
Vulnerability Analysis of Android Auto Infotainment Apps
Amit Kr Mandal

Università Ca’ Foscari Venezia, Italy
amitmandal.nitdgp@gmail.com

Agostino Cortesi
Università Ca’ Foscari Venezia, Italy

cortesi@unive.it

Pietro Ferrara
JuliaSoft Srl, Verona, Italy

pietro.ferrara@juliasoft.com

Federica Panarotto
University of Verona, Italy

federica.panarotto@gmail.com

Fausto Spoto
University of Verona, Italy
fausto.spoto@univr.it

ABSTRACT
With over 2 billion active mobile users and a large array of features,
Android is the most popular operating system for mobile devices.
Android Auto allows such devices to connect with an in-car com-
patible infotainment system, and it became a popular choice as well.
However, as the trend for connecting car dashboard to the Internet
or other devices grows, so does the potential for security threats.
In this paper, a set of potential security threats are identified, and
a static analyzer for the Android Auto infotainment system is pre-
sented. All the infotainment apps available in Google Play Store
have been checked against that list of possible exposure scenarios.
Results show that almost 80% of the apps are potentially vulnerable,
out of which 25% poses security threats related to execution of
JavaScript.

CCS CONCEPTS
• Security and privacy→Abstract Interpretation; Static Anal-
ysis;

KEYWORDS
Android Auto Security, Android Auto, Invehicle Infotainment Sy-
atem, Abstract Interpretation, Static Analysis
ACM Reference Format:
Amit Kr Mandal, Agostino Cortesi, Pietro Ferrara, Federica Panarotto,
and Fausto Spoto. 2018. Vulnerability Analysis of Android Auto Infotain-
ment Apps. In CF ’18: CF ’18: Computing Frontiers Conference, May 8–10,
2018, Ischia, Italy. ACM, New York, NY, USA, Article 4, 8 pages. https:
//doi.org/10.1145/3203217.3203278

1 INTRODUCTION
Modern infotainment systems have evolved from a way to control
the stereo or navigation system to be the hub of many vehicle
functions such as telephone handling, data communication, vehicle
setup and climate control. Moreover, with the increasing demand
for more connected vehicles, and widespread use of smartphones,
in-car entertainment is getting more and more sophisticated. Its

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CF ’18, May 8–10, 2018, Ischia, Italy
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5761-6/18/05. . . $15.00
https://doi.org/10.1145/3203217.3203278

ability to connect to a smartphone allows it to provide innovative
capacities (e.g., messaging and audio apps). However, infotainment
systems are not all created equal: every other car manufacturer
and even electronic control unit (ECU) producer comes with its
own infotainment system: Ford with SYNC and MyFord Touch [10],
Toyota with Entune [31], Cadillac with the Cadillac User Experience
(CUE) [4], Fiat Chrysler with Uconnect [32], and so on. To ease
up technology landscape and reduce the vendor locking, software
companies, such as Google and Apple, come up with infotainment
systems. Given their popularity in the mobile phone market, many
car manufacturers now support Apple CarPlay [3] and Android
Auto [11]. Both are fairly similar and pump a small portion of the
mobile phone’s experience into a car’s built-in infotainment system,
allowing one to access some of the smartphone functions with a
look and feel that is similar to that of the mobile phone. Therefore,
the ability to run infotainment on a phone with almost 5 billion
mobile users sets Android Auto as the most popular choice for the
automotive infotainment.

Android Auto offers a slick and informative interface, inspired
by Google Now, with the same card-based menu that is part of
Google’s unified design language. Various Google approved apps
are published in the marketplace, with the necessary driver-safety
measures in place. Android Auto also allows one to interact with
multiple devices connected to the car. This in turn leaves automo-
biles in a potentially vulnerable state in front of adversaries, as it
provides many attack surfaces from multiple connections such as
cellular, Wi-Fi, Bluetooth etc. If adversaries gain access to the info-
tainment system, they can play with the safety-critical functions:
they can alter the vehicle’s electronic ID, jam with the radio-based
systems, including the navigation system, spoof sensor data, inter-
fere with control units, master data and firmware/software, just to
name a few examples. Besides the risk of being attacked by adver-
saries from the outside world, Android Auto infotainment apps can
be very harmful if they distract the attention of the driver. Thus,
securing the Android Auto infotainment system has become essen-
tial, especially in today’s sociotechnical landscape, where 70% of
drivers engage in infotainment activities while behind the wheel.

To address the security and privacy issues of the automotive info-
tainment system, various approaches have been proposed. McAfee
analyzes emerging risks in automotive system security [23]. Pau-
piah et al. [26] and Bordonali et al. [20] discuss in detail the various
security threats posed by the use of Android-based infotainment
systems. Checkoway et al. [5] and Miller et al. [24] provide a com-
prehensive experimental approach to show that security of the
modern automotive can be greatly compromised by interfering
with bluetooth, Wi-Fi and telematics signals. Some of the articles

https://doi.org/10.1145/3203217.3203278
https://doi.org/10.1145/3203217.3203278
https://doi.org/10.1145/3203217.3203278

CF ’18, May 8–10, 2018, Ischia, Italy A. Mandal et al.

try to solve the security and privacy issues by using cryptographic
techniques, such as de Graaff et al. [8]. Others use a secure de-
velopment environment [17, 28]. However, most approaches in
the literature have only shown the issues, but never proposed a
feasible solution to the problem. In contrast to that, QARK [27]
provides a comprehensive static analysis tool for Android apps. It
looks for a wide range of standard mobile vulnerabilities, such as
WebViews, Broadcast, Cryptography etc. However, it does not pro-
vide solutions for Android Auto apps, as it does not cover Android
Auto specific vulnerabilities, such as GPS location, media auto-play,
image display, etc. as specified by Google [12].

