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Abstract

Multidimensional arrays (i.e. tensors) of data are becoming increasingly available and
call for suitable econometric tools. We propose a new dynamic linear regression model for
tensor-valued response variables and covariates that encompasses some well known multi-
variate models such as SUR, VAR, VECM, panel VAR and matrix regression models as
special cases. For dealing with the over-parametrization and over-fitting issues due to the
curse of dimensionality, we exploit a suitable parametrization based on the parallel factor
(PARAFAC) decomposition which enables to achieve both parameter parsimony and to in-
corporate sparsity effects. Our contribution is twofold: first, we provide an extension of
multivariate econometric models to account for both tensor-variate response and covariates;
second, we show the effectiveness of proposed methodology in defining an autoregressive
process for time-varying real economic networks. Inference is carried out in the Bayesian
framework combined with Monte Carlo Markov Chain (MCMC). We show the efficiency of
the MCMC procedure on simulated datasets, with different size of the response and indepen-
dent variables, proving computational efficiency even with high-dimensions of the parameter
space. Finally, we apply the model for studying the temporal evolution of real economic
networks.
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1 Introduction

The increasing availability of large sets of time series data with complex structure, such as EEG
(e.g., Li and Zhang (2017)), neuroimaging (e.g., Zhou et al. (2013)), two or multidimensional
tables (e.g., ,Balazsi et al. (2015), Carvalho and West (2007)), multilayer networks (e.g., Alda-
soro and Alves (2016), Poledna et al. (2015)) has put forward some limitations of the existing
multivariate econometric models. In the era of “Big Data”, mathematical representations of
information in terms of vectors and matrices have some non-negligible drawbacks, the most re-
markable being the difficulty of accounting for the structure of the data, their nature and the way
they are collected (e.g., contiguous pixels in an image, cells of matrix representing a geographical
map). As such, if this information is neglected in the modelling the econometric analysis might
provide misleading results.

When the data are gathered in the form of matrices (i.e. 2-dimensional arrays), or more
generally as tensors, that is multi-dimensional arrays, a statistical modelling approach can rely
on vectorizing the object of interest by stacking all its elements in a column vector, then resorting
to standard multivariate analysis techniques. The vectorization of an array does not preserve
the structural information encrypted in its original format. In other words, the physical char-
acteristics of the data (e.g, the number of dimensions and the length of each of them) matter,
since a cell is highly likely to depend on a subset of its contiguous cells. Collapsing the data into
a 1-dimensional array does not allow to preserve this kind of information, thus making this sta-
tistical approach unsuited for modelling tensors. The development of novel methods capable to
deal with 2- or multi-dimensional arrays avoiding their vectorization is still an open challenging
question in statistics and econometrics.

Many results for 1-dimensional random variables in the exponential families have been ex-
tended to the 2-dimensional case (i.e. matrix-variate, see Gupta and Nagar (1999) for a com-
pelling review). Conversely, tensors have been recently introduced in statistics (see Hackbusch
(2012), Kroonenberg (2008), Cichocki et al. (2009)), providing the background for more efficient
algorithms in high dimensions especially in handling Big Data (e.g. Cichocki (2014)). However,
a compelling statistical approach to multi-dimensional random objects is lacking and constitutes
a promising field of research.

Recently, the availability of 3-dimensional datasets (e.g., medical data) has fostered the use
of tensors in many different fields of theoretical and applied statistics. The main purpose of
this article is to contribute to this growing literature by proposing an extension of standard
multivariate econometric models to tensor-variate response and covariates.

Matrix models in econometrics have been employed over the past decade, especially in time
series analysis where they have been widely used for providing a state space representation
(see Harrison and West (1999)). However, only recently the attention of the academic community
has moved towards the study of this class of models. Within the time series analysis literature,
matrix-variate models have been used for defining dynamic linear models (e.g., Carvalho and
West (2007) and Wang and West (2009)), whereas Carvalho et al. (2007) exploited Gaussian
graphical models for studying matrix-variate time series. In a different context, matrix models
have also been used for classification of longitudinal datasets in Viroli (2011) and Viroli and
Anderlucci (2013).

Viroli (2012) the author presented a first generalization of the multivariate regression by in-
troducing a matrix-variate regression where both response and covariate are matrices. Ding and
Cook (2016) propose a bilinear multiplicative matrix regression model whose vectorisewd form
is a VAR(1) with restrictions on the covariance matrix. The main shortcoming in using bilinear
models (either in the additive or multiplicative form) is the difficulty in introducing sparsity
constrains. Imposing a zero restriction on a subset of the reduced form coefficients implies a
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zero restriction on the structural coefficients1. Ding and Cook (2016) proposed a generalization
of the envelope method of Cook et al. (2010) for achieving sparsity and increasing efficiency of
the regression. Further studies which have used matrices as either the response or a covariate
include Durante and Dunson (2014), who considered tensors and Bayesian nonparametric frame-
works and Hung and Wang (2013), who defined a logistic regression model with a matrix-valued
covariate.

Following the model specification strategy available in the existing literature, there are two
main research streams. In the first one, Zhou et al. (2013), Zhang et al. (2014) and Xu et al.
(2013) propose a linear regression models with a real-valued N -order tensor X of data to explain
a one-dimensional response, by means of the scalar product with a tensor of coefficients B of the
same size. More in detail, Zhang et al. (2014) propose a multivariate model with tensor covariate
for longitudinal data analysis; whereas Zhou et al. (2013) uses a generalized linear model with
exponential link and tensor covariate for analysing image data. Finally, the approach of Xu et al.
(2013) exploits a logistic link function with a tensor covariate to predict a binary scalar response.

In the second and more general stream of the literature (e.g., Hoff (2015) and Li and Zhang
(2017)) both response and covariate of a regression model are tensor-valued. From a modelling
point of view, there are different strategies. Hoff (2015) regresses a N -order array on an array
of the same order but with smaller dimensions by exploiting the Tucker product, and follows
the Bayesian approach for the estimation. Furthermore, Bayesian nonparametric approaches for
models with a tensor covariate have been formulated by Zhao et al. (2013), Zhao et al. (2014)
and Imaizumi and Hayashi (2016). They exploited Gaussian processes with a suitable covariance
kernel for regressing a scalar on a multidimensional data array. Conversely, Li and Zhang (2017)
defines a model where response and covariates are multidimensional arrays of possibly different
order, and subsequently uses the envelope method coupled with an iterative maximum likelihood
method for inference.

We propose a new dynamic linear regression modelling framework for tensor-valued response
and covariates. We show that our framework admits as special cases Bayesian VAR models
(Sims and Zha (1998)), Bayesian panel VAR models (proposed by Canova and Ciccarelli (2004),
see Canova and Ciccarelli (2013) for a review) and Multivariate Autoregressive models (i.e. MAR,
see Carriero et al. (2016)), as well as univariate and matrix regression models. Furthermore, we
exploit the PARAFAC decomposition for reducing the number of parameters to estimate, thus
making inference on network models feasible.

We also contribute to the empirical analysis of tensor data in two ways. First, we provide an
original study of time-varying economic and financial networks and show that our model can be
succesfsfully used to carry out forecast and impulse response analysis in this high-dimensional
stting. Few attempts have been made to model time-evolving networks (for example, Holme and
Saramäki (2012), Kostakos (2009), Barrat et al. (2013), Anacleto and Queen (2017) and references
in Holme and Saramäki (2013)), and this field of research, which stems from physics, has focused
on providing a representation and a description of temporally evolving graphs. Second, we show
how tensor regression con be applied to macroeconomic panel data, where standard vectorized
models cannot be used.

The structure of the paper is as follows. Section 2 is devoted to a brief introduction to tensor
calculus and to the presentation of the new modelling framework. The details of the estimation
procedure are given in Section 3. In Section 4 we test proposed model on simulated datasets and
in Section 5 we present some empirical applications.

1The phenomenon is worse in the bilinear multiplicative model, given that each reduced form coefficient is
given by the product of those in the structural equation.
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2 A Tensor Regression Model

We introduce multi-dimensional arrays (i.e. tensors) and some basic notions of tensor algebra
which will be used in this paper. Moreover, we present a general tensor regression model and
discuss some special cases.

2.1 Tensor Calculus and Decompositions

The use of tensors is well established in physics and mechanics (see Synge and Schild (1969), Adler
et al. (1975), Malvern (1986), Lovelock and Rund (1989), Aris (2012) and Abraham et al. (2012)),
but very few references can be found in the literature outside these disciplines. For a general
introduction to the algebraic properties of tensor spaces we refer to Hackbusch (2012). A note-
worthy introduction to tensors and corresponding operations is in Lee and Cichocki (2016), while
we make reference to Kolda and Bader (2009) and Cichocki et al. (2009) for a review on tensor
decompositions. In the rest of the paper we will use the terms tensor decomposition and tensor
representation interchangeably, even though the latter one is more suited to our approach.

A N -order tensor is a N -dimensional array (whose dimensions are also called modes). The
number of dimensions is the order of the tensor. Vectors and matrices are examples of first- and
second-order tensors, respectively, while one may think about a third order tensor as a series of
matrices of the same size put one in front of the other one, forming a parallelepiped. In the rest
of the paper we will use lower-case letters for scalars, lower-case bold letters for vectors, capital
letters for matrices and calligraphic capital letters for tensors. When dealing with matrices,
in order to select a column (or row) we adopt the symbol “:”. The same convention is used
for tensors when considering all elements of a given mode. For example, let A ∈ Rm×n be a
matrix and B ∈ RI1×...×IN an array of order N , then Ai,j and Bi1,...,iN indicate the (i, j)-th and
(i1, . . . , iN )-th element of A and B, respectively, and:

(i) A(i,:) is the i-th row of A, ∀i ∈ {1, . . . ,m};

(ii) A(:,j) is the j-th column of A, ∀j ∈ {1, . . . , n};

(iii) B(i1,...,ik−1,:,ik+1,...,iN ) is the mode-k fiber of B, ∀k ∈ {1, . . . , N}

(iv) B(i1,...,ik−1,:,:,ik+2,...,iN ) is the mode-k, k + 1 slice of B, ∀k ∈ {1, . . . , N − 1}

The mode-k fiber is the equivalent of rows and columns in a matrix, more precisely it is the
vector obtained by fixing all but the k-th index of the tensor. Instead, slices (i.e. bi-dimensional
fibers of matrices) or generalizations of them, by keeping fixed all but two or more dimensions
(or modes) of the tensor.

The mode-n matricization (or unfolding), denoted by X(n), is the operation of transforming
a N -dimensional array X into a matrix. It consists in re-arranging the mode-n fibers of the
tensor to be the columns of the matrix X(n), which has size In× Ī(−n) with Ī(−n) =

∏
i 6=n Ii. The

mode-n matricization of X maps the (i1, . . . , iN ) element of X to the (in, j) element of X(n),
where:

j = 1 +
∑
m 6=n

(im − 1)

m−1∏
p 6=n

Ip (1)

For some numerical examples, see Kolda and Bader (2009) and Appendix A. The mode-1 un-
folding is of interest for providing a visual representation of a tensor: for example, when X be a
third-order tensor, its mode-1 unfolding X(1) is a matrix of size I1×I2I3 obtained by horizontally
stacking the frontal slices of the tensor. The vectorization operator stacks all the elements in
direct lexicographic order, forming a vector of length Ī =

∏
i Ii. However, notice that other
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orderings are possible (as for the vectorisation of matrices), since the ordering of the elements is
not important as long as it is consistent across the calculations. The mode-n matricization can
also be used to vectorize a tensor X , by exploiting this relationship:

vec (X ) = vec
(
X(1)

)
, (2)

where vec
(
X(1)

)
stacks vertically into a vector the columns of he matrix X(1). Many product

operations have been defined for tensors (e.g., see Lee and Cichocki (2016)), but here we constrain
ourselves to the operators used in this work. Concerning the basic product operations, the scalar
product between two tensors X ,Y of equal order and same dimensions, I1, . . . , IN , is defined as:

〈X ,Y〉 =

I1∑
i1=1

. . .

IN∑
iN=1

Xi1,...,iNYi1,...,iN =
∑

i1,...,iN

Xi1,...,iNYi1,...,iN . (3)

For the ease of notation, we will use the multiple-index summation for indicating the sum over
all the corresponding indices.

The mode-M contracted product of two tensors X ∈ RI1×...×IM and Y ∈ RJ1×...×JN with
IM = JM , denoted X ×M Y, yields a tensor Z ∈ RI1×...×IM−1×J1×...×JN−1 of order M + N − 2,
with entries:

Zi1,...,iM−1,j1,...,jN−1 = (X ×M Y)i1,...,iM−1,j1,...,jN−1 =

IM∑
iM=1

Xi1,...,iMYj1,...,iM ,...,jN . (4)

Therefore, it is a generalization of the matrix product. The notation ×1...M is used to denote a
sequence of mode-m contracted products, with m = 1, . . . ,M .

The mode-n product between a tensor X ∈ RI1×...×IN and a matrix A ∈ RJ×In , 1 ≤ n ≤ N ,
is denoted by X×̄nA and yields a tensor Y ∈ RI1×...,In−i,J,In+1,...×IN of the same order of X , with
the n-th mode’s length changed. Each mode-n fiber of the tensor is multiplied by the matrix A,
which yields element-wise:

Yi1,...,in−1,j,in+1,...,iN = (X×̄nA)i1,...,in−1,j,in+1,...,iN
=

In∑
in=1

Xi1,...,iNAj,in . (5)

Analogously, the mode-n product between a tensor and a vector, i.e. between X and v ∈ RIn ,
yields a lower order tensor, since the n-th mode is suppressed as a consequence of the product.
It is given, element-wise, by:

Yi1,...,in−1,in+1,...,iN = (X ×n v)i1,...,in−1,in+1,...,iN
=

In∑
in=1

Xi1,...,in,...,iNvin , (6)

with Y ∈ RI1×...,In−i,In+1,...×IN . It is clear that, as for the matrix dot product, the order of the
elements in the multiplication matters and both products are not commutative.

The Hadamard product � is defined in the same usual way as for matrices, i.e. the element-
wise multiplication. Formally, for X ∈ RI1×...×IN , Y ∈ RI1×...×IN and Z ∈ RI

×
1 ...×IN it holds:

Zi1,...,iN = (X � Y)i1,...,iN = Xi1,...,iNYi1,...,iN . (7)

Finally, let X ∈ RI1×...×IM and Y ∈ RJ1×...×JN . The outer product ◦ of two tensors is the tensor
Z ∈ RI1×...×IM×J1×...×JN whose entries are:

Zi1,...,iM ,j1,...,jN = (X ◦ Y)i1,...,iM ,j1,...,jN = Xi1,...,iMYj1,...,jN . (8)
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For example, the outer product of two vectors is a matrix, while the outer product of two matrices
is a fourth order tensor.

Tensor decompositions represent the core of current statistical models dealing with multi-
dimensional variables since many of them allow to represent a tensor as a function of lower
dimensional variables, such as matrices of vectors, linked by suitable multidimensional opera-
tions. We now define two tensor decompositions, the Tucker and the parallel factor (PARAFAC),
which are useful in our applications because the elements of the decomposition are generally low
dimensional and easier to handle than the original tensor. Let R be the rank of the tensor X ,
that is minimum number of rank-1 tensors whose linear combination yields X . A N -order tensor
is of rank 1 when it is the outer product of N vectors.

The Tucker decomposition is a higher-order generalization of the Principal Component Anal-
ysis (PCA): a tensor B ∈ RI1×...×IN is decomposed into the product (along the corresponding
modes) of a “core” tensor G ∈ Rg1×...×gN and N factor matrices A(m) ∈ RIm×Jm , m = 1, . . . , N :

B = G ×1 A
(1) ×2 A

(2) ×3 . . .×N A(N) =

g1∑
i1=1

g2∑
i2=1

. . .

gN∑
iN=1

Gi1,i2,...,iNa
(1)
i1
◦ a

(2)
i2
◦ . . . ◦ a

(N)
iN

, (9)

where a
(m)
il
∈ Rgm is the m-th column of the matrix A(m). As a result, each entry of the tensor

is obtained as:

Bj1,...,jN =

g1∑
i1=1

g2∑
i2=1

. . .

gN∑
iN=1

Gi1,i2,...,iN ·A
(1)
i1,j1
· · ·A(N)

iN ,jN
jm = 1, . . . , Im, m = 1, . . . , N . (10)

A special case of the Tucker decomposition, called PARAFAC(R)2, is obtained when the core
tensor is the identity tensor and the factor matrices have all the same number of columns, R. A
graphical representation of this decomposition for a third-order tensor is shown in Fig. (1). More
precisely, the PARAFAC(R) is a low rank decomposition which represents a tensor B ∈ RI1×...×IN
as a finite sum of R rank-1 tensors obtained as the outer products of N vectors, also called
PARAFAC marginals3 β

(r)
j ∈ RIj , j = 1, . . . , N :

B =
R∑
r=1

Br =
R∑
r=1

β
(r)
1 ◦ . . . ◦ β

(r)
N . (11)

Remark 2.1. There exists a one-to-one relation between the mode-n product between a tensor
and a vector and the vectorisation and matricization operators. Consider a N -order tensor
B ∈ RI1×...×IN for which is specified a PARAFAC(R) decomposition, a (N − 1)-order tensor
Y ∈ RI1×...×IN−1 and a vector x ∈ RIN . Then:

Y = B ×N x ⇐⇒ vec (Y) = B′(N)x ⇐⇒ vec (Y)′ = x′B(N) (12)

and, denoting β
(r)
j , for j = 1, . . . , N and r = 1, . . . , R, the marginals of the PARAFAC(R)

decomposition of B we have:

B(N) =

R∑
r=1

β
(r)
N vec

(
β
(r)
1 ◦ . . . ◦ β

(r)
N−1

)′
. (13)

2See Harshman (1970). Some authors (e.g. Carroll and Chang (1970) and Kiers (2000)) use the term CODE-
COMP or CP instead of PARAFAC.

