
WPSE: Fortifying Web Protocols via Browser-Side Security Monitoring
Stefano Calzavara

Università Ca’ Foscari Venezia
calzavara@dais.unive.it

Riccardo Focardi
Università Ca’ Foscari Venezia

focardi@unive.it

Matteo Maffei
TU Wien

matteo.maffei@tuwien.ac.at

Clara Schneidewind
TU Wien

clara.schneidewind@tuwien.ac.at

Marco Squarcina
Università Ca’ Foscari Venezia

squarcina@unive.it

Mauro Tempesta
Università Ca’ Foscari Venezia

tempesta@unive.it
Abstract

We present WPSE, a browser-side security monitor for
web protocols designed to ensure compliance with the
intended protocol flow, as well as confidentiality and in-
tegrity properties of messages. We formally prove that
WPSE is expressive enough to protect web applications
from a wide range of protocol implementation bugs and
web attacks. We discuss concrete examples of attacks
which can be prevented by WPSE on OAuth 2.0 and
SAML 2.0, including a novel attack on the Google imple-
mentation of SAML 2.0 which we discovered by formal-
izing the protocol specification in WPSE. Moreover, we
use WPSE to carry out an extensive experimental evalua-
tion of OAuth 2.0 in the wild. Out of 90 tested websites,
we identify security flaws in 55 websites (61.1%), in-
cluding new critical vulnerabilities introduced by track-
ing libraries such as Facebook Pixel, all of which fixable
by WPSE. Finally, we show that WPSE works flawlessly
on 83 websites (92.2%), with the 7 compatibility issues
being caused by custom implementations deviating from
the OAuth 2.0 specification, one of which introducing a
critical vulnerability.

1 Introduction

Web protocols are security protocols deployed on top
of HTTP and HTTPS, most notably to implement au-
thentication and authorization at remote servers. Popular
examples of web protocols include OAuth 2.0, OpenID
Connect, SAML 2.0 and Shibboleth, which are routinely
used by millions of users to access security-sensitive
functionalities on their personal accounts.

Unfortunately, designing and implementing web pro-
tocols is a particular error-prone task even for security
experts, as witnessed by the large number of vulnerabili-
ties reported in the literature [43, 6, 5, 50, 28, 27, 48, 46].
The main reason for this is that web protocols involve
communication with a web browser, which does not

strictly follow the protocol specification, but reacts asyn-
chronously to any input it receives, producing messages
which may have an import on protocol security. Reac-
tiveness is dangerous because the browser is agnostic to
the web protocol semantics: it does not know when the
protocol starts, nor when it ends, and is unaware of the
order in which messages should be processed, as well as
of the confidentiality and integrity guarantees desired for
a protocol run. For example, in the context of OAuth 2.0,
Bansal et al. [6] discussed token redirection attacks en-
abled by the presence of open redirectors, while Fett et
al. [19] presented state leak attacks enabled by the com-
munication of the Referer header; these attacks are not
apparent from the protocol specification alone, but come
from the subtleties of the browser behaviour.

Major service providers try to aid software developers
to correctly integrate web protocols in their websites by
means of JavaScript APIs; however, web developers are
not forced to use them, can still use them incorrectly [47],
and the APIs themselves do not necessarily implement
the best security practices [43]. This unfortunate situa-
tion led to the proliferation of attacks against web proto-
cols even at popular services.

In this paper, we propose a fundamental paradigm shift
to strengthen the security guarantees of web protocols.
The key idea we put forward is to extend browsers with a
security monitor which is able to enforce the compliance
of browser behaviours with respect to the web protocol
specification. This approach brings two main benefits:

1. web applications are automatically protected
against a large class of bugs and vulnerabilities on
the browser-side, since the browser is aware of the
intended protocol flow and any deviation from it is
detected at runtime;

2. protocol specifications can be written and verified
once, possibly as a community effort, and then uni-
formly enforced at a number of different websites
by the browser.

Remarkably, though changing the behaviour of web
browsers is always delicate for backward compatibility,
the security monitor we propose is carefully designed
to interact gracefully with existing websites, so that the
website functionality is preserved unless it critically de-
viates from the intended protocol specification. More-
over, a large set of the monitor functionalities can be im-
plemented as a browser extension, thereby offering im-
mediate protection to Internet users and promising a sig-
nificant practical impact.