Therefore, this article introduces a static analysis approach based
on abstract interpretation [6, 7] to discover software vulnerabili-
ties in Android Auto infotainment apps. There are already many
static analyzers able to analyze Java source code and find bugs
or inefficiencies. However, most of them are based on syntactical
analyses (Checkstyle, Coverity, FindBugs, PMD) or use theorem
proving with some simplifying hypotheses. Unfortunately, these
tools do not support technologies such as XML inflation, and this
affects the construction of the control flow graph of an Android app.
Instead, the Julia static analyzer [29] performs a semantic sound
analysis, and this is why we chose to develop our analyses on top
of it. Our analyses are based on the quality parameters specified by
Google for the infotainment system [12]. The overall architecture
of our system is the following. First, the apps are reverse engineered
through dex2jar [9] (to extract the Java bytecode) and apktool [2]
(to extract the Android manifest). The manifest is then used to
determine the entry points for parsing the Java bytecode of the
apps.

The analyzer is based on Android API 25. It works on the parsed
bytecode. If it detects a vulnerability, it issues a warning message
with its detail. These are programming patterns that our analyzer
identifies as potentially dangerous, since they are violations of
programming best practices that could lead to code that features
some exploitable software vulnerability. However, their actual ex-
ploitability is not the goal of our analyzer. This means that, as usual
in automatic static analysis, warnings should be checked, manu-
ally, by the programmer, to understand if they are actual security
problems or just false alarms.

To check the effectiveness of our system on Android Auto info-
tainment software, available infotainment apps have been collected
from the Google Play store [30] (Snapshot of July, 2017). These are
then analyzed with the devised static analyzer based on abstract
interpretation. The results show that about 80% of the apps are po-
tentially vulnerable, out of which 25% poses security threats related
to execution of JavaScript.

The rest of the paper is organized in five sections. Section 2
discusses related literature. Section 3 provides a brief introduction
about the Julia static analyzer. Section 4 details the architecture of
the Android Auto analyzer. Section 5 summarizes and discusses the
experimental results. Section 6 concludes.

2 RELATED RESEARCH
The Android-based In Vehicle Infotainment (IVI) system has been
the focus of automobile research during the last decade. Several sci-
entific articles approach the development [15, 21], performance [34]

and user experience [13, 33] of the Android infotainment system.
On the other side, some researchers discussed the desirable features
of the Android-based car infotainment system [1]. However, only
a few papers face the issues related to the security and privacy of
Android-based auto infotainment system.

McAfee, in partnership with Wind River and ESCRYPT, released
a report called “Caution: Malware Ahead” [23] analyzing emerg-
ing risks in automotive system security and the security of ECUs
that have become omnipresent in modern automotive. The study
shows that an ECU connected to the infotainment system some-
how facilitates cybercriminal activities, such as remotely unlocking
and starting a car via cell phone, disabling a car remotely, tracking
a driver’s location, activities and routines, stealing personal data
from a Bluetooth system, disrupting navigation systems, disabling
emergency assistance, etc.

Jia et al. [17] introduced the concept of an app-based autonomous
vehicle (AV) platform providing the development framework to
third-party developers. However, to address safety and security
issues, they proposed an enhanced app-based AV design schema
called AVGUARD. This primarily focuses on mitigating the threats
posed by the use of untrusted code, by leveraging the theories of ve-
hicle evaluation field and program analysis techniques. Finally, the
study sketches a guideline and suggests practices for the improve-
ment of future automotive apps. Paupiah et al. [26], and Bordonali
et al. [20] discussed in detail the various security threats posed by
the use of Android-based infotainment system. Whereas, Kim et
al. [19] analyzed an access control for IVI and proposed the Re-
stricted Execution Environment System (REES), to protect a mobile
handset connected to the car. REES is a malware detection system
able to analyze programs and provide mobility at the same time.
Besides this, Nisch [25] provided an insight into different aspects
of security vulnerabilities of the automotive ECU. In this work, a
detailed analysis of the threats related to the various ECU units,
such as tire pressure monitoring system (TPMS), global positioning
system (GPS), keyless entry system, on-board diagnostics (OBD-
II), audio system, Bluetooth connectivity and cell phone interface,
has been carried out. Results show that these units individually or
collectively induce serious threat to the security of the car.

Thus, researchers in industry and academia have demonstrated
the possibility of intruding safety critical components of an automo-
bile. In this regard, Mazloom et al. [22] analyzed the vulnerabilities
of the apps, protocols and underlining IVI implementations through
the smartphone connected to the cars infotainment system. For this
purpose, they considered an IVI system that supports the Mirror-
Link protocol and comes with the 2015 model of a major automotive
manufacturer. They demonstrated that vulnerabilities in the Mir-
rorLink protocol used in infotainment systems could potentially
facilitate an attacker sending malicious messages on the vehicle’s
internal network from the connected smartphone.

However, in 2015, a serious security vulnerability in automobile
was demonstrated by Miller et al. [24], which obliged the manu-
facturer to recall 1.4 million vehicles. They were able to remotely
hack into the car and immobilize it while driving in a highway
traffic causing unintended acceleration and even disable the car’s
brakes by sending carefully crafted messages on the vehicle’s CAN
bus. In this process, they used the vehicle’s infotainment system

Vulnerability Analysis of Android Auto Infotainment Apps CF ’18, May 8–10, 2018, Ischia, Italy

to access the ECU that sends legitimate commands to other ECU
components.

Again, Schweppe et al. [28] presented an architecture capable
of monitoring data flow into the automobile’s CAN network. This
approach enhances vehicle security by using taint tracking tools
along with a security framework capable of dynamically tagging
data flows within or among the control units. They also imple-
mented a prototype to prevent from damaging the on-board system
using buffer overflow. Further, it shows the applicability of trans-
port tags among network nodes by extending the communication
payload. However, in this approach the overhead is quite high be-
cause of the tainted process. This makes it not suitable for real-time
environments.