3An alternative representation may be used, if all the vectors βrj are normalized to have unitary length. In
this case the weight of each component r is captured by the r-th component of the vector λ ∈ RR:

B =

R∑
r=1

λr
(
β

(r)
1 ◦ . . . ◦ β

(r)
N

)
.
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Figure 1: PARAFAC decomposition of X ∈ RI1×I2×I3 , with ar ∈ RI1 , br ∈
RI2 and cr ∈ RI3 , r = 1, . . . , R. Figure from Kolda and Bader (2009).

These relations allows to establish a link between operators defined on tensors and operators
defined on matrices, for which plenty of properties are known from linear algebra.

Remark 2.2. For two vectors u ∈ Rn and v ∈ Rm the following relations hold between the outer
product, the Kronecker product ⊗ and the vectorisation operator:

u⊗ v′ = u ◦ v = uv′ (14)
u⊗ v = vec (v ◦ u) . (15)

2.2 A General Dynamic Model

The new model we propose, in its most general formulation is:

Yt = A0 +

p∑
j=1

Aj ×N+1 vec
(
Yt−j

)
+ B ×N+1 vec (Xt) + C ×N+1 zt +D ×nWt + Et, (16)

Et
iid∼ NI1,...,IN (0,Σ1, . . . ,ΣN ) ,

where the tensor response and noise Yt, Et are N -order tensors of sizes I1 × . . .× IN , while the
covariates include a M -order tensor Xt of sizes J1 × . . . × JM , a matrix Wt with dimensions
In ×K and a vector zt of length Q.

The coefficients are all tensors of suitable order and sizes: Aj have dimensions I1×. . .×IN×I∗,
with I∗ =

∏
i Ii, B has dimensions I1 × . . . × IN × J∗, with J∗ =

∏
j Jj , C has dimensions

I1 × . . . × IN ×Q and D has sizes I1 × . . . × In−1 ×K × In+1 . . . × IN . The symbol ×n stands
for the mode-n product between a tensor and a vector defined in eq. (6). The reason for the
use of tensors coefficients, as opposed to scalars and vectors, is twofold: first, this permits each
entry of each covariate to exert a different effect on each entry of the response variable; second,
the adoption of tensors allows to exploit the various decompositions, which are fundamental for
providing a parsimonious and flexible parametrization of the statistical model.

The noise is assumed to follow a tensor normal distribution (see Ohlson et al. (2013), Manceur
and Dutilleul (2013), Arashi (2017)), a generalization of the multivariate normal distribution. Let
X andM be two N -order tensors of dimensions I1, . . . , IN . Define I∗ =

∏N
j=1 Ij , I

∗
−i =

∏
j 6=i Ij

and let ×1...N be a sequence of mode-j contracted products, j = 1, . . . , N , between the (K+N)-
order tensor X and the (N +M)-order tensor Y of conformable dimensions, defined as follows:

(
X ×1...N Y

)
j1,...,jK ,h1,...,hM

=

I1∑
i1=1

. . .

IN∑
iN=1

Xj1,...,jK ,i1,...,iNYiN ,...,i1,h1,...,hM . (17)

Finally, let Uj ∈ RIj×Ij , j ∈ {1, . . . , N} be positive definite matrices. The probability den-
sity function of a N -order tensor normal distribution with mean arrayM and positive definite
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covariance matrices U1, . . . , UN , is given by:

fX (X ) = (2π)−
d∗
2

N∏
j=1

∣∣Uj∣∣− I∗−j2 exp

{
−1

2
(X −M)×1...N

(
◦Nj=1U

−1
j

)
×1...N (X −M)

}
. (18)

The tensor normal distribution can be rewritten as a multivariate normal distribution with
separable covariance matrix for the vectorized tensor, more precisely it holds (see Ohlson et al.
(2013)) X ∼ NI1,...,IN (M, U1, . . . , UN ) ⇐⇒ vec (X ) ∼ NI1···IN (vec (M) , UN ⊗ . . . ⊗ U1). The
restriction imposed by the separability assumption allows to reduce the number of parameters
to estimate with respect to the unrestricted vectorized from, while allowing both within and
between mode dependence.

The unrestricted model in eq. (16) cannot be estimated, as the number of parameters greatly
outmatches the available data. We address this issue by assuming a PARAFAC(R) decomposition
for the tensor coefficients, which makes the estimation feasible by reducing the dimension of the
parameter space. For example, let B be a N -order tensor of sizes I1× . . .× IN and rank R, then
the number of parameters to estimate in the unrestricted case is given by

∏N
i=1 Ii while in the

PARAFAC(R) restricted model is R
∑N

i=1 Ii.

Example 2.1. For the sake of exposition, consider the model in eq. (16) where the response
is a third-order tensor Yt ∈ Rk×k×k2 and the covariates include only a constant term, that is
a coefficient tensor A0 of the same size. Define by kE the number of parameters of the noise
distribution. As a result, the total number of parameters to estimate in the unrestricted case is
given by:

3∏
i=1

Ii + kE = O(k4) , (19)

while assuming a PARAFAC(R) decomposition on A0 it reduces to:

R∑
r=1

3∑
i=1

Ii + kE = O(k2) . (20)

The magnitude of this reduction is illustrated in Fig. (2), for two different values of the rank.

A well known issue is that a low rank decomposition is not unique. In a statistical model this
translates into an identification problem for the PARAFAC marginals β

(r)
j arising from three

sources:

(i) scale identification, because replacing β
(r)
j with λjrβ

(r)
j for

∏N
j=1 λjr = 1 does not alter the

outer product;

(ii) permutation identification, since for any permutation of the indices {1, . . . , R} the outer
product of the original vectors is equal to that of the permuted ones;

(iii) orthogonal transformation identification, due to the fact that multiplying two marginals by
an orthonormal matrix Q leaves unchanged the outcome β

(r)
j Q ◦ β(r)

k Q = β
(r)
j ◦ β

(r)
k .

In our framework these issues do not hamper the inference as our interest is only in the coefficient
tensor, which is exactly identified. In fact, we use the PARAFAC decomposition as a practical
modelling tool without attaching any interpretation to its marginals.
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Figure 2: Number of parameters (vertical axis) as function of the response
dimension (horizontal axis) for unconstrained (solid) and PARAFAC(R) with
R = 10 (dashed) and R = 5 (dotted).

2.3 Important special cases

The model in eq. (16) is a generalization of several well-known econometric models, as shown in
the following remarks.

Remark 2.3 (Univariate). If we set Ij = 1 for j = 1, . . . , N , then the model in eq. (16) reduces
to a univariate regression:

yt = A+ B′ vec (Xt) + C′zt + εt, εt
iid∼ N (0, σ2), (21)

where the coefficients reduce to A = ᾱ ∈ R, B = β ∈ RQ and C = γ ∈ RJ . See Appendix B for
further details.

Remark 2.4 (SUR). If we set Ij = 1 for j = 2, . . . , N and define the unit vector ι ∈ RI1 , then
the model in eq. (16) reduces to a multivariate regression which is interpretable as a Seemingly
Unrelated Regression (SUR) model (Zellner (1962)):

yt = A+ B ×2 zt + C ×2 vec (Xt) +D ×1 vec (Wt) + εt εt
iid∼ Nm (0,Σ) , (22)

where the tensors of coefficients can be expressed as: A = α ∈ Rm, B = B̄ ∈ Rm×J , C = C ∈
Rm×Q and D = d ∈ Rm. See Appendix B for further details.

Remark 2.5 (VARX and Panel VAR). Consider the setup of the previous Remark 2.4. If we
choose zt = yt−1 we end up with an (unrestriced) VARX(1) model. Notice that another vector of
regressors wt = vec (Wt) ∈ Rq may enter the regression (22) pre-multiplied (along mode-3) by a
tensor D ∈ Rm×n×q. Since we are not putting any kind of restrictions on the covariance matrix
Σ in (22), the general model (16) encompasses as a particular case also the panel VAR models
of Canova and Ciccarelli (2004), Canova et al. (2007), Canova and Ciccarelli (2009) and Canova
et al. (2012).

Remark 2.6 (VECM). It is possible to interpret the model in eq. (16) as a generalisation of
the Vector Error Correction Model (VECM) widely used in multivariate time series analysis
(see Engle and Granger (1987), Schotman and Van Dijk (1991)). A standard K-dimensional
VAR(1) model reads:

yt = Πyt−1 + εt εt ∼ Nm(0,Σ) . (23)
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Defining ∆yt = yt− yt−1 and Π = αβ′, where α and β are K ×R matrices of rank R < K, we
obtain the VECM used for studying the cointegration relations between the components of yt:

∆yt = αβ′yt−1 + εt . (24)

Since Π = αβ′ =
∑R

r=1α:,rβ
′
:,r =

∑R
r=1 β̃

(r)
1 ◦ β̃

(r)
2 , we can interpret the VECM model in the

previous equation as a particular case of the model in eq. (16) where the coefficient B is the
matrix Π = αβ′. Furthermore by writing Π =

∑R
r=1 β̃

(r)
1 ◦ β̃

(r)
2 we can interpret this relation

as a rank-R PARAFAC decomposition of Π. Thus we can interpret the rank of the PARAFAC
decomposition for the matrix of coefficients as the cointegration rank and, in presence of cointe-
grating relations, the vectors β̃

(r)
1 are the mean-reverting coefficients and β̃

(r)
2 = (β̃

(r)
2,1, . . . , β̃

(r)
2,K)

are the cointegrating vectors. In fact, the PARAFAC(R) decomposition for matrices corresponds
to a low rank (R) matrix approximation (see Eckart and Young (1936)). We make reference to
Appendix B for further details.

Remark 2.7 (Tensor AR). By removing all the covariates from eq. (16) except the lags of the
dependent variable, we obtain a tensor autoregressive model:

Yt = A0 +

p∑
j=1

Aj ×D+1 Yt−j + Et Et
iid∼ NI1,...,IN (0,Σ1, . . . ,ΣN ) . (25)

3 Bayesian Inference

In this section, without loss of generality, we present the inference procedure for a special case
of the model in eq. (16), given by:

Yt = B ×3 vec (Xt) + Et, Et
iid∼ NI1,I2(0,Σ1,Σ2) , (26)

which can also be rewritten in vectorized form as:

vec (Yt) = B′(3) vec (Xt) + vec (Et) , vec (Et)
iid∼ NI1I2(0,Σ2 ⊗ Σ1) . (27)

Here Yt ∈ RI1×I2 is a matrix response, Xt ∈ RI1×I2 is a covariate matrix of the same size of Yt
and B ∈ RI1×I2×I1I2 is a coefficient tensor. The noise term Et ∈ RI1×I2 is distributed according
to a matrix variate normal distribution, with zero mean and covariance matrices Σ1 ∈ RI1×I1 and
Σ2 ∈ RI2×I2 accounting for the covariance between the columns and the rows, respectively. This
distribution is a particular case of the tensor Gaussian introduced in eq. (18) whose probability
density function is given by:

fX(X) = (2π)−
I1I2
2 |U2|−

I1
2 |U1|−

I2
2 exp

{
−1

2
U−12 (X −M)′U−11 (X −M)

}
(28)

where X ∈ RI1×I2 , M ∈ RI1×I2 is the mean matrix and the covariance matrices are Uj ∈ RIj×Ij ,
j = 1, 2, where index 1 represents the rows and index 2 stands for the columns of the variable
X.

The choice the Bayesian approach for inference is motivated by the fact that the large number
of parameters may lead to an over-fitting problem, especially when the samples size is rather
small. This issue can be addressed by the indirect inclusion of parameter restrictions through
a suitable specification of the corresponding prior distribution. Considering the unrestricted
model in eq. (26), it would be necessary to define a prior distribution on the three-dimensional
array B. The literature on this topic is scarce: though Ohlson et al. (2013) and Manceur and
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Dutilleul (2013) presented the family of elliptical array-valued distributions, which include the
tensor normal and tensor t, the latter are rather inflexible as imposing some structure on a subset
of the entries of the array is very complicated.

We assume a PARAFAC(R) decomposition on the coefficient tensor for achieving two goals:
first, by reducing the parameter space this assumption makes estimation feasible; second, the
decomposition transforms a multidimensional array into the outer product of vectors, we are left
we the choice of a prior distribution on vectors, for which many constructions are available. In
particular, we can incorporate sparsity beliefs by specifying a suitable shrinkage prior directly
on the marginals of the PARAFAC. Indirectly, this introduces a priori sparsity on the coefficient
tensor.

3.1 Prior Specification

The choice of the prior distribution on the PARAFAC marginals is crucial for recovering the
sparsity pattern of the coefficient tensor and for the efficiency of the inference. In the Bayesian
literature the global-local class of prior distributions represent a popular and successful structure
for providing shrinkage and regularization in a wide range of models and applications. These
priors are based on scale mixtures of normal distributions, where the different components of
the covariance matrix produce desirable shrinkage properties of the parameter. By construction,
global-local priors are not suited for recovering an exact zero (differently from spike-and-slab
priors, see Mitchell and Beauchamp (1988), George and McCulloch (1997), Ishwaran and Rao
(2005)), instead they can be recovered via post-estimation thresholding (see Park and Casella
(2008)). However, spike-and-slab priors become intractable as the dimensionality of the pa-
rameter grows. By contrast, the global-local shrinkage priors have greater scalability and thus
represent a desirable choice in high-dimensional models, such as our framework. Motivated by
these arguments, we adopt the hierarchical specification forwarded by Guhaniyogi et al. (2017)
in order to define adequate global-local shrinkage priors for the marginals4.

The global-local shrinkage prior for each PARAFAC marginal β(r)
j of the coefficient tensor B

is defined as a scale mixture of normals centred in zero, with three components for the covariance.
The global component τ is drawn from a gamma distribution5. The vector of component-level
(shared by all marginals in the r-th component of the decomposition) variances φ is sampled
from a R-dimensional Dirichlet distribution with parameter α = αιR, where ιR is the vector
of ones of length R. Finally, the local component of the variance is a diagonal matrix Wj,r =
diag(wj,r) whose entries are exponentially distributed with hyper-parameter λj,r. The latter is
a key parameter for driving the shrinkage to zero of the marginals and is drawn from a gamma
distribution. Summarizing, for p = 1, . . . , Ij , j = 1, . . . , 3 and r = 1, . . . , R we have the following
hierarchical prior structure for each vector of the PARAFAC(R) decomposition in eq. (11):

π(α) ∼ U(A) (29a)
π(φ|α) ∼ Dir(αιR) (29b)
π(τ |α) ∼ Ga(aτ , bτ ) (29c)
π(λj,r) ∼ Ga(aλ, bλ) (29d)

π(wj,r,p|λj,r) ∼ Exp(λ2j,r/2) (29e)

4This class of shrinkage priors has been firstly proposed by Bhattacharya et al. (2015) and Zhou et al. (2015).
5We use the shape-rate formulation for the gamma distribution:

x ∼ Ga(a, b) ⇐⇒ f(x|a, b) =
ba

Γ(a)
xa−1e−bx a > 0, b > 0

.
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Figure 3: Hierarchical shrinkage prior for the PARAFAC marginals. White
circles with continuous border represent the parameters, white circles with
dashed border represent fixed hyper-parameters.

