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Abstract

Recent social and economical literature has been particularly concerned in the
investigation of urban development [1,2,3]. Especially in China, where the pro-
cess of accelerated urbanization is a result of rapid economic growth and ded-
icated policies, cities and countrysides are changing at an unprecedented scale
and pace. As a consequence, landscape and lifestyle are radically transformed
raising social, economic, and environmental sustainability issues and stability
problems [4]. Due to the complexity of the study of urban systems, it emerges
that there is an increasing need of adopting appropriate methods for analyzing
and modeling social data, both from a quantitative and a qualitative perspec-
tive [5]. One particular approach for the analysis of social systems is the textual
data analysis. Textual documents in fact provide a valuable source of data for
the identification and the measurement of latent variables, and statistics and
machine learning researchers have developed several approaches to study these
structures of data [6,7,8]. Among them, Topic Modeling approaches (TM) aim
to automatically inferred from textual data the rich latent topics of a set of doc-
uments or texts [6]. TMs have been successfully used across a variety of fields
as they can discover complex latent structure in the data [9,10]. Topics are esti-
mated with probabilistic distributions over a vocabulary of words and according
to the co-occurence of words within each analyzed text according with a prob-
abilistic generative process. This process considers a collection of D documents
(or texts), each containing Ny C V words, d = 1,..., D, and V represents the
set of distinct elements of the vocabulary used in the analysis. Moreover a set of
K latent topics is defined and assumed to be representative of the documents.
The probabilistic generative process consists then of the following steps:

— a V-dimensional Dirichlet probability distribution, Sx ~ Dir(n), is deter-
mined for each topic k, k = 1,..., K, assessing the probability according to
which words are generated from the k-th topic;

— a K-dimensional Dirichlet probability distribution, 64 ~ Dir(«) is deter-
mined for each document d, d =1,..., D, assessing the expected proportion
of words that can be attributed to each topic;
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— for each word in the document
e a value Zy, for a multinomial distribution Zg, ~ Multx(04), n =
1,..., Ng, is sampled denoting which topic is associated with such word,
and
e aword value Wy , from a multinomial distribution Wy , ~ Multy (Bzg 5),
is sampled where the matrix B = [f1--- k] encodes the distributions
over words in the vocabulary associated with the K topics.

When additional information regarding the documents is available, it can be
included in the model as a set of covariates X. The Structural Topic Model
(STM) proposed by Roberts et al. [11,12,13] represents a particular class of
TMs where the inclusion of covariates of interest can affect the topical prevalence
(i.e., the frequency with which a topic is discussed) and topical content (i.e., the
words used to discuss a topic) of the model. The covariates are introduced in
the TM approach by means of different prior distributions for document-topic
proportions and topic-word distributions. For the specific procedure on how these
prior distributions are defined and how the Topic Model estimation process is
modified, we refer to [13].

In this work we analyze the citizens’ perception on the urban development
of a recently established high-tech zone in China, i.e. Hangzhou Future Sci-Tech
City, collected through several face-to-face interviews which have been conducted
in spring-summer 2016. This area, 113 km? large, was previously covered by
farmlands and recently is benefitting of dedicated-national policies to imple-
ment talents strategies, improve scientific and technology innovation and foster
new entrepreneurship. The planning of this new territorial entity is producing
different effects on the economy, on the environment and on the landscape, both
positive and negative, and this generates different perception and understand-
ing in the social system. The interviews were conducted using a composition of
photos of the area. Images are inherently polysemic, but each of them poses the
focus on a different -even controversial- aspects of the urban development of the
area. This can be seen in Figure 1, in which the wordcloud shows the relation-
ship between the most frequent words (stemmed with standard pre-processing
textual analysis techniques) and the content of the photos used in the interviews.

We then develop a Structural Topic Model using the photos of the interview
as covariates in the model to extract the key topics of collected textual data.
The introduction of covariates in the model is able to highlight if particular
visual stimuli bring out specific perceptions or latent issues. The emerging cat-
egories of perception are presented in Figure 2, where each category represents
an estimated topic described by its most frequent and exclusive words. From the
results of this analysis we notice that the perception of the people interviewed
is mostly of great appreciation for the great economic development, with some,
but minor, concerns on the negative effects of this development on the society
and on the environment. Future developments of this research will concern the
estimation of the network of relationships among these categories with Proba-
bilistic Graphical Models (PGMs). Next step of the research will the estimation
of the network of relationships among these emerging categories by means of
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Fig. 1: Wordcloud of the most frequent words (vocabulary) associated with the
content of the photos used in the interviews.

Probabilistic Graphical Models (PGMs). PGMs are in fact very efficient and
effective statistical models to estimate the complex structures of probabilistic
dependences and independencies which characterized complex social systems.
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Homogenization
tradit, town, like, peopl, build, think, will, can, see, hous, place, also,
mayb, live, area, just, old, know, pictur, environment
Environmental concern
like, will, thing, peopl, build, think, air, live, can, see, make, right,
photo15, nice, mayb, area, clean, insid, just, old
Resources management
hous, much, environ, like, place, peopl, build, think, will, can, see, care,
mayb, live, area, just, old, know, pictur, look
Lifestyles change
build, kind, high, like, say, peopl, think, just, can, see, hous, place, live,
mayb, area, condit, old, know, especi, now
Heritage
develop, like, will, govern, build, think, place, can, disappear, see, time,
hous, also, live, area, rent, just, old, know, peopl
Diversity
also, pictur, citi, see, build, think, photo7, differ, can, compani, like,
futur, place, area, west, photo22, live, peopl, just, connect
Collective memory
like, villag, mayb, communiti, build, think, peopl, photo21, see, will, cultur,
live, area, photo23, past, other, move, hous, just, land

Land-use and population
will, place, peopl, old, cultur, think, solut, want, photo, see, local, hous,
build, live, mayb, just, like, know, now, good
Speed of development
can, area, part, photo4, think, see, chang, use, photo24, photo28, mayb,
photo12, even, photo27, just, feel, know, like, first, now
Social polarization
peopl, live, pictur, like, will, think, land, can, see, build, quit, place,
hous, lot, also, mayb, area, just, old, know

Fig. 2: Estimated topics with the emergent categories of perception.
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