Beside security, very little attention was dedicated to protect the
privacy of automotive customers. De Graaff et al. [8] discussed the
enforcement of a higher level of privacy by using cryptographic
techniques. They identified technical requirements that lead to
the construction of a homomorphic cryptography solution with
semi-trusted third-party architecture, thus eliminating many disad-
vantages in communication channels. Instead, Jaisingh et al. [14]
provided an overview of how personal information flows through
typical infotainment and telematics systems. They also identified
potential privacy threats to drivers and provide security recommen-
dations.

3 VULNERABILITIES IN ANDROID AUTO
Today’s Android ecosystem is a complex open network of collab-
orating companies. In addition to the Google’s operating system,
more than 176 open source projects are widely used in the An-
droid platform. Moreover, many hardware manufacturers and net-
work providers customize Android to meet their requirements. This
leaves the system in a vulnerable state. In particular, the Application
Programming Interface (API) of Android Auto allows a developer
to interact with the infotainment system. Often the API designer
had a particular protocol or API call sequence in mind to ensure the
security and reliability of the system, and the attacker repurposes
those API elements to break the intended model. In particular, our
analyses target the following vulnerabilities.

(1) External File Access Detection: Files created on the external
storage, such as SD cards, are globally readable and writable.
Therefore, app data should not hold sensitive information
using external storage, that can be removed by the user
and modified by any malicious app. Further, the apps that
use external storage should perform input validation when
handling data from external storage, as it would contain exe-
cutable files and data from any untrusted source, which can
cause serious damage to the automobiles. The following code
snippet shows the untrusted use of an external directory:

public static File getDiskCacheDir(Context c) {
File dir = c.getExternalCacheDir();
if (dir == null){dir = c.getCacheDir();}
return dir;}

(2) Usage of WORLD_WRITEABLE : By default, Android protec-
tions enforce that only the app that created a file on the inter-
nal storage can access it. However, some apps do use modes

MODE_WORLD_WRITEABLE or MODE_WORLD_READA-
BLE for IPC files, thus bypassing this restriction. They also
exploit the ability to load and control the data format. With
world readable enabled, intruders can load malicious data
and steal private information from the cars dashboard or
from the smartphone, by using the app. This code snippet
shows this malicious practice:

File f = new File(getFilesDir(), "filename.ext");
f.delete();
FileOutputStream fos = openFileOutput("filename

.ext", Context.MODE_WORLD_WRITEABLE);
fos.close();
File f = new File(getFilesDir(), "filename.ext");

(3) Encryption Function: To provide additional protection for
sensitive data, local files are often encrypted by using a key
that is not directly accessible to the app. For example, keys
can be placed in a keystore and protected with a password.
However, this does not protect data in a root compromized
system that can monitor the user inputing the password. The
following code snippet depicts the usage of a keystore: if
PasswordProtection(), load() and getPrivateKey() get tainted,
then the security of the system is compromized:

KeyStore.ProtectionParameter protParam = new
KeyStore.PasswordProtection(password);

KeyStore.PrivateKeyEntry pkEntry =
(KeyStore.PrivateKeyEntry)

ks.getEntry("privateKeyAlias", protParam);
PrivateKey myPrivateKey = pkEntry.getPrivateKey();
javax.crypto.SecretKey mySecretKey;
KeyStore.SecretKeyEntry skEntry = new

KeyStore.SecretKeyEntry(mySecretKey);
ks.setEntry("secretKeyAlias", skEntry, protParam);
try (FileOutputStream fos = new

FileOutputStream("newKeyStoreName")) {
ks.store(fos, password);}

(4) Content Providers: Content providers are a structured storage
mechanism that can be limited to a given app or exported to
all apps. If one does not intend to provide other apps with
access to the content provider, this should be reported in the
manifest as android:exported=false. If instead that attribute
is set to true, then other apps are allowed to access the data,
which might leave the app in a vulnerable state. In addition,
it is also important to check the usage and taintedness of the
addPermission() function in the production code, as it takes a
string that concisely expresses to a user the security decision
that must be made. The following code snippet depicts the
dynamic addition of that permission:

PermissionInfo pi = new PermissionInfo();
pi.name = myCustomPermission;
pi.labelRes = R.string.permission_label;
pi.protectionLevel =

PermissionInfo.PROTECTION_DANGEROUS;
PackageManager packageManager =

getApplicationContext().getPackageManager();
packageManager.addPermission(pi);

(5) IP Networking: For automotive apps, it is important to make
sure that HttpsURLConnection is used for sensitive sensor

CF ’18, May 8–10, 2018, Ischia, Italy A. Mandal et al.

data. Moreover, to handle sensitive IPC, some apps use local-
host network ports. This is potentially dangerous, as these
interfaces are also accessible to other apps in the infotain-
ment system.

(6) Using WebView: WebView deals with HTML and JavaScript.
Improper use of WebView instances can lead to major web
security issues such as cross-site-scripting or JavaScript in-
jection. In this regard, usage of setJavaScriptEnabled(), and
addJavaScriptInterface() can leave an app open to various
attacks. In WebView, enabling JavaScript means that it is
now susceptible to XSS. Thus if an app uses the following
code snippet then one should inspect the rendered page for
taintedness:

WebView myWebView = (WebView)
findViewById(R.id.webView);

WebSettings webSettings = myWebView.getSettings();
webSettings.setJavaScriptEnabled(true);

Again, addJavaScriptInterface() allows JavaScript to invoke
operations that are usually particular to the Android apps. If
used, then it should expose addJavaScriptInterface() only to
web pages from which all input is trustworthy. Otherwise,
untrusted JavaScript can invoke Android methods within
your app. According to Google’s recommendation, calls to
addJavaScriptInterface() should only expose to JavaScript
which is contained within the apk. The following code snip-
pet depicts the security issues with addJavaScriptInterface().

public class JavaScriptAttack extends Activity {
protected void onCreate(Bundle

savedInstanceSTate){
super.onCreate(savedInstanceSTate);
setContentView(R.layout.activity_jscript_attack);
WebView wv = new

WebView(getApplicationContext());
wv.getSettings().setJavaScriptEnabled(true);
wv.addJavaScriptInterface(new jsInvokeclass(),