π
(
β
(r)
j

∣∣∣Wj,r,φ, τ
)
∼ NIj (0, τφrWj,r) . (29f)

Concerning the covariance matrices for the noise term in eq. (16), the Kronecker structure does
not allow to separately identify the scale of the covariance matrices Un, thus requiring the spec-
ification of further restrictions. Wang and West (2009) and Dobra (2015) adopt independent
hyper-inverse Wishart prior distributions (Dawid and Lauritzen (1993)) for each Un, then im-
pose the identification restriction Un,11 = 1 for n = 2, . . . , N . Instead, Hoff (2011) suggests to
introduce dependence between the Inverse Wishart prior distribution IW(νn, γΨn) of each Un,
n = 1, . . . , N , via a hyper-parameter γ ∼ Ga(a, b) affecting the scale of each location matrix pa-
rameter. Finally, the hard constraint Σn = IIn (where Ik is the identity matrix of size k), for all
but one n, implicitly imposes that the dependence structure within different modes is the same,
but there is no dependence between modes. To account for marginal dependence, it is possible
to add a level of hierarchy by introducing a hyper-parameter in the spirit of Hoff (2011). Follow-
ing Hoff (2011), we assume conditionally independent inverse Wishart prior distributions for the
covariance matrices of the error term Et and add a level of hierarchy via the hyper-parameter γ
which governs the scale of the covariance matrices:

π(γ) ∼ Ga(aγ , bγ) (30a)
π(Σ1|γ) ∼ IWI1(ν1, γΨ1) (30b)
π(Σ2|γ) ∼ IWI2(ν2, γΨ2) . (30c)

Defining the vector of all parameters as θ = {α,φ, τ,Λ,W,B,Σ1,Σ2}, with Λ = {λj,r : j =
1, . . . , 3, r = 1, . . . , R} and W = {Wj,r : j = 1, . . . , 3, r = 1, . . . , R}, the joint prior distribution
is given by:

π(θ) = π(B|W,φ, τ)π(W|Λ)π(φ|α)π(τ |α)π(Λ)π(α)π(Σ1|γ)π(Σ2|γ)π(γ). (31)

The directed acyclic graphs (DAG) of the hierarchical shrinkage prior on the PARAFACmarginals
β
(r)
j and the overall prior structure are given in Figs. 3-4, respectively.
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Figure 4: Overall prior structure. Gray circles represent observable variables,
white circles with continuous border represent the parameters, white circles
with dashed border represent fixed hyper-parameters.

3.2 Posterior Computation

The likelihood function of the model in eq. (26) is given by:

L
(
Y1, . . . , YT |θ

)
=

T∏
t=1

(2π)−
I1I2
2 |Σ2|−

I1
2 |Σ1|−

I2
2 exp

{
−1

2
Σ−12 (Yt − B ×3 xt)

′Σ−11 (Yt − B ×3 xt)

}
,

(32)
where xt = vec (Xt). Since the posterior distribution is not tractable in closed form, we adopt
an MCMC procedure based on Gibbs sampling. The computations and technical details of
the derivation of the posterior distributions are given in Appendix D. As a consequence of the
hierarchical structure of the prior, we can articulate the sampler in three main blocks:

I) sample the hyper-parameters of the global and component-level variance for the marginals,
according to:

p(α,φ, τ |B,W) = p(α|B,W)p(φ, τ |α,B,W) (33)

(i) sample α from:

P
({
α = αj

}
|B,W

)
=

p(αj |B,W)∑|A|
l=1 p(αl|B,W)

, (34)

where:

p(α|B,W) = π(α)
1

M

M |A|∑
i=1

ωi. (35)

(ii) sample independently the auxiliary variable ψr, for r = 1, . . . , R, from:

p(ψr|B,W, α) ∝ GiG
(
α− I0

2
, 2bτ , 2Cr

)
(36)

then, for r = 1, . . . , R:

φr =
ψr∑R
l=1 ψl

. (37)
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(iii) finally, sample τ from:

p(τ |B,W,φ) ∝ GiG

aτ − RI0
2
, 2bτ , 2

R∑
r=1

Cr
φr

 . (38)

II) define Y = {Yt}Tt=1, then sample from the posterior of the hyper-parameters of the local
component of the variance of the marginals and the marginals themselves, as follows:

p
(
β
(r)
j ,Wj,r, λj,r

∣∣∣φ, τ,Y,Σ1,Σ2

)
= p

(
λj,r|β(r)

j , φr, τ
)
p
(
wj,r,p|λj,r, φr, τ,β(r)

j

)
· p
(
β
(r)
j |β

(r)
−j ,B−r, φr, τ,Y,Σ1,Σ2

)
(39)

(i) for j = 1, 2, 3 and r = 1, . . . , R sample independently:

p
(
λj,r|β(r)

j , φr, τ
)
∝ Ga

aλ + Ij , bλ +

∥∥∥β(r)
j

∥∥∥
1√

τφr

 . (40)

(ii) for p = 1, . . . , Ij , j = 1, 2, 3 and r = 1, . . . , R sample:

p
(
wj,r,p|λj,r, φr, τ,β(r)

j

)
∝ GiG

1

2
, λ2j,r,

β
(r)2

j,k

τφr

 (41)

(iii) define β
(r)
−j =

{
β
(r)
i : i 6= j

}
and B−r = {Bi : i 6= r}, where Br = β

(r)
1 ◦ . . . ◦ β

(r)
N . For

r = 1, . . . , R sample the PARAFAC marginals from:

p
(
β
(r)
1 |β

(r)
−1,B−r, φr, τ,Y,Σ1,Σ2

)
∝ NI1(µ̄β1

, Σ̄β1
) (42)

p
(
β
(r)
2 |β

(r)
−2,B−r, φr, τ,Y,Σ1,Σ2

)
∝ NI2(µ̄β2

, Σ̄β2
) (43)

p
(
β
(r)
3 |β

(r)
−3,B−r, φr, τ,Y,Σ1,Σ2

)
∝ NI3(µ̄β3

, Σ̄β3
) . (44)

III) sample the covariance matrices from their posterior:

p(Σ1,Σ2, γ|B,Y) = p(Σ1|B,Y,Σ2, γ)p(Σ2|B,Y,Σ1, γ)p(γ|Σ1,Σ2) (45)

(i) sample the row covariance matrix:

p(Σ1|B,Y,Σ2, γ) ∝ IWI1(ν1 + I1, γΨ1 + S1) (46)

(ii) sample the column covariance matrix:

p(Σ2|B,Y,Σ1, γ) ∝ IWI2(ν2 + I2, γΨ2 + S2) . (47)

(iii) sample the scale hyper-parameter:

p(γ|Σ1,Σ2) ∝ Ga
(
ν1I1 + ν2I2, tr

(
Ψ1Σ

−1
1 + Ψ2Σ

−1
2

))
. (48)

For improving the mixing of the algorithm, it is possible to substitute the draw from the full
conditional distributon of the global variance parameter τ or of the PARAFAC marginals with
a Hamiltonian Monte Carlo (HMC) step (see Neal (2011)).
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4 Simulation Results

We report the results of a simulation study where we have tested the performance of the proposed
sampler on synthetic datasets of matrix-valued sequences {Yt, Xt}Tt=1, where Yt, Xt have different
size across simulations. The methods described in this paper can be rather computationally
intensive, nevertheless thanks to the tensor decomposition we used allows the estimation to be
carried out on a laptop. All the simulations were run on an Apple MacBookPro with a 3.1GHz
Intel Core i7 processor, RAM 16GB, using MATLAB r2017b with the aid of the Tensor Toolbox
v.2.66, taking about 30h for the highest-dimensional case (i.e. I1 = I2 = 50).

For different sizes (I1 = I2) of the response and covariate matrices, we generated a matrix-
variate time series {Yt, Xt}Tt=1 by simulating each entry of Xt from:

xij,t − µ = αij(xij,t−1 − µ) + ηij,t , ηij,t ∼ N (0, 1) (49)

and a matrix-variate time series {Yt}t according to:

Yt = B ×3 vec (Xt) + Et , Et ∼ NI1,I2(0,Σ1, II2) . (50)

where E[ηij,tηkl,v] = 0, E[ηij,tEv] = 0, ∀ (i, j) 6= (k, l), ∀ t 6= v, and αij ∼ U(−1, 1). We randomly
draw B by using the PARAFAC representation in eq. (11), with rank R = 5 and marginals
sampled from the prior distribution in eq. (29f).

The response and covariate matrices in the simulated datasets have the following sizes:

(I) I1 = I2 = I = 10, for T = 60;

(II) I1 = I2 = I = 20, for T = 60;

(III) I1 = I2 = I = 30, for T = 60;

(IV) I1 = I2 = I = 40, for T = 60;

(V) I1 = I2 = I = 50, for T = 60.

We initialized the Gibbs sampler by setting the PARAFAC marginals β(r)
1 ,β

(r)
2 ,β

(r)
3 , r = 1, . . . , R

(with R = 5), with the output of a simulated annealing algorithm (see Appendix C) and run the
algorithm for N = 10000 iterations. We present the results for the case Σ2 = II2 . Since they are
similar, we omit the results for unconstrained Σ2, estimated with the Gibbs in Section 3.

6Available at: http://www.sandia.gov/ tgkolda/TensorToolbox/index-2.6.html
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Figure 5: Logarithm of the absolute value of the coefficient tensors: true B
(left) and estimated B̂ (right).
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Figure 6: MCMC output (left), autocorrelation function for the entire sample
(middle plot) and after burn-in (right plot) of the Frobenious norm of the
difference between the true and the estimated covariance matrix Σ1.

The results are reported in Figs. 5-6, for the different simulated datasets. Fig. 5 shows the
good accuracy of the sampler in estimating the coefficient tensor, whose number of entries ranges
from 104 in the first to 504 in the last simulation setting. The estimation error is maily due to
the over-shrinking to zero of large signals. This well known drawback of global-local hierarchical
prior distributions (e.g., see Carvalho et al. (2010)) is related to its sensitivity to the hyper-
parameters setting. Fig. 6 plots the MCMC output of the Frobenious norm (i.e. the L2 norm)
of the covariance matrix of the error term. After a graphical inspection of the trace plots (first
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column) we chose a burn-in period of 2000 iterations. Due to autocorrelation in the sample
(second column plots) we applied thinning and selected every 10th iteration. In most of the
cases, after removing burn-in iterations and performing thinning, the autocorrelation wipes out.

We refer the reader to Appendix F for additional details on the simulation experiments, such
as trace plots and autocorrelation functions for tensor entries and individual hyper-parameters.

5 Application

5.1 Data description

As put forward by Schweitzer et al. (2009), the analysis of economic networks is one of the most
recent and complex challenges that the econometric community is facing nowadays. We con-
tribute to the econometric literature about complex networks by applying the proposed method-
ology to the study of the temporal evolution of the international trade network (ITN). This
economic network has been previously studied by several authors (e.g., see Hidalgo and Haus-
mann (2009), Fagiolo et al. (2009), Kharrazi et al. (2017), Meyfroidt et al. (2010), Zhu et al.
(2014), Squartini et al. (2011)), who have analysed its topological properties and identified its
main communities. However, to the best of our knowledge, this is the first attempt to model the
temporal evolution of the network as a whole.

The raw trade data come from the United Nations COMTRADE database, a publicly avail-
able resource7. The particular dataset we use is a subset of the whole COMTRADE database
and consists of yearly observations from 1998 to 2016 of total imports and exports between
I1 = I2 = I = 10 countries. In order to remove possible sources of non-linearities in the data,
we use a logarithmic transform of the variables of interest. We thus consider the international
trade network at each time stamp as one observation from a real-valued matrix-variate stochastic
process. Fig. 7 shows the whole network sequence in our dataset.

5.2 Results

We estimate the model setting Xt = Yt−1, thus obtaining a matrix-variate autoregressive model.
Each matrix Yt is the I × I real-valued weighted adjacency matrix of the corresponding interna-
tional trade network in year t, whose entry (i, j) contains the total exports of country i vis-à-vis
country j, in year t. The series {Yt}t, t = 1, . . . , T , has been standardized (over the temporal
dimension). We run the Gibbs sampler for N = 10, 000 iterations. The output is reported below.
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Figure 8: Left: Transpose of the mode-3 matricized estimated coefficient
tensor, B̂′(3). Middle: distribution of the estimated entries of B̂(3). Right:
logarithm of the modulus of the eigenvalues of B̂(3), in decreasing order.

7https://comtrade.un.org
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Figure 7: Commercial trade network evolving over time from 1998 (top left)
to 2016 (bottom right). Nodes represent countries, red and blue colored
edges stand for exports and imports between two countries, respectively.
Edge thickness represents the magnitude of the flow.
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The mod-3 matricization of the estimated coefficient tensor is shown in the left panel of Fig. 8,
each column corresponds to the effects of a lag one edge (horizontal axis) on all the contempo-
raneous edges (vertical axis). Positive effects in red and negative effects in blue. Fig. 9 shows
the estimated covariance matrices of the noise term, that is Σ̂1, Σ̂2. As regards the estimated
coefficient tensor, we find that:

• the heterogeneity in the estimated coefficients points against parameter pooling assump-
tions;

• there are patterns, it look like there are groups of edges (bilateral trade flows) with mainly
positive (red) or negative (blue) effect on all the other edges. Maybe there are some
countries that play a key role for these flows;

• the distribution of the entries of the estimated coefficient tensor (middle panel) confirms
the evidence of heterogeneity. The distribution is right-skewed and leptokurtic with mode
at zero, which is a consequence of the shrinkage of the estimated coefficient;

• in order to assess the stationarity of the model, we computed the eigenvalues of the mode-
3 matricization of the estimated coefficient tensor and the right panel of Fig. 8 plots the
logarithm of their modulus. All the eigenvalues are strictly lower than one in modulus,
thus indicating that the process describing the evolution of the trade network is stationary.

Moreover, as regards the estimated covariance matrices of the noise term (Fig. 9), we find
that:

• in both cases the highest values correspond to individual variances, while the estimated
covariances are lower in magnitude and heterogeneous;

• there is evidence of heterogeneity in the dependence structure, since Σ1, which captures
the covariance between exporting countries (i.e., rows), differs from Σ2, which describes
the covariance between importing countries (i.e., columns);

• the dependence between exporting countries is higher on average than between importing
countries;

• for assessing the convergence of the MCMC chain, Fig. 9 shows the trace plot and auto-
correlation functions (without thinning) of the Frobenious norm of each estimated matrix.
Both sets of plots show a good mixing of the chain.

5.3 Impulse response analysis

For understanding the role exerted by the various links of the network, Fig. 10, top panel,
shows for each edge the sum of the corresponding positive and negative entries of the estimated
coefficient tensor in red and blue, respectively. We find that edges’ impact tend to cluster,
that is, those with high positive cumulated effects have very low negative cumulated effects
and vice-versa. Thus, the bottom panel of Fig. 10 shows the sum of the absolute values of all
corresponding entries of the estimated coefficient tensor, which can be interpreted as a measure
of the importance of the edge in the network. Based on this statistic, we plot the position of the
10 most and least relevant edges in the network (in red and blue, respectively) in Fig 11. The
picture has a heterogeneous structure: first, no single country seems to exert a key role, neither
as exporter nor as importer; second, the most and least relevant edges are evenly distributed
between the exporting and the importing side.
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We study the effects of the propagation of a shock on a single and a group of edges in the
network by means of the impulse response function obtained as follows. Define the reverse of
the vectorization operator vec (·) by vecr (·) and let Ẽ be a binary matrix of shocks such that
each non zero entry (i, j) of Ẽ corresponds to a unitary shock on the edge (i, j). Then the
matrix-valued impulse response function is obtained from the recursion:

Y1 = B ×3 vec
(
Ẽ
)

= vecr

(
B′(3) · vec

(
Ẽ
))

(51)

Y2 = B ×3 vec

(
vecr

(
B′(3) · vec

(
Ẽ
)))

= vecr

(
B′(3) ·B

′
(3) · vec

(
Ẽ
))

(52)

= vecr

(
[B′(3)]

2 · vec
(
Ẽ
))

, (53)

which, for the horizon h > 0, generalizes to:

Yh = vecr

(
[B′(3)]

h · vec
(
Ẽ
))

. (54)

This equation shows that it is possible to study the joint effect that a contemporaneous shock
on a subset of the edges of the network has on the whole network over time.

Fig. 12 and 13, respectively, plot the impulse response function of a unitary shock on the 10
most relevant and the 10 least relevant edges (determined by ranking according to the sum of
the absolute values of the entries of the estimated coefficient tensor), for h = 1, . . . , 14 periods.
Figs. 14-15 show the effects of a unitary shock to the most and least influential edges, respectively.
We find that:

• the effects are remarkably different: both the magnitude and the persistence of the impact
of a shock to the most relevant edges is significantly greater than that obtained by hitting
the least relevant edges;

• with reference to figs. 14-15, as in the previous case, a shock to the most relevant edge
is more persistent than a shock on the least relevant and the magnitude is higher. How-
ever, compared to the effects of a shock on 10 edges, both persistence and magnitude are
remarkably lower;

• a shock to a single edge affects almost all the others because of the high degree of inter-
connection of the network, which is responsible for the propagation both in the space (i.e.
cross-section) and over time.
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Figure 10: Sum of positive entries (red,top), negative entries (blue,top) and of
absolute values of all entries (dark green,bottom) of the estimated coefficient
tensor (y-axis), per each edge (x-axis).
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Figure 11: Position in the network of the 10 most relevant (red) and least
relevant (blue) edges, according to the sum of the absolute values. Countries’
labels on both axes.
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Figure 12: Impulse response for h = 1, . . . , 14 periods. Unitary shock on the
10 most relevant edges (sum of absolute values of all coefficients). Countries’
labels on both axes.
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Figure 13: Impulse response for h = 1, . . . , 14 periods. Unitary shock on the
10 least relevant edges (sum of absolute values of all coefficients). Countries’
labels on both axes.
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Figure 14: Impulse response for h = 1, . . . , 14 periods. Unitary shock on the
most relevant edge (sum of absolute values of all coefficients). Countries’
labels on both axes.
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Figure 15: Impulse response for h = 1, . . . , 14 periods. Unitary shock on
the least relevant edge (sum of absolute values of all coefficients). Countries’
labels on both axes.

