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Introduction

Discovering optimal values in high dimensional systems can be a challenging
problem, in particular when the number of experimental tests (or observations)
is small. Moreover the optimal values can involve different properties of the
systems, introducing multiple (and possible conflicting) objective functions to
be optimized simultaneously. This framing of the problem can make the search
of the optimal values difficult.

In general, a multi-objective optimization problem can be described in the
following way:
consider a vector valued objective function f : C → Rk from a set C ⊆ Rd to
real numbers Rk, with f(c) = (f1(c), . . . , fk(c))T , where d is the dimension of
each element of C; search the element c0 ∈ C such that f(c0) ≤ f(c) for all
c ∈ C (minimization) or such that f(c0) ≥ f(c) for all c ∈ C (maximization).
Frequently, in multi-objective optimization, there does not exist a feasible solu-
tion, c0, which minimizes (or maximizes) all objective functions simultaneously.
Therefore, the goal is to achieve Pareto optimal solutions, that is, solutions that
cannot be improved in any of the objectives without degrading at least one of the
other objectives. In this research we will introduce a methodological approach to
address multi-objective optimization in the context above described and related
to a molecular system of interest for drug discovery.

1 Evolutionary inference for discovering the system
optimal values

In order to develop an efficient approach able to achieve the optimal values of
a system with a very small set of experimental tests, we developed a method-
ological approach based on evolutionary statistical inference for high dimensional
experimental spaces and big data analysis. This approach, which we call m-EDO
(multi-objective Evolutionary data Design for Optimization), drives the evolu-
tion towards the target by estimating and combining predictions from differ-
ent stochastic models, such as Lasso Regression, Stepwise Regression, Boosting,
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Neural Networks; see for example [2] and references therein. m-EDO is based on
experimental data and is designed to discover the best solution through testing
only an extremely small number of candidate solutions, making very efficient
and effective the discovery process.

2 Lead optimization in a molecular system

A key problem that the drug discovery research field confronts is to identify
small molecules, modulators of protein function, which are likely to be thera-
peutically useful. Common practices rely on the screening of vast libraries of
small molecules (often 1-2 million molecules) in order to identify a molecule,
known as a lead molecule, which specifically inhibits or activates the protein
function. Such a molecule interacts with the required target, but generally lacks
other essential attributes required for a drug candidate. Discovering the optimal
lead molecule can then be framed as a multi-objective optimization problem. In
this research we address the lead optimization of MMP-12 Inhibitors, using the
combinatorial library and biological data made available (public domain) by [1].
This library consists of 2500 molecules characterized by their composition and
by their experimental responses. The composition here considered is represented
by a set of 22272 fragments, that we describe as binary variables (presence/ab-
sence). The high number of fragments give rise to the high dimensionality of the
molecular system. For this system the experimental response variables here con-
sidered are: Activity at the target protein; Solubility ; Safety ; ClogP ; Molecular
Weight. The aim of this study is to develop a multi-objective optimization pro-
cedure based on experimental data (no simulation), and involving a very small
number of experimental tests, to avoid waste of research time and resources.
We built m-EDO using the molecular library provided by Pickett et al. (2011)
as a source of response variables for selected compositions. We assume that the
compositions to test in the lab should be less than 140 (out of the 2500). Know-
ing the whole experimental space (complete library) allowed us to evaluate the
performance of the approach in searching the best response values. These values
of the response variables represent the target of our study, and are reported in
the following:

– Activity, Y1: the maximum value of Y1 is 8, which corresponds to the optimal
value. The 99-th percentile of the response variable distribution is 7.5
(maximization of Y1).

– Solubility, Y2: the maximum value of Y2 is -1.766, which corresponds to the
optimal value. The 99-th percentile of the response variable distribution
is -2.415 (maximization of Y2).

– Safety, Y3: the maximum value of Y3 is 3.6262, which corresponds to the
optimal value. The 99-th percentile of the response variable distribution
is 3.2309 (maximization of Y3).

– ClogP, Y4: the minimum value of Y4 is -2.505, which corresponds to the
optimal value. The 1-th percentile of the response variable distribution is
0.033 (minimization of Y4).
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– Molecular Weight, Y5: the minimum value of Y5 is 291.3, which corresponds
to the optimal value. The 1-th percentile of the response variable distri-
bution is 339.3 (minimization of Y5).

The goal of the multi-objective optimization is to discover the three molecules
that satisfy the constraints of the problem and reach their best response values.
These molecules are represented (in red) in the following Pareto front represen-
tation of the molecule Solubility and Safety after having selected the molecules
with an Activity greater than 6, a ClogP less than 3 and a Molecular Weight
less than 450.
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Fig. 1: Pareto front representation of the molecule Solubility and Safety, respect-
ing the defined constraints for Activity, ClogP and Molecular Weight.

3 The best molecules

We built the EDO approach to optimize the five response variables for the lead
optimization process, under the hypothesis to conduct a number of experimental
tests less than 140 (on the total of 2500 candidate compositions). At first, to
evaluate the performance of the approach, we developed the procedure for each
single response variable for a single objective optimization. The evolution in EDO
has been driven by the information achieved with the Lasso model, Stepwise
regression, the Boosting model, and finally with a mixture of these models.
Moreover, in order to evaluate the robustness of EDO we also repeated the
procedure 1000 runs.
The results achieved for the single optimization process are represented in the
following table:

Notice that EDO procedure is able to achieve the best response values in
a very high proportion of 1000 runs, showing also a better performance of the
Mixture of models with respect to the single model optimization. Concerning the
response values in the region of optimality (1% best values of the distribution)
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Objective Lasso Stepwise Boosting
Mixture of
Models NN

Activity
Optimum 844 782 665 916 660

Region of opt. 1000 995 998 1000 990

Solubility
Optimum 875 745 872 912 556

Region of opt. 995 998 1000 1000 996

Safety
Optimum 387 358 278 467 228

Region of opt. 1000 1000 1000 1000 999

ClogP
Optimum 848 821 917 918 760

Region of opt. 950 946 981 1000 945

Molecular Weight
Optimum 738 822 751 887 346

Region of opt. 905 966 956 1000 780
Table 1: Single objective optimization: number of runs (out of 1000 runs) in
which EDO uncovers the optimum value and values in the region of optimality.

we observe that the Mixture of Models is able to achieve these values in all the
1000 runs and for all the variables.

We then developed the multi-objective optimization by using different ap-
proaches for combining the achieved response values and, in comparing the re-
sults, we noticed that the simple linear combination of the best values has a very
good performance. In the following table we present the results achieved with
the Lasso model, the Neural Networks model (hereafter NN) and the Mixture
of Models. The three ways to optimize give similar results in discovering the
best values, and the difference may lie in discovering just one, or at least one,
or all three molecules. Mixture of Models again outperforms the alternatives in
discovering at least one molecule of the three in more than 90% of 1000 runs.

Number of best
molecules Lasso NN

Mixture of
Models

0 130 161 92
1 43 59 51
2 320 288 384
3 506 491 472

At least one 869 838 907

Table 2: Multi-objective optimization:
number of runs (out of 1000 runs)
in which m-EDO uncovers the best
molecules.

Fig. 2: Multi-objective optimization:
best molecules found in 1000 runs.

43



From these results one can also see the value of the evolution principle in
the search process: from the first generation there is a clear tendency for the
procedure to converge towards the optimal values.

Fig. 3: Evolution through generations: box-plot of the molecule values achieved
in 1000 runs at each generation with the Mixture of Models.
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