"attack");
wv.loadUrl("http://www.malware.com/atk.html");}}

(7) GPS Location Detector : WebChromeClient.onGeolocation-
PermissionsShowPrompt() method is called by the Web-
View to obtain permission to disclose the user’s location
to JavaScript. If it is implemented, the app should seek per-
mission from the user. However, the following code snippet
will always grant the permission. Thus, location service of
the automobile is greatly compromized:

webView.setWebChromeClient(new WebChromeClient() {
public void

onGeolocationPermissionsShowPrompt(String
origin, GeolocationPermissions.Callback
callback) {

callback.invoke(origin, true, false); }}

(8) Background Download: While downloading file, if the storage
location is not explicitly defined, the programmer uses the
DownloadManager.openDownloadedFile() method with the
ID value stored in preferences, to get a ParcelFileDescriptor,
which can be turned into a stream the app can read from.
Further, without a specific destination, downloaded files are

in the shared download cache. In this case, the system retains
the right to delete them at any time to reclaim space. This in-
turn leaves the app in a vulnerable state. Thus, it is necessary
to check the taintedness of the following functions for any
potential security breach:

Request.setDestinationInExternalFilesDir(): Set
the destination to a hidden directory on
external storage.

Request.setDestinationInExternalPublicDir(): Set
the destination to a public directory on
external storage

Request.setDestinationUri(): Set the destination
to a file Uri located on external storage

(9) Media Autoplay: According to the security standards set by
Google Android Auto media app, one should never autoplay
a media. However, the following code snippet will always
play media files:

public class myProject extends CordovaActivity {
public void onCreate(Bundle savedInstanceState){
super.onCreate(savedInstanceState);
super.init();
super.loadUrl(Config.getStartUrl());
WebSettings ws = super.appView.getSettings();
ws.setMediaPlaybackRequiresUserGesture(false);}}

(10) CarMode: Google appstore lists Android Auto apps in a sepa-
rate category. Apps belonging to this category should explic-
itly use the UiModeManager.enableCarMode("true") function
to declare it as an Android auto app. This prevents users
from installing apps that are not suitable for automobiles.

(11) Voice Commands: Android Auto apps should allow users to
control audio content playback with voice actions. This will
provide a hands-free experience to the user, while driving
and listening to audio content in Android Auto. To enable
voice-enabled playback controls, Android Auto apps must
enable the hardware controls by setting these flags in the
app’s MediaSession object:

mSession.setFlags(MediaSession.FLAG_HANDLES_MEDIA_BU
TTONS|MediaSession.FLAG_HANDLES_TRANSPORT_CONTROLS);

(12) Displaying Online Images: According to the standards set by
Google, Android Auto apps should not display any image
advertisement, that could distract the driver. Online images
are usually accessed through some sort of web API or on-
line service. Thus, apps should not use such services. The
following code snippet shows an example:

public ImageViewHolder
onCreateViewHolder(ViewGroup parent, int
viewType) {

View view =
LayoutInflater.from(OnlineImageActivity.this)

.inflate(R.layout.image_item, parent, false);
return new ImageViewHolder(view);}

(13) Displaying an HTML Page: The simplest case is displaying
an HTML page or image by supplying the URL of the re-
source to the WebView. This can be a source of injection in

Vulnerability Analysis of Android Auto Infotainment Apps CF ’18, May 8–10, 2018, Ischia, Italy

Android/Android Auto apps, especially when JavaScript is
enabled. The following code snippet shows one such inci-
dent:

public class MyActivity extends Activity {
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
WebView webview = new WebView(this);
webview.getSettings().setJavaScriptEnabled(true);
webview.loadUrl("http://www.malware.com/");
setContentView(webview);}}

Further, a malicious program can take advantage of the We-
bViewClient .shouldOverrideUrlLoading() callback to inter-
cept and monitor and log user activity. This is a serious
privacy breach. The following code snippet shows this sce-
nario:

public class MyActivity extends Activity {
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
WebView webview = new WebView(this);
webview.getSettings().setJavaScriptEnabled(true);
webview.setWebViewClient(mClient);
webview.loadUrl("http://www.malware.com");
setContentView(webview); }

private WebViewClient mClient = new
WebViewClient() {

public boolean shouldOverrideUrlLoading(WebView
wv, String url){

Uri request = Uri.parse(url);
return true; }}}

(14) Media Advertisement: Android Auto apps should not push
notifications. To prevent Android Auto from displaying a no-
tification, the media metadata key android.media.metadata.
ADVERTISEMENTmust be set to 1. The following code snip-
pet keeps the provision of displaying the notification open,
which is against the Google standards for Android Auto:

public static final String
EXTRA_METADATA_ADVERTISEMENT =

"android.media.metadata.ADVERTISEMENT";
public void onPlayFromMediaId(String mediaId,

Bundle extras) {
MediaMetadata.Builder builder = new

MediaMetadata.Builder();
if (isAd(mediaId))
builder.putLong(EXTRA_METADATA_ADVERTISEMENT,

0);
mediaSession.setMetadata(builder.build());}

We present here the complete list of checks since we wanted to
asses broadly the various types of possible vulnerabilities even if
they are not (actually) present in existing applications as shown by
our experimental results in Section 5.

4 A STATIC ANALYZER FOR ANDROID AUTO
In this work, a static analyzer for Android Auto apps is developed
by extending the Julia static analyzer [18]. The devised checker
relies on the heap and call graph abstractions performed by Julia,
but it implements completely novel property checks targeting the
possible vulnerable points discussed in Section 3.

Figure 1: System architecture of Android Auto static ana-
lyzer.