6 Conclusions

We defined a new statistical framework for dynamic tensor regression. It is a generalisation of
many models frequently used in time series analysis, such as VAR, panel VAR, SUR and matrix
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regression models. The PARAFAC decomposition of the tensor of regression coefficients allows
to reduce the dimension of the parameter space but also permits to choose flexible multivariate
prior distributions, instead of multidimensional ones. Overall, this allows to encompass sparsity
beliefs and to design efficient algorithm for posterior inference.

We tested the Gibbs sampler algorithm on synthetic matrix-variate datasets with matrices
of different sizes, obtaining good results in terms of both the estimation of the true value of the
parameter and the efficiency.

The proposed methodology has been applied to the analysis of temporal evolution of a subset
of the international trade networks. We found evidence of (i) wide heterogeneity in the sign and
magnitude of the estimated coefficients; (ii) stationarity of the network process.
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A Background material on tensor calculus

A N -order tensor is an element of the tensor product of N vector spaces. Since there exists a
isomorphism between two vector spaces of dimensions N and M < N , it is possible to define a
one-to-one map between their elements, that is, between a N -order tensor and aM -order tensor.
We call this tensor reshaping and give its formal definition below.
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Definition A.1 (Tensor reshaping). Let V1, . . . , VN and U1, . . . , UM be vector subspaces Vn, Um ⊆
R and X ∈ RI1×...×IN = V1 ⊗ . . . ⊗ VN be a N -order real tensor of dimensions I1, . . . , IN . Let
(v1, . . . ,vN ) be a canonical basis of RI1×...×IN and let ΠS be the projection defined as:

ΠS :V1 ⊗ . . .⊗ VN → Vs1 ⊗ . . .⊗ Vsk
v1 ⊗ . . .⊗ vN 7→ vs1 ⊗ . . .⊗ vsk ,

with S = {s1, . . . , sk} ⊂ {1, . . . , N}. Let (S1, . . . , SM ) be a partition of {1, . . . , N}. The
(S1, . . . , SM ) tensor reshaping of X is defined as:

X(S1,...,SM ) = (ΠS1X )⊗ . . .⊗ (ΠSMX )

∈

⊗
s∈S1

Vs

⊗ . . .⊗
⊗
s∈SM

Vs


= U1 ⊗ . . .⊗ UM .

It can be proved that the mapping is an isomorphism between V1 ⊗ . . .⊗ VN and U1 ⊗ . . .⊗ UM .

The operation of converting a tensor into a matrix can be seen as a particular case of tensor
reshaping, where a N -order tensor is mapped to a 2-order tensor. In practice, it consists in
choosing the modes of the array to map with the rows and columns of the resulting matrix, then
permuting the tensor and reshaping it, accordingly. The formal follows.

Definition A.2. Let X be a N order tensor with dimensions I1, . . . , IN . Let the ordered sets R =
{r1, . . . , rL} and C = {c1, . . . , cM} be a partition of N = {1, . . . , N} and let IN = {I1, . . . , IN}.
The matricized tensor is specified by:

X(R×C :IN) ∈ RJ×K J =
∏
n∈R

In K =
∏
n∈C

In . (A.1)

Indices of R,C are mapped to the rows and the columns, respectively. More precisely:(
X(R×C :IN)

)
j,k

= Xi1,i2,...,iN (A.2)

with:

j = 1 +

L∑
l=1

(irl − 1)

l−1∏
l′=1

Ir′l

 k = 1 +

M∑
m=1

(icm − 1)

m−1∏
m′=1

Ic′m

 (A.3)

We introduce two multilinear operators acting on tensors, see Kolda (2006) for more details.

Definition A.3 (Tucker operator). Let Y ∈ RJ1×...×JN and N = {1, . . . , N}. Let {An}n be a
collection of N matrices such that An ∈ RIn×Jn for n ∈ N. The Tucker operator is defined as:

JY;A1, . . . , AN K = Y ×1 A1 ×2 A2 . . .×N AN , (A.4)

and the resulting tensor has size I1 × . . .× IN .

Definition A.4 (Kruskal operator). Let N = {1, . . . , N} and {An}n be a collection of N matrices
such that An ∈ RIn×R for n ∈ N. Let I be the identity tensor of size R × . . .×R, i.e. a tensor
having ones along the superdiagonal and zeros elsewhere. The Kruskal operator is defined as:

X = JA1, . . . , AN K = JI;A1, . . . , AN K , (A.5)
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with X a tensor of size I1 × . . .× IN . An alternative representation is obtained by defining a
(r)
n

the r-th column of the matrix An and using the outer product:

X = JA1, . . . , AN K =
R∑
r=1

a
(r)
1 ◦ . . . ◦ a

(r)
N . (A.6)

By exploiting the Khatri-Rao product � (i.e. the columnwise Kronecker product for A ∈ RI×K ,
B ∈ RJ×K defined as A � B = [a:,1 ⊗ b:,1, . . . ,a:,K ⊗ b:,K ]) in combination with the mode-n
matricization and the vecotrization operators, we get the following additional representations of
X = JA1, . . . , AN K:

X(n) = An (AN � . . .�An+1 �An−1 � . . .�A1)
′ (A.7)

vec (X ) = (AN � . . .�A1) 1R , (A.8)

where 1R is a vector of ones of length R.

Proposition A.1 (4.3 in Kolda (2006)). Let Y ∈ RJ1×...×JN and N = {1, . . . , N} and let
A ∈ RIn×Jn for all n ∈ N. If R = {r1, . . . , rL} and C = {c1, . . . , cM} partition N, then:

X = JY;A1, . . . , AN K ⇐⇒ X(R×C :JN) =
(
A(rL) ⊗ . . .⊗A(r1)

)
Y(R×C :JN)

(
A(cM ) ⊗ . . .⊗A(c1)

)′
(A.9)

where X = JY;A1, . . . , AN K = Y ×1A1×2A
(2) . . .×nAN denotes the Tucker product between the

tensor Y and the collection of matrices {An}Nn=1. The Kruskal operator is a special case of the
Tucker operator, obtained when the tensor Y = I is an identity tensor of dimensions R× . . .×R
and the matrices {An}Nn=1 have dimension An ∈ RIn×R. Therefore, we can represent the product
using the outer product representation, as follows. Consider the collection of vectors {a(n)}Nn=1,
of length a(n) ∈ RIn, formed by the columns of the matrices An. Then:

X = JI;A1, . . . , AN K = ◦Nn=1a
(n) ⇐⇒ X(R×C :JN) =

(
a(rL) ⊗ . . .⊗ a(r1)

)
I(R×C :JN)

(
a(cM ) ⊗ . . .⊗ a(c1)

)′
.

(A.10)

Remark A.1 (Contracted product – vectorization). Let X ∈ RI1×...×IN and Y ∈ RJ1×...×JN×JN+1×...×JN+P .
Let (S1,S2), with S1 = {1, . . . , N}, S2 = {N+1, . . . , N+P}, be a partition of {1, . . . , N+P}.
The following results hold:

a) if P = 0 and In = Jn for n = 1, . . . , N , then:

X ×1...N Y = 〈X ,Y〉 = vec (X )′ · vec (Y) ∈ R . (A.11)

b) if P > 0 and In = Jn for n = 1, . . . , N , then:

X ×1...N Y = vec (X )×1 Y(S1,S2) ∈ Rj1×...×jP (A.12)

Y ×1...N X = Y(S1,S2) ×
1 vec (X ) ∈ Rj1×...×jP . (A.13)

c) if P = N and In = Jn = JN+n, n = 1, . . . , N , then:

X ×1...N Y ×1...N X = vec (X )′ ·Y(R×C ) · vec (X ) ∈ R . (A.14)

Proof. Case a). By definition of contracted product and tensor scalar product:

X ×1...N Y =

I1∑
i1=1

. . .

IN∑
iN=1

Xi1,...,iN · Yi1,...,iN
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=
∑

i1,...,iN

Xi1,...,iN · Yi1,...,iN = 〈X ,Y〉 = vec (X)′ · vec (Y ) .

Case b). Define I∗ =
∏N
n=1 In and k = 1+

∑N
j=1(ij−1)

∏j−1
m=1 Im. By definition of contracted

product and tensor scalar product:

X ×1...N Y =

I1∑
i1=1

. . .

IN∑
iN=1

Xi1,...,iN · Yi1,...,iN ,jN+1,...,jN+P

=
I∗∑
k=1

Xk · Yk,jN+1,...,jN+P
.

Notice that the one-to-one correspondence established by the mapping between k and (i1, . . . , iN )
corresponds to that of the vectorization of a tensor of sizeN and dimensions I1, . . . , IN . Moreover,
it also corresponds to the mapping established by the tensor reshaping of a tensor of order N+P
with dimensions I1, . . . , IN , JN+1, . . . , JN+P into another tensor of order 1 + P and dimensions
I∗, JN+1, . . . , JN+P . Define S = {1, . . . , N}, such that (S,N + 1, . . . , N + P ) is a partition of
{1, . . . , N + P}. Then:

X ×1...N Y = vec (X)×1 Y(S,N+1,...,N+P ) .

Similarly, defining S = {P + 1, . . . , N + P} yields the second part of the result.
Case c). We follow the same strategy adopted in case b). Define S1 = {1, . . . , N} and

S2 = {N + 1, . . . , N + P}, such that (S − 1, S2) is a partition of {1, . . . , N + P}. Let k, k′ be
defined as in case b). Then:

X ×1...N Y ×1...N X =

I1∑
i1=1

. . .

IN∑
iN=1

I1∑
i′1=1

. . .

IN∑
i′N=1

Xi1,...,iN · Yi1,...,iN ,i′1,...,i′N · Xi′1,...,i′N

=
I∗∑
k=1

I1∑
i′1=1

. . .

IN∑
i′N=1

Xk · Yk,i′1,...,i′N · Xi′1,...,i′N

=
I∗∑
k=1

I∗∑
k′=1

Xk · Yk,k′ · Xk′

= vec (X)′ · Y(S1,S2) · vec (X) .

Relation between the matricization of a tensor resulting from the outer product of matrices
and the Kronecker product.

Remark A.2 (Kronecker - matricization). Let X1, . . . , XN be square matrices of size In × In,
n = 1, . . . , N and let X = X1◦. . .◦XN denote the N -order tensor with dimensions (J1, . . . J2N ) =
(I1, . . . , IN , I1, . . . , IN ) obtained as the outer product of the matrices {Un}. Let (S1,S2), with
S1 = {1, . . . , N} and S2 = {N + 1, . . . , N}, be a partition of IN = {1, . . . , 2N}. Then:

X(S1,S2) = X(R×C :IN) = (XN ⊗ . . .⊗X1) . (A.15)

Proof. Use the pair of indices (in, i
′
n) for the entries of the matrixXn, n = 1, . . . , N . By definition

of outer product:

(X1 ◦ . . . ◦XN )i1,i2,...,iN ,i′1,i′2,...,i′N
= (X1)i1,i′1 · (X2)i2,i′2 · · · (XN )iN ,i′N .
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From the definition of matricization, X(S1,S2) = X(R×C :IN). Moreover:(
X(S1,S2)

)
h,k

= Xi1,...,i2N

with:

h =
N∑
p=1

(iS1,p − 1)

p−1∏
q=1

JS1,p k =
N∑
p=1

(iS2,p − 1)

p−1∏
q=1

JS2,p .

By definition of the Kronecker product we have: that the entry (h′, k′) of (XN ⊗ . . . ⊗ X1) is
given by:

(XN ⊗ . . .⊗X1)h′,k′ = (XN )i′N ,i
′
N
· · · (X1)i1,i′1

where:

h′ =
N∑
p=1

(iS1,p − 1)

p−1∏
q=1

JS1,p k′ =
N∑
p=1

(iS2,p − 1)

p−1∏
q=1

JS2,p .

Since h = h′ and k = k′ and the associated elements of X(S1,S2) and (XN ⊗ . . . ⊗ X1) are the
same, the result follows.

Remark A.3. Let X be a N -order tensor of dimensions I1 × . . . × IN and let I∗ =
∏N
i=1 Ii.

Then there exists a vec-permutation (or commutation) matrix K1→n of size I∗ × I∗ such that:

K1→n vec (X ) = K1→n vec
(
X(1)

)
= vec

(
X(n)

)
. (A.16)

Moreover, it holds:
vec
(
X(n)

)
= vec

(
XTσ

(1)

)
= vec

(
X Tσ

)
, (A.17)

where
XTσ

(1) =
(
X Tσ

)
(1)

= X(n) , (A.18)

is the mode-1 matricization of the transposed tensor X Tσ according to the permutation σ which
exchanges modes 1 and n, leaving the others unchanged. That is, for ij ∈ {1, . . . , Ij} and j =
1, . . . , N :

σ(ij) =


1 j = n

n j = 1

ij j 6= 1, n .

Remark A.4. Let X be a N -order random tensor with dimensions I1, . . . , IN and let N =
{1, . . . , N} be partitioned by the index sets R = {r1, . . . , rm} ⊂ D and C = {c1, . . . , cp} ⊂ N,
i.e. N = R ∪ C , R ∩ C = ∅ and N = m+ p. Then:

X ∼ NI1,...,IN (M, U1, . . . , UN ) ⇐⇒ X(R×C ) ∼ Nm,p(M(R×C ),Σ1,Σ2) , (A.19)

with:
Σ1 = Urm ⊗ . . .⊗ Ur1 Σ2 = Ucp ⊗ . . .⊗ Uc1 . (A.20)

Proof. We demonstrate the statement for R = {n}, n ∈ N, however the results follows from the
same steps also in the general case #R > 1. The strategy it to demonstrate that the probability
density functions of the two distributions coincide. To this aim consider separately the exponent
and the normalizing constant. Define I−j =

∏N
i=1, n 6=j Ii and IN = {I1, . . . , IN}, then for the

normalizing constant we have:

(2π)−
∏
i Ii
2 |U1|−

I−1
2 · · · |Un|−

I−n
2 · · · |UN |−

I−N
2 = (A.21)
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= (2π)−
∏
i Ii
2 |U1|−

I−1
2 · · · |Un−1|−

I−(n−1)
2 · |Un+1|−

I−(n+1)
2 · · · |UN |−

I−N
2 · |Un|−

I−n
2

= (2π)−
∏
i Ii
2 |UN ⊗ . . .⊗ Un−1 ⊗ Un+1 ⊗ . . .⊗ UN |−

n
2 · |Un|−

I−n
2 . (A.22)

Concerning the exponent, let i = (i1, . . . , iN ) and, for ease of notation, define Y = X −M and
U = (U−1N ◦ . . . ◦ U

−1
1 ). By the definition of contracted product it holds:

Y ×1...N U ×1...N Y = (A.23)

=
∑

i1,...,iN

∑
i′1,...,i

′
N

yi1,...,in,...,iN · u
−1
i1,i′1
· · ·u−1in,i′n · · ·u

−1
iN ,i

′
N
· yi′1,...,in,...,i′N .

Define j = σ(i), where σ is the permutation defined above exchanging i1 with in, n ∈ {2, . . . , N}.
Then the previous equation can be rewritten as:

=
∑

j1,...,jN

∑
j′1,...,j

′
N

yjn,...,j1,...,iN · u
−1
jn,j′n
· · ·u−1

j1,j′1
· · ·u−1

iN ,i
′
N
· yj′n,...,j′1,...,i′N

= Yσ ×1...N
(
U−11 ◦ . . . ◦ U−1N

)σ
×1...N Yσ ,

where Yσ is the transpose tensor of Y (see Pan (2014)) obtained by permuting the first and
the n-th modes and similarly for the 6-order tensor (U−11 ◦ . . . ◦ U−1N )σ. Let (S1,S2), with
S1 = {1, . . . , N} and S2 = {N + 1, . . . , 2N}, be a partition of {1, . . . , 2N}. By vectorizing
eq. (A.23) and exploiting the results in A.1 and A.2, we have:

Y ×1...N U ×1...N Y = vec (Y)′ · U(S1,S2) · vec (Y) (A.24)

= vec (Y)′ ·
(
U−1N ⊗ . . .⊗ U

−1
n ⊗ . . .⊗ U−11

)
· vec (Y)

= vec (Yσ)′ ·
(
U−1N ⊗ . . .⊗ U

−1
1 ⊗ U−1n

)
· vec (Yσ)

= vec
(
Y(n)

)′
·
(
U−1N ⊗ . . .⊗ U

−1
1 ⊗ U−1n

)
· vec

(
Y(n)

)
= vec

(
Y(n)

)′
· vec

(
U−1n ·Y(n) ·

[
U−1N ⊗ . . .⊗ U

−1
1

])
= tr

(
Y′(n) · U

−1
n ·Y(n) ·

[
U−1N ⊗ . . .⊗ U

−1
1

])
= tr

([
U−1N ⊗ . . .⊗ U

−1
1

] [
X(n) −M(n)

]′
· U−1n ·

[
X(n) −M(n)

])
. (A.25)

Since the term in (A.21) and (A.24) are the normalizing constant and the exponent of the tensor
normal distribution, whereas (A.22) and (A.25) are the corresponding expressions for the desired
matrix normal distribution, the result is proved for the case #R = 1. In the general case
#R = r > 1 the proof follows from the same reasoning, by substituting the permutation σ with
another permutation σ′ which exchanges the modes of the tensor such that the first r modes of
the transpose tensor Yσ′ correspond to the elements of R.

