi

UAA
ð1Þ

where i denotes crop index, P the producer prices (per tonnes), Y the yield (in tonnes/

hectare) and UAA the utilised agricultural area.1

DMAX at any time t during the growing season can be estimated either by taking into

account the end-of-season yield and producer price of crop i minus production costs not

exerted until the end of the production cycle (Eq. 3), or as a sum of all production costs

Fig. 2 Simulated max flood depth ensuing from the Secchia levee breach in January 2014 near Modena.
Impacted areas are highlighted for residential and industrial land use

1 UUA comprises the total area of arable land, permanent crops and meadows.
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exerted from the beginning of the growing season up to the damage event plus the land rent

(Eq. 4). The best estimate of crop value at harvest time is gross saleable product2 (GSP).

Dt
MAX ¼

Xn

i¼1

GSPi �
XEnd

t

DCi

" #
� UAAi

UAA

 !
ð2Þ

where DC is the direct production costs3 and t a defined moment of the production cycle

(0\ t\End).

Dt
MAX ¼

Xn

i¼1

TNIi þ
Xt

0

DCi

" #
� UAAi

UAA

 !
ð3Þ

where TNI is total net income calculated on the previous years’ average and DC a sum of

crop-specific production costs exerted up to the damage event.

The average yield, production cost and net income per hectare of arable and permanent

crops are determined for different cultivation patterns in the Emilia–Romagna adminis-

trative region (RER), based on empirical observations (Altamura et al. 2013). The direct

cost is calculated as a function of the average cost of technical means (raw materials,

machinery) and labour per hectare. Costs are distributed across the production year on the

basis of the life cycle of each crop as shown in Fig. 3.

A field analysis conducted after the event (Setti 2014) highlighted that the flood

occurred at a time when many field crops had not yet been planted. Wheat and alfalfa were

the most commonly exposed crops, but the only physical harm reported was some occa-

sional yellowing among crop fields. Vineyards and other permanent crops were in vege-

tative rest and apparently did not suffer any damage. In the end, the report on regional

agricultural production for the year 2014 (OAA-RER 2014) has not revealed any sub-

stantial yield reduction. On the contrary, the average yields per hectare in 2014 were

slightly higher than in 2013.

2.3 Gross value added model for production losses

To estimate the production losses, we use gridded gross value added (GVA) (Peduzzi et al.

2009; Green et al. 2011) based on the statistical disaggregation of GVA at the labour

market areas4 (LMA) for three macro-economic branches: agriculture, industry and ser-

vices (ISTAT 2013). We assume that within the LMAs the GVA is uniformly spread, but

only over the land use classes ascribed to each specific branch of economic activities. In

the case of agriculture and industry, the GVA is attributed, respectively, to the UAA and

the total industrial area distinguishable in the land use/cover data sets. The GVA generated

by services is distributed proportionally to the population density. The assumption behind

this is that since services are multiple and dispersed, they are proportional to the number of

residents served. A population density grid is produced based on the 2011 census tracks

(ISTAT 2011) with a cell resolution of 250 metres. The expected losses as a share of GVA

per cell are then calculated by means of a step function (Eq. 4; Fig. 4) (Carrera et al. 2015),

2 The average gross income from the sale of the yield expressed in €/ha, not inclusive of direct costs.
3 Sum of the costs for technical means and labour, excluding subsidies.
4 Labour Market Areas (in Italian Sistemi Locali di Lavoro, SLL) have been devised by the Italian Sta-
tistical Bureau as continuous territorial areas in which most of the daily work activity of the resident
population takes place. Typically, a LMA is smaller than a NUTS3 unit and larger than a municipality.
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inspired by the literature on flood damage functions (De Moel and Aerts 2011; De Moel

et al. 2012; Jongman et al. 2012; Saint-Geours et al. 2014). The curve assumes that the

higher the water level, the more persistent is the productivity loss. This assumption is based

on three principles: (a) higher water depths cause larger productive asset damage; (b) larger

asset damage typically requires longer recovery periods; and (c) flood water retreat is a

function of flood depth. The relationship between water depth and persistence of the impact

is likely afflicted by uncertainty; however, we assume that the curve is suited for test

purposes.

Impact on GVAS;L ¼
Xn

k¼1

FCS;Lk � ck ð4Þ

where FC is the flooded cell k, and c is the damage factor applied to each FCk based on its

water depth. N is the number of cells belonging to sector S for each system L.