4.1 The Julia Static Analyzer
The Julia static analyzer [18] uses abstract interpretation for the
analysis and verification of Java bytecode [29]. It is based on the
theoretical concepts of denotational and constraint-based static
analysis through abstract interpretation. The Julia library provides
a representation of Java bytecode suitable for abstract interpretation.
This representation uses state transformers, and also generates a
call graph modeling exceptional paths as well. Julia simplifies the
Java bytecode through explicit type information available about
their operands, the stack elements and locals. Further, Julia also
provides the exact implementation of the field or methods that are
accessed/called. Many analyses have been implemented on top of
the Julia library. These verify the absence of a large set of typical
errors in software, such as null-pointer accesses, non-termination,
wrong synchronization and injection threats to security.

4.2 Architecture of the System
To ensure the security of modern automobiles that use the An-
droid Auto infotainment system, we developed a static analyzer
for Android Auto. It uses abstract interpretation for analysis and
verification of Java bytecode. The analyzer uses the Julia bytecode
representation and is developed as a checker inside the Julia frame-
work. Figure 1 depicts a schematic diagram of the Android Auto
static analyzer. Here, firstly the apps are reverse engineered with
dex2jar [9] and apktool [2]. These tools extract the app manifest
and jar files from the apk file. The manifest is then used to deter-
mine the entry points for analyzing the Java bytecode. The Android
Auto checker based on the vulnerabilities described in the previous
section is then implemented for Android API 25 and applied on the
parsed bytecode to detect presence of those vulnerabilities in the
Android Auto apps. Thus, selection of entry points and construc-
tion of Android Auto checkers play the most important role in this
process. The following subsections describe these in detail.

4.2.1 Entry Points. In static analysis, the entry points are a cru-
cial element for the soundness and coverage of the analysis. The
core Julia library is built for generic Java applications, where Ju-
lia starts the analysis of a program from its main method. This
becomes more complex for Android-based code, as the entire pro-
gram works through multiple event handlers that may be invoked
by reflection. Therefore, the Android Auto static analyzer should
start the analysis from all such handlers. Moreover, every Android
app uses an AndroidManifest.xml file, that describes the important

CF ’18, May 8–10, 2018, Ischia, Italy A. Mandal et al.

Figure 2: Entrypoint for analyzer: audio playback classes.

properties such as program structure, permissions, user interface
parameters etc. Moreover, to get complete information about the
event handlers, the analyzer must consider how they receive input
at runtime, by looking at XML files, such as layout files, that are
inflated at runtime.

Besides the generic event handlers in activities, services, broad-
cast receivers, content providers, WebView services, FileStorage,
DownloadManager etc. special attention is given to the Media-
Browser and Messaging services as Android Auto currently sup-
ports audio playback and messaging for the music app. Thus, lo-
cating the classes responsible for these two activities are of prime
importance.

Android Auto browses audio track listings by using the Me-
diaBrowser service. The audio apps must declare this service in
their manifest. This allows the dashboard system to discover this
service and connect to the app. Figure 2 depicts the extraction
process of the MediaBrowser service class from the Android Auto
apk. Here, it first searches for the class responsible for enabling
the Android.media.browse.MediaBrowserService service from the
manifest. Then, this class is used as an entrypoint to parse the
bytecode. Moreover, classes responsible for creating a MediaSession
service are also considered as a entrypoint.

Similarly, for the messaging services all the receiver classes de-
fined in the manifest are collected. However, the majority of these
are not responsible for sending or receiving messages. According to
the Android Auto specifications, classes responsible for sending and
receiving messages must extend BroadcastReceiver. Thus, to filter
the unnecessary receiver classes, their superclasses are checked.
If the superclass is BroadcastReceiver then it is considered as an
entrypoint. The similar process is followed for locating other types
of activities and services.

4.2.2 Analysis Process. The entrypoints are then used to build
a semantic model of the bytecode execution. The Android Auto
checkers work on this parsed bytecode to detect bugs. The work-
ing principle of the checker involves searching for the identified
vulnerable API implementation in the production code. If such
implementation is encountered, then it is necessary to check the
taintedness of the implementation. For this purpose, the JVM stack
for that API call is accessed, where all the producers of values passed
to that API call are traced. If the arguments to these contributors
are constants, then the implementation is secure; otherwise, it is at
risk of possible attacks. This process is repeated for all the identified
vulnerabilities. Figure 3 depicts the process.

Figure 3: Working principle of the Android Auto analyzer.

5 EXPERIMENTAL RESULTS
The Android Auto apps have been analyzed through the analyzer
described in the previous section. For this purpose, the Android
Auto apps have been manually collected from the Google Play
Store. These apps have been then converted into Java bytecode
with dex2jar. Further, the manifest file has been extracted from
the apk. These jar files, along with their manifest, have been used
as input to the analyzer. Experiments have been performed on
Windows OS with an Intel Xeon machine running at 2.66 GHz and
8 gigabytes of RAM. Table 1 shows the service specific entry points
for the individual apps. Here, the numbers in column a refer to the
number of classes where event handling such as click, focus etc.
are implemented. Similarly, the numbers in columns b, c, d, e, f, g,
h represent the number of classes where the functionalities related
to services, broadcast receiver, content providers, media browser,
WebView services, file storage and text messaging are implemented.
These cover almost all the user interactive implementations in the
apps.

The classes selected as entry points are then used to build the
static call graph of the app. Table 2 depicts the reachability within an
app’s code in terms of Lines Of Code (LOC), along with entrypoints.
Here, total LOC have been calculated by decompiling the app with
a Java decompiler [16]. The results show that, with the selected
entry points, we reached 50% to 75% of the code. This moderate
percentage in reachability is because, while parsing the bytecode,
we mainly considered the classes that are accessible from the entry
points. Further, we also ignored local variables. Keeping these facts
in mind, the selected entry points cover the vast majority of the
code in an app, where the logic is implemented. This prohibits us
from checking every class file present in an app, which in turn
reduces the analysis time.