1.1 Contributions
In this paper, we make the following contributions:

1. we identify three fundamental browser-side security
properties for web protocols, that is, the confiden-
tiality and integrity of message components, as well
as the compliance with the intended protocol flow.
We discuss concrete examples of their import for
the popular authorization protocol OAuth 2.0;

2. we semantically characterize these properties and
formally prove that their enforcement suffices to
protect the web application from a wide range of
protocol implementation bugs and attacks on the ap-
plication code running in the browser;

3. we propose the Web Protocol Security Enforcer,
or WPSE for short, a browser-side security moni-
tor designed to enforce the aforementioned security
properties, which we implement as a publicly avail-
able Google Chrome extension;

4. we experimentally assess the effectiveness of
WPSE by testing it against 90 popular websites
making use of OAuth 2.0 to implement single sign-
on at major identity providers. In our analysis, we
identified security flaws in 55 websites (61.1%), in-
cluding new critical vulnerabilities caused by track-
ing libraries such as Facebook Pixel, all of which
fixable by WPSE. We show that WPSE works flaw-
lessly on 83 websites (92.2%), with the 7 compati-
bility issues being caused by custom implementa-
tions deviating from the OAuth 2.0 specification,
one of which introducing a critical vulnerability;

5. to show the generality of our approach, we also
considered SAML 2.0, a popular web authoriza-
tion protocol: while formalizing its specification,
we found a new attack on the Google implemen-
tation of SAML 2.0 that has been awarded a bug
bounty according to the Google Vulnerability Re-
ward Program.1

1 https://www.google.com/about/appsecurity/reward-
program/

2 Security Challenges in Web Protocols

The design of web protocols comes with various security
challenges which can often be attributed to the presence
of the web browser that acts as a non-standard protocol
participant. In the following, we discuss three crucial
challenges, using the OAuth 2.0 authorization protocol
as illustrative example.

2.1 Background on OAuth 2.0
OAuth 2.0 [25] is a web protocol that enables resource
owners to grant controlled access to resources hosted at
remote servers. Typically, OAuth 2.0 is also used for au-
thenticating the resource owner to third parties by giving
them access to the resource owner’s identity stored at an
identity provider. This functionality is known as Single
Sign-On (SSO). Using standard terminology, we refer to
the third-party application as relying party (RP) and to
the website storing the resources, including the identity,
as identity provider (IdP).2

The OAuth 2.0 specification defines four different pro-
tocol flows, also known as grant types or modes. We
focus on the authorization code mode and the implicit
mode since they are the most commonly used by web-
sites.

The authorization code mode is intended for a RP
whose main functionality is carried out at the server side.
The high-level protocol flow is depicted in Figure 1. For
the sake of readability, we introduce a simplified version
of the protocol abstracting from some implementation
details that are presented in Section 4.1. The protocol
works as follows:

1© the user U sends a request to RP for accessing a
remote resource. The request specifies the IdP that
holds the resource. In the case of SSO, this step
determines which IdP should be used;

2© RP redirects U to the login endpoint of IdP. This
request contains the RP’s identity at IdP, the URI
that IdP should redirect to after successful login and
an optional state parameter for CSRF protection that
should be bound to U’s state;

3© IdP answers to the authorization request with a lo-
gin form and the user provides her credentials;

4© IdP redirects U to the URI of RP specified at step
2©, including the previously received state parame-

ter and an authorization code;
2 The OAuth 2.0 specification distinguishes between resource

servers and authorization servers instead of considering one identity
provider that stores the user’s identity as well as its resources [25], but
it is common practice to unify resource and authorization servers as one
party [19, 43, 27].

U RP IdP

RP(redirect URI)

1○ IdP

2○ RP ID, redirect URI, state

3○ Login form

User credentials

4○ authorization code, state

5○ authorization code, RP ID, redirect URI

6○ access token

7○ access token

8○ resource

Figure 1: OAuth 2.0 (authorization code mode).