3 Results

3.1 Asset losses

The damage assessment carried out on the Modena flood by means of the two selected

SDC models (SDC-1 and SDC-2) yields values that differ by 170 million, corresponding to

one-third of the SDC-2 estimate (Fig. 5, left). Besides, there is a sizeable divergence in the

distribution of the estimated damage across the land use categories. The SDC-1 yields a

damage that is more than two times higher than the SDC-2 output for the industrial land

use category. On the contrary, the SDC-1 estimated damage is lower than the SDC-2 by a

factor 0.7 for the residential land use category and only one-fifth for the rural category.

Overall, the SDC-1 overestimates declared damage in residential areas by a factor 4.5,

but for the urban spaces outside of buildings this difference peaks to a factor of 9.2. The

SDC-2 results are even larger, 13 times greater than those observed. The damage shares

Fig. 3 Allocation of production cost and the typical growing season for the most common cereal crops in
the study area

Fig. 4 Stage-impact curve for
GVA losses
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between structure, mobile goods and private vehicles simulated by SDC-1 resemble5 the

ratios of declared damage (Fig. 5, right). For the calibration exercise, we have chosen

SDC-1 over SDC-2 because it is able to disaggregate structural and content damage in

isolated dwellings and built-up areas. Both estimated and declared damage are geocoded

and aggregated into a 250 m grid.

The calibration is carried out only on matching cells by means of regression analysis

under the hypothesis of linear relationship. There are 61 (out of 157) matching cells

between simulated and empirical damage, which is less than 40 % in terms of affected

area, but the matching cells account for 83 % of simulated and 75 % of the declared

damage. As shown in Fig. 6, this mismatch is caused mainly by uncertainty in the land use

data for sparsely developed areas and in the extent of the flood boundaries, but the core

damage areas of Bastiglia and Bomporto are well matched for recorded and simulated

damage. For each land use category, the maximum damage value is individually adjusted

by using the B (slope) coefficients as scaling factor. Figure 7 shows the results of linear

regression between SDC-1 output and empirical damage before and after calibration for

total (A), structural (B) and content (C) damage categories.

The pre-calibration output overestimated the total damage in residential areas by a

factor 4.5–7, depending on the within-urban land use category. The calibrated damage

values are regressed with good results in terms of the observed/reported damage (R-

squared is 0.8) for all categories except for urban area, where registered vehicles are

assumed to be homogeneously distributed. This proved to be an over simplistic assump-

tion. For building structure and content, the coefficient (B) is close to 1.0, and the final

output overestimates recorded residential damage by just 6 % (Table 1).

3.2 Agricultural losses

The flood extent comprises predominately rural areas (43 km2), with a prevalent share of

arable crops (81 % of UUA). The typical crops include cereals, in particular soft wheat and

maize (40 % of arable crops) and forage (52 % of arable crops). Other arable crops

together cover less than 8 %. Vineyards and other permanent crops cover the remaining

19 % of UAA. As shown in Fig. 3, in January maize crops are fallow, while wheat is in its

vegetative stage. This means that just half of cereal production is affected. Losses for

Fig. 5 (left) Output of the damage model for the 2014 flood event among aggregated land uses; (right)
comparison of SDC models output for urban areas against registered compensation requests from
households

5 Simulated damage: 57/33/10 %. Declared damage: 60/35/5 %.
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wheat crops include all the initial costs, which amount to 50 % of total value. Permanent

crops are affected by 20 % of annual production value. The maximum damage (total loss)

to crop land estimated from these shares by means of Eq. [2] is 343 euros/ha, less than half

compared to the maximum value used by SDC-1 (790 euros/ha). This adjusted maximum

value leads to a maximal estimated loss by SDC-1 of 375 thousand euros over 4.2 thousand

ha of crop land. Empirical sampling on crop production suggests that the assumption of

total loss for exposed crops is over-pessimistic, since crop plants show a good tolerance to

inundation (Setti 2014). Overall, an estimate based on case-specific data should be pre-

ferred over unadjusted SDC values.

3.3 Production losses

The losses are calculated for each economic sector as a share of total annual production.