The results related to the vulnerabilities are shown in Table 3
and plot in Figure 4. The numbers there indicate how many threats
have been detected for a specific type of vulnerability. From the
table, it is visible the analyzer detected vulnerabilities related to

Vulnerability Analysis of Android Auto Infotainment Apps CF ’18, May 8–10, 2018, Ischia, Italy

the JavaScript execution and file and cache directory access for
almost 80% of the apps; out of these, 25% possess JavaScript execu-
tion threat. However, apps like smartaudiobookplayer, icq mobile,
itunestoppodcastplayer, jetaudio and spotify do not show any sin-
gle threat to the infotainment system. Whereas, the auto analyzer
generates warnings for the rest of the apps. Further, out of 14 iden-
tified security threats, the majority of the apps only show threats
related to the JavaScript execution and access to external storage
devices. This is because the majority of the Android Auto apps use
Google Now services, in one way or another, for location, event
processing, voice input, notification services etc. thus making the
apps interaction with the user more secure.

To check the severity of the warnings, we looked into the de-
compiled source code. For this purpose, the podcastaddict app was
chosen, as it contains 11 warning and 212 entrypoints. For demon-
strating such an example, the com.bamnetworks.
mobile.android.gameday.activities.BlackoutActivity class is consid-
ered, that is accessible because of the activity type entrypoint of
the analyzer. Here, both the setJavaScriptEnabled() and the add-
JavaScriptInterface() functions are called. Interestingly, from the
following code snippet it can be seen that the first argument of
the addJavaScriptInterface() function is not constant. It is initial-
ized multiple times, even once with an intent call. Further, the
setJavaScriptEnabled() function is set to true, which allows execu-
tion of JavaScript:

package com.bamnetworks.mobile.android.gameday.activities;
public class BlackoutActivity extends AtBatDrawerActivity{
public void onCreate(Bundle paramBundle){
public void onCreate(Bundle paramBundle){
...
paramBundle = getIntent().getStringExtra("zip");
...
paramBundle =

((Geocoder)localObject).getFromLocationName(prmBundle
+ " " + str, 1);

...
paramBundle = new

BlackoutActivity.BlackoutMapJavaScriptInterface(this,
d1, d2);

this.blackoutMap.addJavaScriptInterface(paramBundle,
"android");

this.blackoutMap.getSettings().setJavaScriptEnabled(true);
...

}}}

In this app, the analyzer also comes up with an external file
access warning. From the following code snippet, it can be seen
that the app can save a critical file in the external device, which can
be deleted by the system, user or other app to regain space. This
could leave the app in a vulnerable state:

package com.bambuna.podcastaddict.h;
public static List<String> a(Context paramContext) {
...
ArrayList localArrayList = new ArrayList();
if (paramContext != null) {
paramContext = a.getExternalFilesDirs(paramContext,

null);
...

}}

Table 1: Entrypoints for the analyzed apps.

Sl No App Name a b c d e f g h Total
1 smartaudiobookplayer (3.3.5) 32 8 10 0 2 1 0 1 54
2 abcnews (3.12.07) 88 68 28 4 0 23 1 2 214
3 itunerfree (4.2.10) 50 20 24 0 0 23 3 3 123
4 audible (2.12.0) 136 68 36 16 3 4 0 2 265
5 audiobooks (4.64) 12 6 10 0 1 1 0 1 31
6 podcastaddict (3.43.8) 128 30 34 6 4 10 0 0 212
7 MLB.com At Bat (5.6.0) 148 28 18 2 3 20 3 2 224
8 textplus (7.0.7) 184 40 30 10 0 32 0 4 300
9 icq mobile (6.13) 86 62 48 6 2 0 5 209
10 itunestoppodcastplayer (2.8.10) 52 20 14 0 0 0 0 1 87
11 jetaudio (8.2.3) 88 8 24 0 1 3 0 2 126
12 overdrive (3.6.2) 28 16 2 8 1 4 0 2 61
13 sonyericsson (8.5.A.2.7) 12 20 12 10 0 0 0 1 55
14 spotify (8.4.11.1283) 240 112 36 8 0 8 25 5 434
15 stitcher radio (3.9.8) 88 26 24 2 0 9 0 0 149
16 simpleradio (2.2.5.1) 24 14 14 4 1 6 0 0 63
17 deezer (5.4.8.46) 162 36 30 12 0 23 21 2 286
18 fm player (3.7.4.0) 70 38 24 6 0 1 0 5 144
19 kik (11.29.0.17461) 40 280 10 8 0 8 12 0 358
20 beyondpod (4.2.16) 62 12 18 4 0 6 0 2 104
21 npr (1.7.2.2) 44 42 14 6 2 1 0 1 110
22 tunein player (18.3.1) 94 32 44 20 0 13 0 3 206
23 sevendigital (6.69.226) 66 86 22 2 0 27 0 3 206

a) Activities, b) Services c) Broadcast Receivers, d) Content Providers,
e) Media Browser, f) WebView Service, g) File Storage, h) Text Messaging

Table 2: Reachability analysis.

Sl no App Name Entrypoint Reachable
LOC

Total
LOC

Reachability
Percentage

1 smartaudiobookplayer (3.3.5) 54 76426 109902 69.54
2 abcnews (3.12.07) 214 405769 659941 61.49
3 itunerfree (4.2.10) 123 275225 451724 60.93
4 audible (2.12.0) 265 320497 452634 70.81
5 audiobooks (4.64) 31 124551 182160 68.37
6 podcastaddict (3.43.8) 212 194195 353620 54.92
7 MLB.com At Bat (5.6.0) 224 297209 591157 50.28
8 textplus (7.0.7) 300 338302 586680 57.66
9 icq mobile (6.13) 209 209691 322360 65.05
10 itunestoppodcastplayer (2.8.10) 87 178836 324181 55.17
11 jetaudio (8.2.3) 126 83295 115714 71.98
12 overdrive (3.6.2) 61 172651 336762 51.27
13 sonyericsson (8.5.A.2.7) 55 115262 178542 64.56
14 spotify (8.4.11.1283) 434 370505 773512 47.90
15 stitcher radio (3.9.8) 149 239605 389262 61.55
16 simpleradio (2.2.5.1) 63 189583 341488 55.52
17 deezer (5.4.8.46) 286 400704 791891 50.60
18 fm player (3.7.4.0) 144 173005 311657 55.51
19 kik (11.29.0.17461) 358 359798 492574 73.04
20 beyondpod (4.2.16) 104 130085 271281 47.95
21 npr (1.7.2.2) 110 214492 361362 59.36
22 tunein player (18.3.1) 206 281758 438734 64.22
23 sevendigital (6.69.226) 206 214219 375949 56.98

6 CONCLUSION AND FUTUREWORK
As far as we know, this is the first static analysis for Android Auto
apps based on a formal basis such as abstract interpretation that
has been systematically applied to the apps published in the Google
Play store. The experimental results show that five apps do not
pose a single threat to the infotainment system, while 80% of the
apps exposes some warnings, out of which 25% apps are open to
JavaScript attacks, leaving the infotainment system at serious risk.