B Proofs of the results in Section 2

Proof of result in Remark 2.3. By assuming Ij = 1, for j = 1, . . . , N , in mode (16), then:

Yt,A, Et ∈ RI1×...×IN → R (B.1)

B ∈ RI1×...×IN×J → RJ (B.2)
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C ∈ RI1×...×IN×Q → RQ (B.3)

where the matrix Wt has been removed as covariate. In order to keep it, it would be necessary
either to vectorize it (then D would follow the same change as B) or to assume an inner product
(here D would reduce to a matrix of the same dimension of Wt). Notice that a N -order tensor
whose modes have all unitary length is essentially a scalar. As a consequence, the error term
distribution reduces to a univariate Gaussian, with 0 mean and variance σ2. Finally, also the
mode-3 product reduces to the standard inner product between vectors.

The PARAFAC(R) decomposition still holds in this case. Consider only A and B, as the
other tensors behave in the same manner. For ease of notation we drop the index t, since it does
not affect the result:

A =

R∑
r=1

α
(r)
1 ◦ . . . ◦ α

(r)
N =

R∑
r=1

α
(r)
1 · . . . · α

(r)
N =

R∑
r=1

α̃r = ᾱ ∈ R. (B.4)

Here, α̃r =
∏N
j=1 α

(r)
j . Since each mode of A has unitary length, each of the marginals of the

PARAFAC(R) decomposition is a scalar, therefore the outer product reduces to the ordinary
product and the outcome is a scalar too (obtained by R sums of D products). Concerning B, we
apply the same way of reasoning, with the only exception that in this case one of the modes (the
last, in the formulation of eq. (16)) has length J > 1, implying that the corresponding marginal
is a vector of the same length. The result is a vector, as stated:

B =
R∑
r=1

β
(r)
1 ◦ . . . ◦ β

(r)
N ◦ β

(r)
D+1 =

R∑
r=1

β
(r)
1 · . . . · β

(r)
N · β

(r)
N+1 (B.5)

=
R∑
r=1

β̃rβ
(r)
N+1 = β ∈ RQ , (B.6)

where β̃r =
∏N
j=1 β

(r)
j . By an analogous proof, one gets:

C = γ ∈ RJ . (B.7)

which completes the proof.

Proof of result in Remark 2.5. Without loss of generality, let Jj = 1, for j = 2, . . . , N in model (16),
then:

Yt,A, Et ∈ RI1×...×IN → Rm (B.8)

B ∈ RI1×...×IN×J → Rm×J (B.9)

C ∈ RI1×...×IN×Q → Rm×Q (B.10)

D ∈ RI1×...×In−1×K×In+1...×IN → Rm×K , (B.11)

where it is necessary to assume that Wt ∈ Rm×K . The two mode-N + 1 products become mode-
2 products and the distribution of the error term reduces to the multivariate (n-dimensional)
Gaussian, with a unique covariance matrix (m×m).

As the PARAFAC(R) approximation is concerned, the result for A follows from the second
part of the previous proof and yields A = α ∈ Rm. For the remaining tensors, it holds (dropping
the index for notational ease):

B =

R∑
r=1

β
(r)
1 ◦ β

(r)
2 ◦ . . . ◦ β

(r)
N =

R∑
r=1

β
(r)
1 ◦

(
β
(r)
2 · . . . · β

(r)
N

)
◦ β(r)

N+1 (B.12)
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=
R∑
r=1

β
(r)
1 ◦ β

(r)
N+1 · β̃r =

R∑
r=1

β
(r)′

1 β
(r)
N+1 · β̃r (B.13)

=
R∑
r=1

B(r) · β̃r = B̄ ∈ Rm×J (B.14)

where β̃r =
∏N
j=2 β

(r)
j . The same result holds for the tensor C, which is equal to C ∈ Rm×Q,

with the last mode’s length changed from J to Q. Finally, concerning D:

D =
R∑
r=1

δ
(r)
1 ◦ . . . ◦ δ

(r)
n−1 ◦ δ

(r)
n ◦ δ

(r)
n+1 ◦ . . . ◦ δ

(r)
N =

R∑
r=1

(
δ
(r)
1 · . . . · δ

(r)
n−1

)
· δ(r)n ·

(
δ
(r)
n+1 · . . . · δ

(r)
N

)
(B.15)

=

R∑
r=1

δ(r)n ·
(
δ
(r)
1 · . . . · δ

(r)
n−1

)
·
(
δ
(r)
n+1 · . . . · δ

(r)
N

)
=

R∑
r=1

δ(r)n · δ̃r = d ∈ Rm , (B.16)

with δ̃r =
∏N
j 6=n δ

(r)
j . Notice that the resulting mode-n product reduces to an ordinary dot

product between the matrix W and the vector d̄.
It remains to prove that the structure imposed by standard VARX and Panel VAR models

holds also in the model of eq. (16). Notice that the latter does not impose any restriction on
the coefficients, other than the PARAFAC(R) decomposition. It must be stressed that it is not
possible to achieve the desired structure of the coefficients, in terms of the location of the zeros,
by means of an accurate choice of the marginals. In fact, the decomposition we are assuming
does not allow to create a particular structure on the resulting tensor.

Nonetheless, it is still possible to achieve the desired result by a slight modification of the
model in eq. (16). For example, consider the coefficient tensor B, then to create a tensor whose
entries are non-zero only in some pre-specified (hence a-priori known) cells, it suffices to multiply
B by a binary tensor (i.e. one where all entries are either 0 or 1) via the Hadamard product. In
formulas, let H ∈ {0, 1}I1×...×IN×J , such that it has 0 only in those cells which are known to be
null. Then:

B̄ = H� B

will have the desired structure. The same way of reasoning holds for any coefficient tensor as
well as for the covariance matrices.

To conclude, in Panel VAR models one generally has as regressors in each equation a function
of the endogenous variables (for example their average). Since this does not affect the coefficients
of the model, it is possible to re-create it in our framework by simply rearranging the regressors
in eq. (16) accordingly. In terms of the model, none of the issues described invalidates the
formulation of eq. (16), which is able to encompass all of them by suitable rearrangements of the
covariates and/or the coefficients, which are consistent with the general model.

Remark B.1 (follows from 2.6). From the VECM in eq. (24) and denoting yt−1 = vec (Yt−1) we
can obtain an explicit form for the long run equilibrium (or cointegrating) relations, as follows:

αβ′yt−1 =

 R∑
r=1

β̃
(r)
1 ◦ β̃

(r)
2 ◦ β̃

(r)
3

×3 yt−1 (B.17a)

=

R∑
r=1

(
β̃
(r)
1 ◦ β̃

(r)
2

)
· 〈β̃(r)

3 ,yt−1〉 (B.17b)
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=
R∑
r=1

B̃
(r)
12 · 〈β̃

(r)
3 ,yt−1〉 , (B.17c)

with B̃(r)
12 = β̃

(r)
1 ◦ β̃

(r)
2 being a K ×K matrix of loadings for each r = 1, . . . , R, while the inner

product 〈β̃(r)
3 ,yt−1〉 defines the cointegrating relations. Notice that for a generic entry yij,t, the

previous long run relation is defined in terms of all the entries of the lagged matrix Yt−1, each one
having a long run coefficient (in the r-th relation) β̃(r)3,k, where k can be obtained from (i, j) via
a one-to-one mapping corresponding to the reshaping of the K ×K matrix Yt−1 into the K2 × 1
vector yt−1.

Finally, as the cointegrating relations are not unique, that is β in eq. (24) is not identified,
the same is true for the tensor model, as noted in Section 2.

C Initialisation details

It is well known that the Gibbs sampler algorithm is highly sensitive to the choice of the initial
value. From this point of view, the most difficult parameters initialise in the proposed model are
the margins of the tensor of coefficients, that is the set of vectors: {β(r)

1 ,β
(r)
2 ,β

(r)
3 }Rr=1. Due to the

high complexity of the parameter space, we have chosen to perform an initialisation scheme which
is based on the Simulated Annealing (SA) algorithm (see Robert and Casella (2004) and Press
et al. (2007) for a thorough discussion). This algorithm is similar to the Metropolis-Hastings
one, and the idea behind it is to perform a stochastic optimisation by proposing random moves
from the current state which are always accepted when improving the optimum and have positive
probability of acceptance even when they are not improving. This is used in order to allow the
algorithm to escape from local optima. Denoting the objective function to be minimised by f(θ),
the Simulated Annealing method accepts a move from the current state θ(i) to the proposed one
θnew with probability given by the Bolzmann-like distribution:

p(∆f, T ) = exp

{
−∆f

T

}
. (C.18)

Here ∆f = f(θnew) − f(θ(i)) and T is a parameter called temperature. The key of the SA
method is in the cooling scheme, which describes the deterministic, decreasing evolution of the
temperature over the iterations of the algorithm: it has been proved that under sufficiently slow
decreasing schemes, the SA yields a global optimum.

We propose to use the SA algorithm for minimising the objective function:

f({β(r)
1 ,β

(r)
2 ,β

(r)
3 }

R
r=1) = κNψN + κ3ψ3 , (C.19)

where κN is an overall penalty given by the Frobenius norm of the tensor constructed from
simulated margins, while κ3 is the penalty of the sum (over r) of the norms of the marginals
β
(r)
3 . In formulas:

ψN =
∥∥∥BSA∥∥∥

2
ψ3 =

R∑
r=1

∥∥∥β(r)
3

∥∥∥
2
. (C.20)

The proposal distribution for each margin is a normal NIj (0, σI), independent from the current
state of the algorithm. Finally, we have chosen a logarithmic cooling scheme which updates the
temperature at each iteration of the SA:

Ti =
k

1 + log(i)
i = 1, . . . , I , (C.21)
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where k > 0 is a tuning parameter, which can be interpreted as the initial value of the tempera-
ture. In order to perform the initialisation of the margins, we run the SA algorithm for I = 1000
iterations, then we took the vectors which gave the best fit in terms of minimum value of the
objective function.

In the tensor case, the initialization of the PARAFAC marginals {β(r)
1 ,β

(r)
2 ,β

(r)
3 ,β

(r)
4 }Rr=1

follows the same line, with ψ3 in eq. (C.20) replaced by:

ψ4 =

R∑
r=1

∥∥∥β(r)
4

∥∥∥
2
. (C.22)

D Computational details - matrix case

In this section we will follow the convention of denoting the prior distributions with π(·). In
addition, let W = {Wj,r}j,r be the collection of all (local variance) matrices Wj,r, for j = 1, 2, 3
and r = 1, . . . , R; I0 =

∑3
j=1 Ij the sum of the length of each mode of the tensor B and

Y = {Yt, Xt}t the collection of observed variables.

D.1 Full conditional distribution of α

Define D = [0, 1]R × [0,+∞) and recall that α = αι|A|, where the symbol |A| denotes the
cardinality of set A and with ιJ is a vector of ones of length J . Samples from p(α|B,W) =
p(α|B,W), given a uniform discrete prior on the set A = {R−N , . . . , R−0.10}, are obtained as
follows:

p(α|B,W) =

∫
D
p(α,φ, τ |B,W)dφdτ =

∫
D
p(α|φ, τ,B,W)︸ ︷︷ ︸

(a)

p(φ, τ |B,W)︸ ︷︷ ︸
(b)

dφdτ. (D.23)

Developing part (a):

p(α|φ, τ,B,W) =
p(φ, τ |α)p(B|W,φ, τ, α)π(α)∫

A p(α,φ, τ,B,W)dα
=

p(φ|α)p(τ |α)p(B|W,φ, τ)π(α)

p(B|W,φ, τ)
∫
A p(φ|α)p(τ |α)π(α)dα

=
p(φ|α)p(τ |α)π(α)∫

A p(φ|α)p(τ |α)π(α)dα
∝ p(φ|α)p(τ |α)π(α) (D.24)

where the last equality in the first row has been obtained by exploiting the independence relations
given by the hierarchical structure of the prior (see Fig. (3)).

As part (b) is concerned:

p(φ, τ |B,W) =

∫
A
p(φ, τ, α|B,W)dα ∝

∫
A
p(B|W,φ, τ, α)p(φ, τ, α)dα

=

∫
A
p(B|W,φ, τ)p(φ, τ |α)π(α)dα ∝

|A|∑
j=1

p(B|W,φ, τ)p(φ, τ |αj)π(αj) (D.25)

where the first result in the last row is implied again by the structure of the prior, while the last
one is due to the fact that α has discrete support. Since π(α) ∼ U(A) is a discrete uniform, it
holds π(αj) = 1/ |A| ∀j, where with an abuse of notation we define αj to be the j-th element of
the set A and not the j-th element of the vector α. Hence eq. (D.25) becomes:

p(φ, τ |B,W) ∝
|A|∑
j=1

p(B|W,φ, τ)p(φ, τ |αj) . (D.26)
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Substituting eq (D.24) and (D.26) into eq. (D.23) yields:

p(α|B,W) =

∫
D
p(α|φ, τ,B,W)p(φ, τ |B,W)dφdτ

∝
∫
D

[
p(φ|α)p(τ |α)π(α)

]  |A|∑
j=1

p(B|W,φ, τ)p(φ, τ |αj)

dφdτ

= π(α)

∫
D

 |A|∑
j=1

p(B|W,φ, τ)p(φ, τ |αj)

 p(φ, τ |α)dφdτ . (D.27)

We approximate this integral using Monte Carlo approximation by drawing M samples from
p(φ, τ |α), then we compute the posterior distribution of α following the Griddy Gibbs procedure
proposed by Ritter and Tanner (1992), thus obtaining:

p̃(α|B,W) ∝ π(α)
1

M

M∑
l=1

 |A|∑
j=1

p(B|W,φl, τl)p(φl, τl|αj)


= π(α)

1

M

M∑
l=1

|A|∑
j=1

ωl,j(α) = π(α)
1

M

M |A|∑
i=1

ωi(α) . (D.28)

The first equality comes from setting ωl,j(α) = p(B|W,φl, τl)p(φl, τl|αj) and the last by defining
a unique index i = (j − 1)M + l. As a consequence, in order to obtain the correct posterior
distribution, it is necessary to normalize eq. (D.28) as follows:

P
({
α = αj

}
|B,W

)
=

p̃(αj |B,W)∑
l p̃(αl|B,W)

. (D.29)

D.2 Full conditional distribution of φ

In order to derive this posterior distribution, we make use of Lemma 7.9 in Guhaniyogi et al.
(2017). Recall that: aτ = αR, bτ = α(R)1/N and I0 =

∑N
j=1 Ij . The prior for φ is π(φ) ∼

Dir(α).

p(φ|B,W) ∝ π(φ)p(B|W,φ) = π(φ)

∫ +∞

0
p(B|W,φ, τ)π(τ)dτ . (D.30)

By plugging in the prior distributions for τ , φ, β(r)
j we obtain8:

p(φ|B,W) ∝
R∏
r=1

φα−1r

∫ +∞

0

 R∏
r=1

N∏
j=1

(τφr)
−Ij/2

∣∣Wj,r

∣∣−1/2 exp

{
− 1

2τφr
β
(r)′

j W−1j,r β
(r)
j

}
· τaτ−1 exp {−bττ} dτ

∝
R∏
r=1

φα−1r

∫ +∞

0

 R∏
r=1

(τφr)
−I0/2 exp

− 1

2τφr

N∑
j=1

β
(r)′

j W−1j,r β
(r)
j




· τaτ−1 exp {−bττ} dτ . (D.31)

8We have used the property of the determinant: det(kA) = kn det(A), for A square matrix of size n and k
scalar.
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Define Cr = 1
2

∑N
j=1 β

(r)′

j W−1j,r β
(r)
j , then group together the powers of τ and φr as follows:

p(φ|B,W) ∝
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τaτ−1−

RI0
2 exp {−bττ}

 R∏
r=1

exp

{
− 1

2τφr
Cr

}dτ

=
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τaτ−1−

RI0
2 exp

−bττ −
R∑
r=1

Cr
2τφr

dτ . (D.32)

Recall that the probability density function of a Generalized Inverse Gaussian in the parametriza-
tion with three parameters (a > 0, b > 0, p ∈ R), with x ∈ (0,+∞), is given by:

x ∼ GiG(a, b, p) ⇒ p(x|a, b, p) =

(
a

b

) p
2

2Kp(
√
ab)

xp−1 exp

{
−1

2

(
ax+

b

x

)}
, (D.33)

with Kp(·) a modified Bessel function of the second type. Our goal is to reconcile eq. (E.80) to
the kernel of this distribution. Since by definition