The largest share of damage comes from the industrial sector, affected to the extent of 434

Fig. 6 Location matching for residential land use between empirical (black X) and simulated damage
(aggregated to 250 metres cells, as black squares)
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million euros, equivalent to 14 % of its annual production (4.2 % of total GVA for the

LMAs of Modena, see Table 2). Although the data appear scattered, the ratio between asset

damage and annual GVA can shed light on the relationship between structural damage and

annual production losses as a function of the flood characteristics (Fig. 8). For a water

depth of around one metre, the linear regression (which has an R-squared value of 0.44)

describes an asset damage close to annual production losses (ratio of 1), approximating the

assumptions of the stage-impact curve in Fig. 5.

Fig. 7 Scatterplot showing empirical damage (X axis) and SDC results (Y axis) per grid cell using original
land use values (cross indicator, dotted line) and calibrated ones (circle indicator, black line) for: a total
residential area; b building structure; c buildings content

Table 1 Exposed area, observed and simulated damage inclusive of regression results for each calibrated
land use category tested against empirical data

Land use Observed Simulated

Description Area (m2) Damage (million euros) Damage (million euros) R2 B

Urban area (vehicles) 1,432,650 5.5 2.4 0.3 0.2

Buildings 234,950 36 41.9 0.8 1.0

Buildings structure 22.3 24.3 0.8 1.0

Buildings content 13.7 17.6 0.7 1.0

Total 1,667,600 41.5 44.4 0.8 0.9

Table 2 Modelled impact on
GVA from the event of Modena
2014

Million euros Sector (%) Total (%)

Agriculture 9.1 6.41 0.09

Industry 434.1 14.11 4.20

Services 147.2 2.07 1.42

Total 590.4 5.71
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3.4 Discussion

In this paper, we have presented three ways to improve the current state of the art of flood

risk assessment models based on the SDC method. Major uncertainties in damage

assessments are associated with the value of risk-exposed elements (i.e. maximum damage

values) and the depth-damage curves (De Moel and Aerts 2011; Scorzini and Frank 2015).

In Sect. 3.1, we have shown that by adjusting the maximum damage values for the specific

conditions of the assessment area, the consistency of the model improves substantially.

Prior to these adjustments, the tested SDC models overestimated the reported damage by a

factor ranging from 4 to 13. After calibration, the maximum damage values for residential

buildings are 4–4.5 times smaller than the original values, and the simulation of total

damage is very close to empirical observations. These considerations for the Italian ter-

ritory are consistent with those found by Scorzini and Frank (2015), who likewise stresses

the importance of an evidence-based SDC to perform a meaningful flood risk assessment.

In Sect. 3.2, we considered the temporal variability in the agricultural sector by using

detailed crop yield data and local production patterns. This approach produces a different

outcome as compared to the conventional SDC estimate: the maximum crop yield loss per

hectare is less than half of what is assumed by SDC-1; likewise, lower damage estimates

using a time-dependent approach are found in Forster et al. (2008). Still, our estimate

appears to represent a pessimistic scenario compared to available evidence of small to no

damage to crop production in our case study. Section 3.3 explains how the GVA approach

can approximate output losses within the flooded area with relative ease, if economic data

are available. We estimated that the production losses amount to around 600 million euros,

or 5.7 per cent of the annual GVA of the Modena LMA. Asset damage appears close to the

Fig. 8 Scatterplot of mean water depth (X) and ratio of SDC damage over exposed GVA (Y)
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annual GVA when the average water depth reaches one metre; however, these results are

hardly comparable to any empirical observations about production losses at the regional

scale and thus cannot be properly validated.

4 Conclusion

Our analysis aimed at improving flood damage assessment modelling in Italy. The com-

parison of damage estimates made by SDC models with empirical recorded damage is the

key for this task. In this paper, we tested two frequently used SDC models against reported

flood damage after a major flood event in Northern Italy. Model calibration has proven

useful mainly for improving loss assessment in a specific event area, while it has yet to be

ascertained how these calibrated curves can be adjusted for application in surrounding

regions. The calibration here is carried out for residential land use categories only, while

empirical damage records regarding industrial land use must be analysed to complete the

assessment in future research.

Further improvements can be achieved when a larger amount of empirical damage

evidence, typically collected by the Civil Protection Agency (CPA), is made accessible to

the academic community. Another research thread capable of improving the reliability of

flood risk models by reducing the largest uncertainty in the definition of maximum damage

values entails spatially disaggregated socioeconomic data such as population, household

income and cadastral value of property. With the growing availability of digital spatial data

related to these variables, their implementation in an integrated model is an advisable step

towards improving the representativeness and reliability of flood risk assessment.
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