Our future work includes the extension of the analyzer towards
detecting the vulnerabilities of safety critical systems such as the
CAN bus, the climate control, the telematics etc. Further, we are also

CF ’18, May 8–10, 2018, Ischia, Italy A. Mandal et al.

Table 3: Result of the Android Auto checker in Julia.

Sl No App Name JavaScript External
File

External
Cache Total Analysis

Time
1 smartaudiobookplayer (3.3.5) 0 0 0 0 79.17
2 abcnews (3.12.07) 3 5 5 13 891.72
3 itunerfree (4.2.10) 6 5 5 16 721.92
4 audible (2.12.0) 0 2 2 4 614.09
5 audiobooks (4.64) 0 3 3 6 161.49
6 podcastaddict (3.43.8) 4 5 2 11 711.83
7 MLB.com At Bat (5.6.0) 5 2 2 9 601.08
8 textplus (7.0.7) 0 2 6 8 927.59
9 icq mobile (6.13) 0 0 0 0 1693.43
10 itunestoppodcastplayer (2.8.10) 0 0 0 0 375.72
11 jetaudio (8.2.3) 0 0 0 0 199.93
12 overdrive (3.6.2) 0 2 1 3 442.28
13 sonyericsson (8.5.A.2.7) 0 6 4 10 159.91
14 spotify (8.4.11.1283) 0 0 0 0 3086.08
15 stitcher radio (3.9.8) 0 5 3 8 416.37
16 simpleradio (2.2.5.1) 0 3 3 6 435.51
17 deezer (5.4.8.46) 2 4 3 9 1004.13
18 fm player (3.7.4.0) 0 5 1 6 373.12
19 kik (11.29.0.17461) 0 3 3 6 717.12
20 beyondpod (4.2.16) 0 4 4 8 283.39
21 npr (1.7.2.2) 0 6 4 10 451.66
22 tunein player (18.3.1) 4 3 3 10 523.18
23 sevendigital (6.69.226) 0 3 2 5 412.18

Figure 4: Number of warnings in the Apps.

contacting car manufacturers and companies developing Android
Auto apps, for applying our analysis to real world apps.

ACKNOWLEDGMENTS
Work partially supported by Regione Veneto within the FSE project
"Static analysis for the safety and security of Android systems for
automotive infotainment", and by CINI Cybersecurity National
Laboratory within the project FilieraSicura.

REFERENCES
[1] Torbjörn Andersson, Anders Warell, Stefan Holmlid, and Johan Ölvander. 2011.

Desirability in the development of In-Car Infotainment Systems. In Interact
2011: 13th IFIP TC13 Conference on Human-Computer Interaction, Lisbon, Portugal,
September 5-9, 2011.

[2] Apktool. Accessed On: 18-Jan-2018. Apktool. https://ibotpeaches.github.io/
Apktool/. (Accessed On: 18-Jan-2018).

[3] Apple. Accessed On: 18-Jan-2018. Apple CarPlay The ultimate copilot. https:
//www.apple.com/ios/carplay/. (Accessed On: 18-Jan-2018).

[4] Cadillac. Accessed On: 18-Jan-2018. Cadillac User Experience | Infotainment.
http://www.cadillac.com/cadillac-user-experience.html. (Accessed On: 18-Jan-
2018).

[5] Stephen Checkoway, Damon McCoy, Brian Kantor, Danny Anderson, Hovav
Shacham, Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, Ta-
dayoshi Kohno, et al. 2011. Comprehensive Experimental Analyses of Automotive
Attack Surfaces.. In USENIX Security Symposium. San Francisco.

[6] Agostino Cortesi, Pietro Ferrara, Marco Pistoia, and Omer Tripp. 2015. Dat-
acentric Semantics for Verification of Privacy Policy Compliance by Mobile
Applications. In VMCAI 2015, Mumbai, Jan. 12-14, 2015. LNCS vol. 8931. 61–79.

[7] Patrick Cousot and Radhia Cousot. 1977. Abstract Interpretation: A Unified
Lattice Model for Static Analysis of Programs by Construction or Approximation
of Fixpoints. In Conference Record of the Fourth ACM Symposium on Principles of
Programming Languages, Los Angeles, California, USA, January 1977. 238–252.

[8] Ramon de Graaff. 2015. Controlling your Connected Car. (2015).
[9] dex2jar. Accessed On: 18-Jan-2018. dex2jar. https://github.com/pxb1988/dex2jar.

(Accessed On: 18-Jan-2018).
[10] Ford. Accessed On: 18-Jan-2018. SYNC 3 - Smart hardware, Smart software, Smart

design. https://www.ford.com/technology/sync/. (Accessed On: 18-Jan-2018).
[11] Google. Accessed On: 18-Jan-2018. Android AUto. https://www.android.com/

auto/. (Accessed On: 18-Jan-2018).
[12] Google. Accessed On: 18-Jan-2018. Google. https://developer.android.com/

develop/quality-guidelines/auto-app-quality.html. (Accessed On: 18-Jan-2018).
[13] Jani Heikkinen, Erno Mäkinen, Jani Lylykangas, Toni Pakkanen, Kaisa Väänänen-

Vainio-Mattila, and Roope Raisamo. 2013. Mobile devices as infotainment user
interfaces in the car: contextual study and design implications. In Proceedings
of the 15th international conference on Human-computer interaction with mobile
devices and services. ACM, 137–146.