∑R
r=1 φr = 1, it holds that

∑R
r=1(bττφr) =

(bττ)
∑R

r=1 φr = bττ . This allows to rewrite the exponential as:

p(φ|B,W) ∝
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τ

(
aτ−RI02

)
−1

exp

−
R∑
r=1

(
Cr

2τφr
+ bττφr

)dτ

=

∫ +∞

0

 R∏
r=1

φ
α− I0

2
−1

r

 τ

(
αR−RI0

2

)
−1

exp

−
R∑
r=1

(
Cr

2τφr
+ bττφr

)dτ , (D.34)

where we expressed aτ = αR. According to the results in Appendix A and Lemma 7.9 of Guhaniyogi
et al. (2017), the function in the previous equation is the kernel of a generalized inverse Gaussian
for ψr = τφr, which yields the distribution of φr after normalization. Hence, for r = 1, . . . , R,
we first sample :

p(ψr|B,W, τ, α) ∼ GiG
(
α− I0

2
, 2bτ , 2Cr

)
(D.35)

then, renormalizing, we obtain:

φr =
ψr∑R
l=1 ψl

. (D.36)

D.3 Full conditional distribution of τ

The posterior distribution of the global variance parameter, τ , is derived by simple application
of Bayes’ Theorem:

p(τ |B,W,φ) ∝ π(τ)p(B|W,φ, τ)

∝ τaτ−1 exp {−bττ}

 R∏
r=1

(τφr)
− I0

2 exp

− 1

2τφr

N∑
j=1

β
(r)′

j (Wj,r)
−1β

(r)
j




∝ τaτ−
RI0
2
−1 exp

−bττ −
 R∑
r=1

Cr
φr

1

τ


 . (D.37)
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This is the kernel of a generalized inverse Gaussian:

p(τ |B,W,φ) ∼ GiG

aτ − RI0
2
, 2bτ , 2

R∑
r=1

Cr
φr

 . (D.38)

D.4 Full conditional distribution of λj,r

Start by observing that, for j = 1, 2, 3 and r = 1, . . . , R, the prior distribution on the vector β(r)
j

defined in eq. (29f) implies that each component follows a double exponential distribution:

β
(r)
j,p ∼ DE

(
0,

λj,r√
τφr

)
(D.39)

with probability density function, for j = 1, 2, 3:

π(β
(r)
j,p |λj,r, φr, τ) =

λj,r

2
√
τφr

exp

−
∣∣∣β(r)j,p

∣∣∣
(λj,r/

√
τφr)−1

 . (D.40)

Then, exploiting the prior distribution π(λj,r) ∼ Ga(aλ, bλ) and eq. (D.40):

p
(
λj,r|β(r)

j , φr, τ
)
∝ π(λj,r)p

(
β
(r)
j |λj,r, φr, τ

)
∝ λaλ−1j,r exp

{
−bλλj,r

} Ij∏
p=1

λj,r

2
√
τφr

exp

−
∣∣∣β(r)j,p

∣∣∣
(λj,r/

√
τφr)−1


= λaλ−1j,r

(
λj,r

2
√
τφr

)Ij
exp

{
−bλλj,r

}
exp

−
∑Ij

p=1

∣∣∣β(r)j,p

∣∣∣
√
τφr/λj,r


∝ λ(aλ+Ij)−1j,r exp

−
bλ +

∥∥∥β(r)
j

∥∥∥
1√

τφr

λj,r

 . (D.41)

This is the kernel of a gamma distribution, hence for j = 1, 2, 3, r = 1, . . . , R:

p(λj,r|B, φr, τ) ∼ Ga

aλ + Ij , bλ +

∥∥∥β(r)
j

∥∥∥
1√

τφr

 . (D.42)

D.5 Full conditional distribution of wj,r,p

We sample independently each component wj,r,p of the matrix Wj,r = diag(wj,r), for p =
1, . . . , Ij , j = 1, 2, 3 and r = . . . , R, from the full conditional distribution:

p
(
wj,r,p|β(r)

j , λj,r, φr, τ
)
∝ p

(
β
(r)
j,p |wj,r,p, φr, τ

)
π(wj,r,p|λj,r)

= (τφr)
− 1

2w
− 1

2
j,r,p exp

{
− 1

2τφr
β
(r)2

j,p w
−1
j,r,p

}
λ2j,r
2

exp

{
−
λ2j,r
2
wj,r,p

}
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∝ w−
1
2

j,r,p exp

−λ2j,r2
wj,r,p −

β
(r)2

j,p

2τφr
w−1j,r,p

 , (D.43)

where the second row comes from the fact that wj,r,p influences only the p-th component of the
vector β(r)

j . For p = 1, . . . , Ij , j = 1, 2, 3 and r = 1, . . . , R we get:

p
(
wj,r,p|β(r)

j , λj,r, φr, τ
)
∼

1

2
, λ2j,r,

β
(r)2

j,p

τφr

 . (D.44)

D.6 Full conditional distribution of the PARAFAC marginals β
(r)
j , for j =

1, 2, 3

For r = 1, . . . , R we sample the PARAFAC marginals (β
(r)
1 ,β

(r)
2 ,β

(r)
3 ) fro their full conditional

distribution, since their joint distribution is not available in closed form. First, it is necessary
to rewrite the likelihood function in a suitable way. To this aim, for j = 1, 2, 3 and r = 1, . . . , R

define β
(r)
−j =

{
β
(r)
i : i 6= j

}
, Br = β

(r)
1 ◦ β

(r)
2 ◦ β

(r)
3 and B−r = {Bi : i 6= r}. By properties of the

mode-n product:

B×3 xt =

 R∑
r=1

β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

×3 xt =

 R∑
s=1
s6=r

β
(s)
1 ◦ β

(s)
2 ◦ β

(s)
3

×3 xt+
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
×3 xt .

(D.45)
Since our interest is in β

(r)
j for j = 1, 2, 3, we focus on the second term of eq. (D.45):

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
×3 xt =

I3∑
i3=1

(
β
(r)
1 ◦ β

(r)
2

)
· β(r)3,i3

xt,i3 =
(
β
(r)
1 ◦ β

(r)
2

)
· 〈β(r)

3 ,xt〉 . (D.46)

The equality comes from the definition of mode-n product given in eq. (6). It holds:(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
×3 xt =

(
β
(r)
1 ◦ β

(r)
2

)
· 〈β(r)

3 ,xt〉 = β
(r)
1 ◦

(
β
(r)
2 · 〈β

(r)
3 ,xt〉

)
(D.47)

=
(
β
(r)
1 · 〈β

(r)
3 ,xt〉

)
◦ β(r)

2 . (D.48)

We exploited the fact that the outcome of the inner product is a scalar, then the result follows
by linearity of the outer product.

Given a sample of length T and assuming that the distribution at time t = 0 is known (as
standard practice in time series analysis), the likelihood function is given by:

L
(
Y|B,Σ1,Σ2

)
=

T∏
t=1

[
(2π)−

k2

2 |Σ2|−
k
2 |Σ1|−

k
2 exp

{
−1

2
tr
(

Σ−12 (Yt − B ×3 xt)
′Σ−11 (Yt − B ×3 xt)

)}]

∝ exp

−1

2

T∑
t=1

tr
(

Σ−12 Ẽ′tΣ
−1
1 Ẽt

) , (D.49)

with:
Ẽt =

(
Yt − B−r ×3 xt −

(
β
(r)
1 ◦ β

(r)
2

)
〈β(r)

3 ,xt〉
)
. (D.50)
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Now, we can focus on a specific r and j = 1, 2, 3 and derive the full conditionals of each marginal
vector of the tensor B. To make computations clear:

L
(
Y|B,Σ1,Σ2

)
∝ exp

−1

2

T∑
t=1

tr (a1t + a2t + b1t + b2t + ct)

 , (D.51)

where:

a1t = −Σ−12 Y ′t Σ−11

(
β
(r)
1 ◦ β

(r)
2

)
〈β(r)

3 ,xt〉 (D.52a)

a2t = −Σ−12

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 ,xt〉Σ−11 Yt (D.52b)

b1t = Σ−12 (B−r ×3 xt)
′Σ−11

(
β
(r)
1 ◦ β

(r)
2

)
〈β(r)

3 ,xt〉 (D.52c)

b2t = Σ−12

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 ,xt〉Σ−11 (B−r ×3 xt) (D.52d)

ct = Σ−12

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 ,xt〉Σ−11

(
β
(r)
1 ◦ β

(r)
2

)′
〈β(r)

3 ,xt〉 . (D.52e)

Exploiting linearity of the trace operator and the property tr
(
A′
)

= tr (A), one gets:

p
(
Y|B,Σ1,Σ2

)
∝ exp

−1

2

T∑
t=1

(
tr (a1t) + tr (a2t) + tr (b1t) + tr (b2t) + tr (ct)

)
∝ exp

−1

2

T∑
t=1

(
2 tr (a1t) + 2 tr (b1t) + tr (ct)

) . (D.53)

Consider now each term in the sum at the exponent, and exploit the property tr (ABC) =
tr (CAB) = tr (BCA):
T∑
t=1
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+ tr

(
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(
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)
, (D.54)

where V = [x1,x2, . . . ,xT ] ∈ Rk2×T . Hence the likelihood function is proportional to:

L
(
Y|B,Σ1,Σ2

)
∝ exp

{
−1

2

[
2 tr
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)]}
. (D.55)

It is now possible to proceed and derive the full conditional distributions of the PARAFAC
marginals β(r)

1 ,β
(r)
2 ,β

(r)
3 , for fixed r.

D.6.1 Full conditional distribution of β(r)
1

From eq. (D.55):
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 . (D.56)

For the posterior of β(r)
1 as well as for that of β(r)

2 , define:

ã = β
(r)′

3 V V ′β
(r)
3

Ẽ =
T∑
t=1

(
Y ′t − (B−r ×3 xt)

′
)
〈β(r)

3 ,xt〉 .

In addition, exploit the fact that β(r)
1 ◦ β

(r)
2 = β

(r)
1 β

(r)′

2 . As a result, eq. (D.56) becomes:
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∝ exp

{
−1

2

[
ã
(
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1 Σ−11 β
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1
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β
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(r)
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]}
,

(D.57)

where the last equality comes from the use of the previously mentioned properties of the trace
as well as by recognizing that the trace of a scalar is the scalar itself (all the therms in brackets
in the last expression are scalars).

Equation (D.57) serves as a basis for the derivation of both the posterior of β(r)
1 and β

(r)
2 .

With reference to the first one, the likelihood function in eq. (D.57) can be rearranged as to form
the kernel of a Gaussian. For ease of notation define ã1 = ã

(
β
(r)′

2 Σ−12 β
(r)
2

)
, then from eq. (D.57)

it holds:
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−1

2

[
β
(r)′

1

(
Σ1

ã1
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] . (D.58)

By Bayes’ Theorem we obtain:

p
(
β
(r)
1 |β
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)
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 . (D.59)

This is the kernel of a normal distribution, therefore for r = 1, . . . , R:

p
(
β
(r)
1 |β

(r)
−1,B−r,W1,r, φr, τ,Σ1,Σ2,Y

)
∼ NI1
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µ̄β1
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)
, (D.60)

where:

Σ̄β1
=
[(
W1,rφrτ

)−1
+ ã1Σ

−1
1

]−1
µ̄β1

= Σ̄β1
Σ−11 Ẽ′Σ−12 β
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2 .

D.6.2 Full conditional distribution of β(r)
2

Consider the likelihood function in eq. (D.57) and define ã2 = ã
(
β
(r)′

1 Σ−11 β
(r)
1

)
. By algebraic

manipulation we obtain the proportionality relation:
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Then, Bayes’ theorem yields:

p
(
β
(r)
2 |β

(r)
−2,B−r,W2,r, φr, τ,Y,Σ1,Σ2

)
∝ π

(
β
(r)
1 |Wj,r, φr, τ

)
L
(
Y|B,Σ1,Σ2

)
∝ exp

{
−1

2
β
(r)′

2

(
W2,rφrτ

)−1
β
(r)
2

}
exp

−1

2

[
β
(r)′

2

(
Σ2

ã2
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∝ exp
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Which, for r = 1, . . . , R, is the kernel of a normal distribution:

p
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, (D.63)

where:
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=
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+ ã2Σ
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D.6.3 Full conditional distribution of β(r)
3

For ease of notation, define:
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Ã = A
(
β
(r)
1 ◦ β

(r)
2

)′
.

Define Ṽ = V · (tr(Ã))
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2 , then eq. (D.55) becomes:
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(D.64)

Then, focus on the second term in square brackets:
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(D.65)
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For ease of notation, define ˜̃Yt = Y ′t − (B−r ×3 xt)
′, then by linearity of the trace operator:

= tr
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where we defined ỹt = tr(A ˜̃Yt). As a consequence, rewrite eq. (D.64) as:
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. (D.67)

We can now recover the full conditional posterior distribution of β(r)
3 by applying Bayes’ Theorem:

p
(
β
(r)
3 |β

(r)
−3,B−r,W3,r, φr, τ,Y,Σ1,Σ2

)
∝ π

(
β
(r)
3 |W3,r, φr, τ

)
L
(
Y|B,Σ1,Σ2

)
∝ exp

{
−1

2
β
(r)′

3

(
W3,rφrτ

)−1
β
(r)
3

}
exp

{
−1

2

[
β
(r)′
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which is the kernel of a normal distribution. As a consequence, defining:

Σ̄β3
=
[(
W3,rφrτ

)−1
+ Ṽ Ṽ ′

]−1
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= Σ̄β3
V ỹ ,

we get, for r = 1, . . . , R:
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. (D.69)

D.7 Full conditional distribution of Σ1

Given a inverse Wishart prior, the posterior full conditional distribution for Σ1 is conjugate:

p(Σ1|B,Y,Σ2, γ) ∝ L(Y|B,Σ2,Σ1)π(Σ1)

∝ |Σ1|−
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(D.70)

The last row comes from exploiting two ties the linearity of the trace operator. For ease of
notation, define S1 =

∑T
t=1 (Yt − B ×3 xt) Σ−12 (Yt − B ×3 xt)

′, obtaining:

p(Σ1|B,Y,Σ2, γ) ∝ |Σ1|−
ν1+I1+TI2+1

2 exp

{
−1

2

[
tr
(
γΨ1Σ

−1
1

)
+ tr

(
S1Σ

−1
1

)]}
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∝ |Σ1|−
(ν1+TI2)+I1+1

2 exp

{
−1

2
tr
(

(γΨ1 + S1) Σ−11

)}
, (D.71)

where we have used again the linearity of the trace operator. As a consequence:

p(Σ1|B,Y,Σ2, γ) ∼ IWI1 (ν1 + TI2, γΨ1 + S1) . (D.72)

D.8 Full conditional distribution of Σ2

By the same reasoning of Σ1, the posterior full conditional distribution of Σ2 is conjugate and
follows from:

p(Σ2|B,Y,Σ1, γ) ∝ L(Y|B,Σ1,Σ2)π(Σ2|γ)
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(D.73)

The last row comes from exploiting two ties the linearity of the trace operator. For ease of
notation, define S2 =

∑T
t=1 (Yt − B ×3 xt)

′Σ−11 (Yt − B ×3 xt), obtaining:
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, (D.74)

where we have used again the linearity of the trace operator. As a consequence:

p(Σ2|B,Y,Σ1) ∼ IWI2 (ν2 + TI1, γΨ2 + S2) . (D.75)

D.9 Full conditional distribution of γ

Using a gamma prior distribution we have:

p(γ|Σ1,Σ2) ∝ p(Σ1,Σ2|γ)π(γ)
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, (D.76)

thus:

p(γ|Σ1,Σ2) ∼ Ga
(
aγ +

1

2
(ν1I1 + ν2I2), bγ +

1

2
tr
(

Ψ1Σ
−1
1 + Ψ2Σ
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. (D.77)
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E Computational details - tensor case

In this section we will follow the convention of denoting the prior distributions with π(·). In
addition, let W = {Wj,r}j,r be the collection of all (local variance) matricesWj,r, for j = 1, 2, 3, 4
and r = 1, . . . , R; I0 =

∑4
j=1 Ij the sum of the length of each mode of the tensor B and

Y = {Yt,Xt}t the collection of observed variables.