[14] Kushal Jaisingh, Khalil El-Khatib, and Rajen Akalu. 2016. Paving the way for
Intelligent Transport Systems (ITS): Privacy Implications of Vehicle Infotainment
and Telematics Systems. In Proceedings of the 6th ACM Symposium on Development
and Analysis of Intelligent Vehicular Networks and Applications. ACM, 25–31.

[15] Gaurav Jaiswal. 2014. Android in-vehicle infotainment system (AIVI). Interna-
tional Journal of Innovative Research in Electronics and Communications (IJIREC)
1, 4 (2014), 12–16.

[16] JDGUI. Accessed On: 18-Jan-2018. JDGUI. http://jd.benow.ca/. (Accessed On:
18-Jan-2018).

[17] Yunhan Jack Jia, Ding Zhao, Qi Alfred Chen, and Z Morley Mao. 2017. Towards
Secure and Safe Appified Automated Vehicles. arXiv preprint arXiv:1702.06827
(2017).

[18] JuliaSoft. Accessed On: 18-Jan-2018. JuliaSoft. https://www.juliasoft.com/. (Ac-
cessed On: 18-Jan-2018).

[19] Ho-Yeon Kim, Young-Hyun Choi, and Tai-Myoung Chung. 2012. Rees: Malicious
software detection framework for meego-in vehicle infotainment. In Advanced
Communication Technology (ICACT), 2012 14th Int. Conference on. IEEE, 434–438.

[20] Andrew L Kun, Susanne Boll, and Albrecht Schmidt. 2016. Shifting gears: User
interfaces in the age of autonomous driving. IEEE Pervasive Computing 15, 1
(2016), 32–38.

[21] Gianpaolo Macario, Marco Torchiano, and Massimo Violante. 2009. An in-vehicle
infotainment software architecture based on google android. In Industrial Em-
bedded Systems, 2009. SIES’09. IEEE International Symposium on. IEEE, 257–260.

[22] Sahar Mazloom, Mohammad Rezaeirad, Aaron Hunter, and Damon McCoy. 2016.
A Security Analysis of an In-Vehicle Infotainment and App Platform.. In WOOT.

[23] Stuart McClure. 2013. Caution: malware ahead. Vision Zero International (2013).
[24] Charlie Miller and Chris Valasek. 2015. Remote exploitation of an unaltered

passenger vehicle. Black Hat USA 2015 (2015).
[25] Patrick Nisch. 2011. Security Issues in Modern Automotive Systems. (2011).
[26] Pravin Selukoto Paupiah. 2015. Vehicle security and forensics in Mauritius and

abroad. In Computing, Communication and Security (ICCCS), 2015 International
Conference on. IEEE, 1–5.

[27] QARK. Accessed On: 18-Jan-2018. Quick Android Review Kit - A tool for auto-
mated Android App Assessments. https://github.com/linkedin/qark. (Accessed
On: 18-Jan-2018).

[28] Hendrik Schweppe and Yves Roudier. 2012. Security and privacy for in-vehicle
networks. In Vehicular Communications, Sensing, and Computing (VCSC), 2012
IEEE 1st International Workshop on. IEEE, 12–17.

[29] Fausto Spoto. 2016. The Julia Static Analyzer for Java. In International Static
Analysis Symposium. Springer, 39–57.

[30] Google Play Store. Accessed On: 18-Jan-2018. Apps for Android
Auto. https://play.google.com/store/apps/collection/promotion_3001303_
android_auto_all?hl=en. (Accessed On: 18-Jan-2018).

[31] Toyota. Accessed On: 18-Jan-2018. Entune 3.0. https://www.toyota.com/owners/
resources/entune. (Accessed On: 18-Jan-2018).

[32] Uconnect. Accessed On: 18-Jan-2018. Uconnect Systems for Chrysler, FIAT,
Jeep, Dodge, and Ram Trucks. https://www.driveuconnect.com/. (Accessed On:
18-Jan-2018).

[33] Ksenija Udovicic, Nenad Jovanovic, and Milan Z Bjelica. 2015. In-vehicle info-
tainment system for android OS: User experience challenges and a proposal. In
Consumer Electronics-Berlin (ICCE-Berlin), 2015 IEEE 5th International Conference
on. IEEE, 150–152.

[34] Emily E Wiese and John D Lee. 2004. Auditory alerts for in-vehicle information
systems: The effects of temporal conflict and sound parameters on driver attitudes
and performance. Ergonomics 47, 9 (2004), 965–986.

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
https://www.apple.com/ios/carplay/
https://www.apple.com/ios/carplay/
http://www.cadillac.com/cadillac-user-experience.html
https://github.com/pxb1988/dex2jar
https://www.ford.com/technology/sync/
https://www.android.com/auto/
https://www.android.com/auto/
https://developer.android.com/develop/quality-guidelines/auto-app-quality.html
https://developer.android.com/develop/quality-guidelines/auto-app-quality.html
http://jd.benow.ca/
https://www.juliasoft.com/
https://github.com/linkedin/qark
https://play.google.com/store/apps/collection/promotion_3001303_android_auto_all?hl=en
https://play.google.com/store/apps/collection/promotion_3001303_android_auto_all?hl=en
https://www.toyota.com/owners/resources/entune
https://www.toyota.com/owners/resources/entune
https://www.driveuconnect.com/

	Abstract
	1 Introduction
	2 Related Research
	3 Vulnerabilities in Android Auto
	4 A Static Analyzer for Android Auto
	4.1 The Julia Static Analyzer
	4.2 Architecture of the System
	4.2.1 Entry Points
	4.2.2 Analysis Process

	5 Experimental Results
	6 Conclusion and Future Work
	Acknowledgments
	References