E.1 Full conditional distribution of φ

In order to derive this posterior distribution, we make use of Lemma 7.9 in Guhaniyogi et al.
(2017). Recall that: aτ = αR, bτ = α(R)1/N and I0 =

∑N
j=1 Ij . The prior for φ is π(φ) ∼

Dir(α).

p(φ|B,W) ∝ π(φ)p(B|W,φ) = π(φ)

∫ +∞

0
p(B|W,φ, τ)π(τ)dτ . (E.78)

By plugging in the prior distributions for τ , φ, β(r)
j we obtain9:

p(φ|B,W) ∝
R∏
r=1

φα−1r

∫ +∞

0

 R∏
r=1

N∏
j=1

(τφr)
−Ij/2

∣∣Wj,r

∣∣−1/2 exp

{
− 1

2τφr
β
(r)′

j W−1j,r β
(r)
j

}
· τaτ−1 exp {−bττ} dτ

∝
R∏
r=1

φα−1r

∫ +∞

0

 R∏
r=1

(τφr)
−I0/2 exp

− 1

2τφr

N∑
j=1

β
(r)′

j W−1j,r β
(r)
j




· τaτ−1 exp {−bττ} dτ . (E.79)

Define Cr =
∑N

j=1 β
(r)′

j W−1j,r β
(r)
j , then group together the powers of τ and φr as follows:

p(φ|B,W) ∝
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τaτ−1−

RI0
2 exp {−bττ}

 R∏
r=1

exp

{
− 1

2τφr
Cr

}dτ

=
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τaτ−1−

Rd0
2 exp

−bττ −
R∑
r=1

Cr
2τφr

dτ . (E.80)

Recall that the probability density function of a Generalized Inverse Gaussian in the parametriza-
tion with three parameters (a > 0, b > 0, p ∈ R), with x ∈ (0,+∞), is given by:

x ∼ GiG(a, b, p) ⇒ p(x|a, b, p) =

(
a

b

) p
2

2Kp(
√
ab)

xp−1 exp

{
−1

2

(
ax+

b

x

)}
, (E.81)

with Kp(·) a modified Bessel function of the second type. Our goal is to reconcile eq. (E.80) to
the kernel of this distribution. Since by definition

∑R
r=1 φr = 1, it holds that

∑R
r=1(bττφr) =

(bττ)
∑R

r=1 φr = bττ . This allows to rewrite the exponential as:

p(φ|B,W) ∝
R∏
r=1

φ
α−1− I0

2
r

∫ +∞

0
τ

(
aτ−RI02

)
−1

exp

−
R∑
r=1

(
Cr

2τφr
+ bττφr

)dτ

9We have used the property of the determinant: det(kA) = kn det(A), for A square matrix of size n and k
scalar.
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=

∫ +∞

0

 R∏
r=1

φ
α− I0

2
−1

r

 τ

(
αR−RI0

2

)
−1

exp

−
R∑
r=1

(
Cr

2τφr
+ bττφr

)dτ , (E.82)

where we expressed aτ = αR. According to the results in Appendix A and Guhaniyogi et al.
(2017), the function in the previous equation is the kernel of a generalized inverse Gaussian for
ψr = τφr, which yields the distribution of φr after normalization. Hence, for r = 1, . . . , R, we
first sample :

p(ψr|B,W, τ, α) ∼ GiG
(
α− I0

2
, 2bτ , 2Cr

)
(E.83)

then, renormalizing, we obtain (see Kruijer et al. (2010)):

φr =
ψr∑R
l=1 ψl

. (E.84)

E.2 Full conditional distribution of τ

The posterior distribution of the global variance parameter, τ , is derived by simple application
of Bayes’ Theorem:

p(τ |B,W,φ) ∝ π(τ)p(B|W,φ, τ)

∝ τaτ−1 exp {−bττ}

 R∏
r=1

(τφr)
− I0

2 exp

− 1

2τφr

4∑
j=1

β
(r)′

j (Wj,r)
−1β

(r)
j




∝ τaτ−
RI0
2
−1 exp

−bττ −
 R∑
r=1

Cr
φr

1

τ


 . (E.85)

This is the kernel of a generalized inverse Gaussian:

p(τ |B,W,φ) ∼ GiG

aτ − RI0
2
, 2bτ , 2

R∑
r=1

Cr
φr

 . (E.86)

E.3 Full conditional distribution of λj,r

Start by observing that, for j = 1, 2, 3, 4 and r = 1, . . . , R, the prior distribution on the vector
β
(r)
j defined in eq. (29f) implies that each component follows a double exponential distribution:

β
(r)
j,p ∼ DE

(
0,

λj,r√
τφr

)
(E.87)

with probability density function, for j = 1, 2, 3, 4 and r = 1, . . . , R, given by:

π(β
(r)
j,p |λj,r, φr, τ) =

λj,r

2
√
τφr

exp

−
∣∣∣β(r)j,p

∣∣∣
(λj,r/

√
τφr)−1

 . (E.88)

Then, exploiting the prior π(λj,r) ∼ Ga(aλ, bλ) and eq. (E.88):

p
(
λj,r|β(r)

j , φr, τ
)
∝ π(λj,r)p

(
β
(r)
j |λj,r, φr, τ

)
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∝ λaλ−1j,r exp
{
−bλλj,r

} Ij∏
p=1

λj,r

2
√
τφr

exp

−
∣∣∣β(r)j,p

∣∣∣
(λj,r/

√
τφr)−1


= λaλ−1j,r

(
λj,r

2
√
τφr

)Ij
exp

{
−bλλj,r

}
exp

−
∑Ij

p=1

∣∣∣β(r)j,p

∣∣∣
√
τφr/λj,r


∝ λ(aλ+Ij)−1j,r exp

−
bλ +

∥∥∥β(r)
j

∥∥∥
1√

τφr

λj,r

 . (E.89)

Thus, for j = 1, 2, 3, 4, r = 1, . . . , R, the full conditional distribution of λj,r is given by:

p(λj,r|B, φr, τ) ∼ Ga

aλ + Ij , bλ +

∥∥∥β(r)
j

∥∥∥
1√

τφr

 . (E.90)

E.4 Full conditional distribution of wj,r,p

We sample independently each component wj,r,p of the matrix Wj,r = diag(wj,r), for p =
1, . . . , Ij , j = 1, 2, 3, 4 and r = . . . , R, from the full conditional distribution:

p
(
wj,r,p|β(r)

j , λj,r, φr, τ
)
∝ p

(
β
(r)
j,p |wj,r,p, φr, τ

)
π(wj,r,p|λj,r)

= (τφr)
− 1

2w
− 1

2
j,r,p exp

{
− 1

2τφr
β
(r)2

j,p w
−1
j,r,p

}
λ2j,r
2

exp

{
−
λ2j,r
2
wj,r,p

}

∝ w−
1
2

j,r,p exp

−λ2j,r2
wj,r,p −

β
(r)2

j,p

2τφr
w−1j,r,p

 , (E.91)

where the second row comes from the fact that wj,r,p influences only the p-th component of the
vector β(r)

j . For p = 1, . . . , Ij , j = 1, 2, 3, 4 and r = 1, . . . , R we get:

p
(
wj,r,p|β(r)

j , λj,r, φr, τ
)
∼

1

2
, λ2j,r,

β
(r)2

j,p

τφr

 . (E.92)

E.5 Full conditional distributions of PARAFAC marginals β(r)
j , for j = 1, 2, 3, 4

Define α1 ∈ RI , α2 ∈ RJ and α3 ∈ RK and let A = vec (α1 ◦α2 ◦α3). Then it holds:

vec (A) = vec (α1 ◦α2 ◦α3) = α3 ⊗ vec
(
α1α

′
2

)
= α3 ⊗ (α2 ⊗ II) vec (α1) = (α3 ⊗α2 ⊗ II)α1 (E.93)

= α3 ⊗
[
(IJ ⊗α1) vec

(
α′2
)]

= (α3 ⊗ IJ ⊗α1)α2 (E.94)

= vec
(

vec
(
α1α

′
2

)
α′3

)
=
(
IK ⊗ vec

(
α1α

′
2

))
vec
(
α′3
)

=
(
IK ⊗ vec

(
α1α

′
2

))
α3 = (IK ⊗α2 ⊗α1)α3 . (E.95)
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Consider the model in eq. (26), it holds:

Yt = B ×4 xt + Et
vec (Yt) = vec (B ×4 xt + Et)

= vec (B−r ×4 xt) + vec (Br ×4 xt) + vec (Et)

∝ vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
· x′tβ

(r)
4 . (E.96)

It is then possible to make explicit the dependence on each PARAFAC marginal by exploiting
the results in eq. (E.93)-(E.95), as follows:

vec (Yt) ∝ vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
· x′tβ

(r)
4 = b4β

(r)
4 (E.97)

∝ 〈β(r)
4 ,xt〉

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II

)
β
(r)
1 = b1β

(r)
1 (E.98)

∝ 〈β(r)
4 ,xt〉

(
β
(r)
3 ⊗ IJ ⊗ β

(r)
1

)
β
(r)
2 = b2β

(r)
2 (E.99)

∝ 〈β(r)
4 ,xt〉

(
IK ⊗ β

(r)
2 ⊗ β

(r)
1

)
β
(r)
3 = b3β

(r)
3 . (E.100)

Given a sample of length T and assuming that the distribution at time t = 0 is known (as
standard practice in time series analysis), the likelihood function is given by:

L
(
Y|B,Σ1,Σ2,Σ3

)
=

T∏
t=1

(2π)−
k2q
2 |Σ3|−

k2

2 |Σ2|−
kq
2 |Σ1|−

kq
2

· exp

{
−1

2
(Yt − B ×4 xt)×1...3

(
◦3j=1Σ

−1
j

)
×1...3 (Yt − B ×4 xt)

}
(E.101)

∝ exp

−1

2

T∑
t=1

Ẽt ×1...3 (Σ−11 ◦ Σ−12 ◦ Σ−13 )×1...3 Ẽt

 , (E.102)

with:
Ẽt =

(
Yt − B−r ×4 xt −

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)
. (E.103)

Alternatively, by exploiting the relation between the tensor normal distribution and the
multivariate normal distribution, we have:

L
(
Y|B,Σ1,Σ2,Σ3

)
=

T∏
t=1

(2π)−
k2q
2 |Σ3 ⊗ Σ2 ⊗ Σ1|−

1
2

· exp

{
−1

2
vec (Yt − B ×4 xt)

′
(

Σ−13 ⊗ Σ−12 ⊗ Σ−11

)
vec (Yt − B ×4 xt)

}

∝ exp

−1

2

T∑
t=1

vec
(
Ẽt

)′ (
Σ−13 ⊗ Σ−12 ⊗ Σ−11

)
vec
(
Ẽt

) , (E.104)

where: with:

vec
(
Ẽt

)
= vec

(
Yt − B−r ×4 xt −

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)

= vec (Yt)− vec (B−r ×4 xt)− vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
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∝ vec (Yt)− vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉 . (E.105)

Thus, defining yt = vec (Yt) and Σ−1 = Σ−13 ⊗ Σ−12 ⊗ Σ−11 , one gets:

L
(
Y|B,Σ1,Σ2,Σ3

)
∝ exp

−1

2

T∑
t=1

vec
(
Ẽt

)′ (
Σ−13 ⊗ Σ−12 ⊗ Σ−11

)
vec
(
Ẽt

)
∝ exp

{
−1

2

T∑
t=1

[
vec (Yt)− vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

]′
Σ−1

·

[
vec (Yt)− vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

]}

= exp

{
−1

2

T∑
t=1

y′tΣ
−1yt − y′tΣ

−1 vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

− vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
〈β(r)

4 ,xt〉Σ−1yt

+ vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
〈β(r)

4 ,xt〉Σ−1 vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

}

∝ exp

{
−1

2

T∑
t=1

−2y′tΣ
−1 vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

+ vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
〈β(r)

4 ,xt〉Σ−1 vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉

}
.

(E.106)

Now, we focus on a specific j = 1, 2, 3, 4 and derive proportionality results whihc will be necessary
to obtain the posterior full conditional distributions of the PARAFAC marginals of the tensor
B. Consider the case j = 1. By exploiting eq. (E.98) we get:

L
(
Y|B,Σ1,Σ2,Σ3

)
∝ exp

{
−1

2

T∑
t=1

−2y′tΣ
−1 vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+

(
vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)′

Σ−1
(

vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)}

= exp

{
−1

2

T∑
t=1

−2y′tΣ
−1〈β(r)

4 ,xt〉
(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β
(r)
1

+

[
〈β(r)

4 ,xt〉
(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β
(r)
1

]′
Σ−1

[
〈β(r)

4 ,xt〉
(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β
(r)
1

]}

= exp

{
−1

2

T∑
t=1

β
(r)′

1 〈β
(r)
4 ,xt〉2

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)′
Σ−1

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
β
(r)
1

− 2y′tΣ
−1〈β(r)

4 ,xt〉
(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)}
β
(r)
1

= exp

−1

2

T∑
t=1

β
(r)′

1 SL1 (t)β
(r)
1 − 2mL

1 (t)β
(r)
1

 , (E.107)
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with:

SL1 (t) = 〈β(r)
4 ,xt〉2

(
β
(r)′

3 ⊗ β
(r)′

2 ⊗ II1

)
Σ−1

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
(E.108)

mL
1 (t) = y′tΣ

−1〈β(r)
4 ,xt〉

(
β
(r)
3 ⊗ β

(r)
2 ⊗ II1

)
. (E.109)

Consider the case j = 2. From eq. (E.99) we get:

L
(
Y|B,Σ1,Σ2,Σ3

)
∝ exp

{
−1

2

T∑
t=1

−2y′tΣ
−1 vec

(
β
(r)
1 ⊗ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+

(
vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)′

Σ−1
(

vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)}

= exp

{
−1

2

T∑
t=1

−2y′tΣ
−1〈β(r)

4 ,xt〉
(
β
(r)
3 ⊗ II2 ◦ β

(r)
1

)
β
(r)
2

+

[
〈β(r)

4 ,xt〉
(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β
(r)
2

]′
Σ−1

[
〈β(r)

4 ,xt〉
(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β
(r)
2

]}

= exp

{
−1

2

T∑
t=1

β
(r)′

2 〈β
(r)
4 ,xt〉2

(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
Σ−1

(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
β
(r)
2

− 2y′tΣ
−1〈β(r)

4 ,xt〉
(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)}
β
(r)
2

= exp

−1

2

T∑
t=1

β
(r)′

2 SL2 (t)β
(r)
2 − 2mL

2 (t)β
(r)
2

 , (E.110)

with:

SL2 (t) = 〈β(r)
4 ,xt〉2

(
β
(r)′

3 ⊗ II2 ⊗ β
(r)′

1

)
Σ−1

(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
(E.111)

mL
2 (t) = y′tΣ

−1〈β(r)
4 ,xt〉

(
β
(r)
3 ⊗ II2 ⊗ β

(r)
1

)
. (E.112)

Consider the case j = 3, by exploiting eq. (E.100) we get:

L
(
Y|B,Σ1,Σ2,Σ3

)
∝ exp

{
−1

2

T∑
t=1

−2y′tΣ
−1 vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+

(
vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)′

Σ−1
(

vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
〈β(r)

4 ,xt〉
)}

= exp

{
−1

2

T∑
t=1

−2y′tΣ
−1〈β(r)

4 ,xt〉
(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β
(r)
3

+

[
〈β(r)

4 ,xt〉
(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β
(r)
3

]′
Σ−1

[
〈β(r)

4 ,xt〉
(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β
(r)
3

]}

= exp

{
−1

2

T∑
t=1

β
(r)′

3 〈β
(r)
4 ,xt〉2

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
Σ−1

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
β
(r)
3
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− 2y′tΣ
−1〈β(r)

4 ,xt〉
(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)}
β
(r)
3

= exp

−1

2

T∑
t=1

β
(r)′

3 SL3 (t)β
(r)
3 − 2mL

3 (t)β
(r)
3

 , (E.113)

with:

SL3 (t) = 〈β(r)
4 ,xt〉2

(
II3 ⊗ β

(r)′

2 ⊗ β
(r)′

1

)
Σ−1

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
(E.114)

mL
3 (t) = y′tΣ

−1〈β(r)
4 ,xt〉

(
II3 ⊗ β

(r)
2 ⊗ β

(r)
1

)
. (E.115)

Finally, in the case j = 4. From eq. (E.106) we get:

L
(
Y|B,Σ1,Σ2,Σ3

)
∝ exp

{
−1

2

T∑
t=1

−2y′tΣ
−1 vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

+ β
(r)′

4 xt vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
Σ−1 vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′tβ

(r)
4

}
(E.116)

= exp

−1

2

T∑
t=1

β
(r)′

4 SL4 (t)β
(r)
4 − 2mL

4 (t)β
(r)
4

 , (E.117)

with:

SL4 (t) = xt vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)′
Σ−1 vec

(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′t (E.118)

mL
4 (t) = y′tΣ

−1 vec
(
β
(r)
1 ◦ β

(r)
2 ◦ β

(r)
3

)
x′t . (E.119)

It is now possible to derive the full conditional distributions for the PARAFAC marginals
β
(r)
1 ,β

(r)
2 ,β

(r)
3 ,β

(r)
4 , for r = 1, . . . , R, as shown in the following.

E.5.1 Full conditional distribution of β(r)
1

The posterior full conditional distribution of β(r)
1 is obtained by combining the prior distribution

in eq. (29f) and the likelihood in eq. (E.107) as follows:

p(β
(r)
1 |β

(r)
−1,B−r,W1,r, φr, τ,Σ1,Σ2,Σ3,Y) ∝ L(Y|B,Σ1,Σ2,Σ3)π(β

(r)
1 |W1,r, φr, τ)

∝ exp

−1

2

T∑
t=1

β
(r)′

1 SL1 (t)β
(r)
1 − 2mL

1 (t)β
(r)
1

 · exp

{
−1

2
β
(r)′

1 (W1,rφrτ)−1β
(r)
1

}

= exp

−1

2

 T∑
t=1

β
(r)′

1 SL1 (t)β
(r)
1 − 2mL

1 (t)β
(r)
1 + β

(r)′

1 (W1,rφrτ)−1β
(r)
1




= exp

−
1

2

β(r)′

1

 T∑
t=1

SL1 (t) + (W1,rφrτ)−1

β
(r)
1 − 2

 T∑
t=1

mL
1 (t)

β
(r)
1



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= exp

{
−1

2

[
β
(r)′

1 Σ̄−1βr1
β
(r)
1 − 2µ̄βr1

β
(r)
1

]}
,

where:

Σ̄βr1
=

(W1,rφrτ)−1 +
T∑
t=1

SL1 (t)

−1

µ̄βr1
= Σ̄βr1

 T∑
t=1

mL
1 (t)

′ .
Thus the posterior full conditional distribution of β(r)

1 , for r = 1, . . . , R, is given by:

p(β
(r)
1 |β

(r)
−1,B−r,W1,r, φr, τ,Σ1,Σ2,Σ3,Y) ∼ NI1(µ̄βr1

, Σ̄βr1
) . (E.120)

E.5.2 Full conditional distribution of β(r)
2

The posterior full conditional distribution of β(r)
2 is obtained by combining the prior distribution

in eq. (29f) and the likelihood in eq. (E.110) as follows:

p(β
(r)
2 |β

(r)
−2,B−r,W2,r, φr, τ,Σ1,Σ2,Σ3,Y) ∝ L(Y|B,Σ1,Σ2,Σ3)π(β

(r)
2 |W2,r, φr, τ)

∝ exp

−1

2

T∑
t=1

β
(r)′

2 SL2 (t)β
(r)
2 − 2mL

2 (t)β
(r)
2

 · exp

{
−1

2
β
(r)′

2 (W2,rφrτ)−1β
(r)
2

}

= exp

−1

2

 T∑
t=1

β
(r)′

2 SL2 (t)β
(r)
2 − 2mL

2 (t)β
(r)
2 + β

(r)′

2 (W2,rφrτ)−1β
(r)
2




= exp

−
1

2

β(r)′

2

 T∑
t=1

SL2 (t) + (W2,rφrτ)−1

β
(r)
2 − 2

 T∑
t=1

mL
2 (t)

β
(r)
2




= exp

{
−1

2

[
β
(r)′

2 Σ̄−1βr2
β
(r)
2 − 2µ̄βr2

β
(r)
2

]}
,

where:

Σ̄βr2
=

(W2,rφrτ)−1 +

T∑
t=1

SL2 (t)

−1

µ̄βr2
= Σ̄βr2

 T∑
t=1

mL
2 (t)

′ .
Thus the posterior full conditional distribution of β(r)

2 , for r = 1, . . . , R, is given by:

p(β
(r)
2 |β

(r)
−2,B−r,W2,r, φr, τ,Σ1,Σ2,Σ3,Y) ∼ NI2(µ̄βr2

, Σ̄βr2
) . (E.121)
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E.5.3 Full conditional distribution of β(r)
3

The posterior full conditional distribution of β(r)
3 is obtained by combining the prior distribution

in eq. (29f) and the likelihood in eq. (E.113) as follows:

p(β
(r)
3 |β

(r)
−3,B−r,W3,r, φr, τ,Σ1,Σ2,Σ3,Y) ∝ L(Y|B,Σ1,Σ2,Σ3)π(β

(r)
3 |W3,r, φr, τ)

∝ exp

−1

2

T∑
t=1

β
(r)′

3 SL3 (t)β
(r)
3 − 2mL

3 (t)β
(r)
3

 · exp

{
−1

2
β
(r)′

3 (W3,rφrτ)−1β
(r)
3

}

= exp

−1

2

 T∑
t=1

β
(r)′

3 SL3 (t)β
(r)
3 − 2mL

3 (t)β
(r)
3 + β

(r)′

3 (W3,rφrτ)−1β
(r)
3




= exp

−
1

2

β(r)′

3

 T∑
t=1

SL3 (t) + (W3,rφrτ)−1

β
(r)
3 − 2

 T∑
t=1

mL
3 (t)

β
(r)
3




= exp

{
−1

2

[
β
(r)′

3 Σ̄−1βr3
β
(r)
3 − 2µ̄βr3

β
(r)
3

]}
,

where:

Σ̄βr3
=

(W3,rφrτ)−1 +
T∑
t=1

SL3 (t)

−1

µ̄βr3
= Σ̄βr3

 T∑
t=1

mL
3 (t)

′ .
Thus the posterior full conditional distribution of β(r)

3 , for r = 1, . . . , R, is given by:

p(β
(r)
3 |β

(r)
−3,B−r,W3,r, φr, τ,Σ1,Σ2,Σ3,Y) ∼ NI3(µ̄βr3

, Σ̄βr3
) . (E.122)

E.5.4 Full conditional distribution of β(r)
4

The posterior full conditional distribution of β(r)
4 is obtained by combining the prior distribution

in eq. (29f) and the likelihood in eq. (E.117) as follows:

p(β
(r)
4 |β

(r)
−4,B−r,W4,r, φr, τ,Σ1,Σ2,Σ3,Y) ∝ L(Y|B,Σ1,Σ2,Σ3)π(β

(r)
4 |W4,r, φr, τ)

∝ exp

−1

2

T∑
t=1

β
(r)′

4 SL4 (t)β
(r)
4 − 2mL

4 (t)β
(r)
4

 · exp

{
−1

2
β
(r)′

4 (W4,rφrτ)−1β
(r)
4

}

= exp

−1

2

 T∑
t=1

β
(r)′

4 SL4 (t)β
(r)
4 − 2mL

4 (t)β
(r)
4 + β

(r)′

4 (W4,rφrτ)−1β
(r)
4




= exp

−
1

2

β(r)′

4

 T∑
t=1

SL4 (t) + (W4,rφrτ)−1

β
(r)
4 − 2

 T∑
t=1

mL
4 (t)

β
(r)
4



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= exp

{
−1

2

[
β
(r)′

4 Σ̄−1βr4
β
(r)
4 − 2µ̄βr4

β
(r)
4

]}
,

where:

Σ̄βr4
=

(W4,rφrτ)−1 +
T∑
t=1

SL4 (t)

−1

µ̄βr4
= Σ̄βr4

 T∑
t=1

mL
4 (t)

′ .
Thus the posterior full conditional distribution of β(r)

4 , for r = 1, . . . , R, is given by:

p(β
(r)
4 |β

(r)
−4,B−r,W4,r, φr, τ,Σ1,Σ2,Σ3,Y) ∼ NI1I2I3(µ̄βr4

, Σ̄βr4
) . (E.123)

E.6 Full conditional distribution of Σ1

Given a inverse Wishart prior, the posterior full conditional distribution for Σ1 is conjugate.
For ease of notation, define Ẽt = Yt − B ×4 xt, Ẽ(1),t the mode-1 matricization of Ẽt and Z1 =

Σ−13 ⊗Σ−12 . By exploiting the relation between the tensor normal distribution and the multivariate
normal distribution and the properties of the vectorization and trace operators, we obtain:

p(Σ1|B,Y,Σ2,Σ3, γ) ∝ L(Y|B,Σ1,Σ2,Σ3)π(Σ1|γ)

∝ |Σ1|−
TI2I3

2 exp

−1

2

T∑
t=1

vec (Yt − B ×4 xt)
′ (Σ−13 ⊗ Σ−12 ⊗ Σ−11 ) vec (Yt − B ×4 xt)


· |Σ1|−

ν1+I1+1
2 exp

{
−1

2
tr
(
γΨ1Σ

−1
1

)}

∝ |Σ1|−
ν1+I1+TI2I3+1

2 exp

−1

2

tr
(
γΨ1Σ

−1
1

)
+

T∑
t=1

vec
(
Ẽt
)′

(Z1 ⊗ Σ−11 ) vec
(
Ẽt
)


∝ |Σ1|−
ν1+I1+TI2I3+1

2 exp

−1

2

tr
(
γΨ1Σ

−1
1

)
+

T∑
t=1

vec
(
Ẽ(1),t

)′
(Z1 ⊗ Σ−11 ) vec

(
Ẽ(1),t

)


∝ |Σ1|−
ν1+I1+TI2I3+1

2 exp

−1

2

tr
(
γΨ1Σ

−1
1

)
+

T∑
t=1

tr

(
vec
(
Ẽ(1),t

)′
vec
(

Σ−11 Ẽ(1),tZ1

))


∝ |Σ1|−
ν1+I1+TI2I3+1

2 exp

−1

2

tr
(
γΨ1Σ

−1
1

)
+

T∑
t=1

tr
(
Ẽ′(1),tΣ

−1
1 Ẽ(1),tZ1

)


∝ |Σ1|−
ν1+I1+TI2I3+1

2 exp

−1

2

tr
(
γΨ1Σ

−1
1

)
+

T∑
t=1

tr
(
Ẽ(1),tZ1Ẽ

′
(1),tΣ

−1
1

)
 . (E.124)

For ease of notation, define S1 =
∑T

t=1 Ẽ(1),tZ1Ẽ
′
(1),t. Then:

p(Σ1|B,Y,Σ2,Σ3) ∝ |Σ1|−
ν1+I1+TI2I3+1

2 exp

{
−1

2

[
tr
(
γΨ1Σ

−1
1

)
+ tr

(
S1Σ

−1
1

)]}
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∝ |Σ1|−
(ν1+TI2I3)+I1+1

2 exp

{
−1

2
tr
(

(γΨ1 + S1) Σ−11

)}
, (E.125)

Therefore, the posterior full conditional distribution of Σ1 is given by:

p(Σ1|B,Y,Σ2,Σ3, γ) ∼ IWI1 (ν1 + TI2I3, γΨ1 + S1) . (E.126)

E.7 Full conditional distribution of Σ2

Given a inverse Wishart prior, the posterior full conditional distribution for Σ2 is conjugate. For
ease of notation, define Ẽt = Yt−B×4xt and Ẽ(2),t the mode-2 matricization of Ẽt. By exploiting
the relation between the tensor normal distribution and the matrix normal distribution and the
properties of the Kronecker product and of the vectorization and trace operators we obtain:

p(Σ2|B,Y,Σ1,Σ3, γ) ∝ L(Y|B,Σ1,Σ2,Σ3)π(Σ2|γ)

∝ |Σ2|−
TI1I3

2 exp

−1

2

T∑
t=1

(Yt − B ×4 xt)×1...3 (Σ−11 ◦ Σ−12 ◦ Σ−13 )×1...3 (Yt − B ×4 xt)


· |Σ2|−

ν2+I2+1
2 exp

{
−1

2
tr
(

Ψ2Σ
−1
2

)}

∝ |Σ2|−
ν2+I2+TI1I3+1

2 exp

−1

2

tr
(
γΨ2Σ

−1
2

)
+

T∑
t=1

Ẽt ×1...3 (Σ−11 ◦ Σ−12 ◦ Σ−13 )×1...3 Ẽt




∝ |Σ2|−
ν2+I2+TI1I3+1

2 exp

−1

2

tr
(
γΨ2Σ

−1
2

)
+

T∑
t=1

tr
(
Ẽ′(2),t(Σ

−1
3 ⊗ Σ−11 ⊗ Σ−12 )Ẽ(2),t

)


∝ |Σ2|−
ν2+I2+TI1I3+1

2 exp

−1

2

tr
(
γΨ2Σ

−1
2

)
+

T∑
t=1

tr
(

(Σ−13 ⊗ Σ−11 )Ẽ′(2),tΣ
−1
2 Ẽ(2),t

)


∝ |Σ2|−
ν2+I2+TI1I3+1

2 exp

−
1

2

tr
(
γΨ2Σ

−1
2

)
+ tr

 T∑
t=1

Ẽ(2),t(Σ
−1
3 ⊗ Σ−11 )Ẽ′(2),tΣ

−1
2





∝ |Σ2|−
ν2+I2+TI1I3+1

2 exp

{
−1

2
tr
(
γΨ2Σ

−1
2 + S2Σ

−1
2

)}
,

where for ease of notation we defined S2 =
∑T

t=1 Ẽ(2),t(Σ
−1
3 ⊗Σ−11 )Ẽ′(2),t. Therefore, the posterior

full conditional distribution of Σ2 is given by:

p(Σ2|B,Y,Σ1,Σ3) ∼ IWI2 (ν2 + TI1I3, γΨ2 + S2) . (E.127)

E.8 Full conditional distribution of Σ3

Given a inverse Wishart prior, the posterior full conditional distribution for Σ3 is conjugate.
For ease of notation, define Ẽt = Yt − B ×4 xt, Ẽ(1),t the mode-1 matricization of Ẽt and Z3 =

Σ−12 ⊗Σ−11 . By exploiting the relation between the tensor normal distribution and the multivariate
normal distribution and the properties of the vectorization and trace operators, we obtain:

p(Σ3|B,Y,Σ1,Σ2, γ) ∝ L(Y|B,Σ1,Σ2,Σ3)π(Σ3|γ)
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∝ |Σ3|−
TI1I2

2 exp

−1

2

T∑
t=1

vec (Yt − B ×4 xt)
′ (Σ−13 ⊗ Σ−12 ⊗ Σ−11 ) vec (Yt − B ×4 xt)


· |Σ3|−

ν3+I3+1
2 exp

{
−1

2
tr
(
γΨ3Σ

−1
3

)}

∝ |Σ3|−
ν3+I3+TI1I2+1

2 exp

−1

2

tr
(
γΨ3Σ

−1
3

)
+

T∑
t=1

vec
(
Ẽt
)′

(Σ−13 ⊗ Z3) vec
(
Ẽt
)


∝ |Σ3|−
ν3+I3+TI1I2+1

2 exp

−1

2

tr
(
γΨ3Σ

−1
3

)
+

T∑
t=1

vec
(
Ẽ(1),t

)′
(Σ−13 ⊗ Z3) vec

(
Ẽ(1),t

)


∝ |Σ3|−
ν3+I3+TI1I2+1

2 exp

−1

2

tr
(
γΨ3Σ

−1
3

)
+

T∑
t=1

tr

(
vec
(
Ẽ(1),t

)′
vec
(
Z3Ẽ(1),tΣ

−1
3

))


∝ |Σ3|−
ν3+I3+TI1I2+1

2 exp

−1

2

tr
(
γΨ3Σ

−1
3

)
+

T∑
t=1

tr
(
Ẽ′(1),tZ3Ẽ(1),tΣ

−1
3

)
 . (E.128)

For ease of notation, define S3 =
∑T

t=1 Ẽ(1),tZ3Ẽ
′
(1),t. Then:

p(Σ3|B,Y,Σ1,Σ2) ∝ |Σ3|−
ν3+I3+TI1I2+1

2 exp

{
−1

2

[
tr
(
γΨ3Σ

−1
3

)
+ tr

(
S3Σ

−1
3

)]}

∝ |Σ3|−
(ν3+TI1I2)+I3+1

2 exp

{
−1

2
tr
(

(γΨ3 + S3) Σ−13

)}
, (E.129)

Therefore, the posterior full conditional distribution of Σ3 is given by:

p(Σ3|B,Y,Σ1,Σ2) ∼ IWI3 (ν3 + TI1I2, γΨ3 + S3) . (E.130)

E.9 Full conditional distribution of γ

Using a gamma prior distribution we have:

p(γ|Σ1,Σ2,Σ3) ∝ p(Σ1,Σ2,Σ3|γ)π(γ)

∝
3∏
i=1

|γΨi|−
νi
2 exp

{
−1

2
tr
(
γΨiΣ

−1
i

)}
γaγ−1 exp{−bγγ}

∝ γaγ−
∑3
i=1 νiIi

2
−1 exp

−1

2
tr

 3∑
i=1

ΨiΣ
−1
i

− bγγ
 , (E.131)

thus:

p(γ|Σ1,Σ2,Σ3) ∼ Ga

aγ +
1

2

3∑
i=1

νiIi, bγ +
1

2
tr

 3∑
i=1

ΨiΣ
−1
i


 . (E.132)
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F Additional simulations’ output

F.1 Simulation 10x10

Figure 16: Posterior distribution (first, fourth columns), MCMC output
(second, fifth columns) and autocorrelation function (third, sixth columns)
of some entries of the estimated covariance matrix Σ1.

F.2 Simulation 20x20

Figure 17: Posterior distribution (first, fourth columns), MCMC output
(second, fifth columns) and autocorrelation function (third, sixth columns)
of some entries of the estimated covariance matrix Σ1.
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G Additional application’s output

Figure 18: Posterior distribution (first, fourth columns), MCMC output
(second, fifth columns) and autocorrelation function (third, sixth columns)
of some entries of the estimated coefficient tensor.

Figure 19: Posterior distribution (first, fourth columns), MCMC output
(second, fifth columns) and autocorrelation function (third, sixth columns)
of some entries of the estimated error covariance matrix Σ1.
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Figure 20: Posterior distribution (first, fourth columns), MCMC output
(second, fifth columns) and autocorrelation function (third, sixth columns)
of some entries of the estimated error covariance matrix Σ2.
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