5© RP makes a request to IdP with the authorization
code, including its identity, the redirect URI and op-
tionally a shared secret with the IdP;

6© IdP answers with an access token to RP;

7© RP makes a request for the user’s resource to IdP,
including the access token;

8© IdP answers RP with the user’s resource at IdP.

The implicit mode differs from the authorization code
mode in steps 4©- 6©. Instead of granting an authorization
code to RP, the IdP provides an access token in the frag-
ment identifier of the redirect URI. A piece of JavaScript
code embedded in the page located at the redirect URI
extracts the access token and communicates it to the RP.

2.2 Challenge #1: Protocol Flow
Protocols are specified in terms of a number of sequen-
tial message exchanges which honest participants are ex-
pected to follow, but the browser is not forced to comply
with the intended protocol flow.

Example in OAuth 2.0. The use of the state param-
eter is recommended to prevent attacks leveraging this
idiosyncrasy. When OAuth is used to implement SSO
and RP does not provide the state parameter in its autho-
rization request to IdP at step 2©, it is possible to force
the honest user’s browser to authenticate as the attacker.
This attack is known as session swapping [43].

We give a short overview on this attack against the
authorization code mode. A web attacker A initiates SSO
at RP with an identity provider IdP, performs steps 1©-
3© of the protocol and learns a valid authorization code

for her session. Next, A creates a page on her website

that, when visited, automatically triggers a request to the
redirect URI of RP and includes the authorization code.
When a honest user visits this page, the login procedure
is completed at RP and an attacker session is established
in the user’s browser.

2.3 Challenge #2: Secrecy of Messages
The security of protocols typically relies on the confi-
dentiality of cryptographic keys and credentials, but the
browser is not aware of which data must be kept secret
for protocol security.

Example in OAuth 2.0. The secrecy of the authoriza-
tion credentials (namely authorization codes and access
tokens) is crucial for meeting the protocol security re-
quirements, since their knowledge allows an attacker to
access the user’s resources. The secrecy of the state pa-
rameter is also important to ensure session integrity.

An example of an unintended secrets leakage is the
state leak attack described in [19]. If the page loaded at
the redirect URI in step 4© loads a resource from a ma-
licious server, the state parameter and the authorization
code (that are part of the URL) are leaked in the Referer
header of the outgoing request. The learned authoriza-
tion code can potentially be used to obtain a valid access
token for U at IdP, while the leaked state parameter en-
ables the session swapping attack discussed previously.

2.4 Challenge #3: Integrity of Messages
Protocol participants are typically expected to perform
a number of runtime checks to prove the integrity of
the messages they receive and ensure the integrity of
the messages they send, but the browser cannot perform

these checks unless they are explicitly carried out in a
JavaScript implementation of the web protocol.

Example in OAuth 2.0. An attack that exploits this
weakness is the naı̈ve RP session integrity attack pre-
sented in [19]. Suppose that RP supports SSO with vari-
ous identity providers and uses different redirect URIs to
distinguish between them. In this case, an attacker con-
trolling a malicious identity provider AIdP can confuse
the RP about which provider is being used and force the
user’s browser to login as the attacker.

To this end, the attacker starts a SSO login at RP with
an honest identity provider HIdP to obtain a valid au-
thorization code for her account. If a honest user starts
a login procedure at RP with AIdP, in step 4© AIdP is
expected to redirect the user to AIdP’s redirect URI at
RP. If AIdP redirects to the redirect URI of HIdP with
the authorization code from the attacker session, then RP
mistakenly assumes that the user intended to login with
HIdP. Therefore, RP completes the login with HIdP us-
ing the attacker’s account.

3 WPSE: Design and Implementation

The Web Protocol Security Enforcer (WPSE) is the first
browser-side security monitor addressing the peculiar
challenges of web protocols. The current prototype is
implemented as an extension for Google Chrome, which
we make available online.3

3.1 Key Ideas of WPSE
We illustrate WPSE on the authorization code mode of
OAuth 2.0, where Google is used as identity provider and
the state parameter is not used (since it is not mandatory
at Google). For simplicity, here we show only the most
common scenario where the user has an ongoing session
with the identity provider and the authorization to access
the user’s resources on the provider has been previously
granted to the relying party.

3.1.1 Protocol Flow

WPSE describes web protocols in terms of the HTTP(S)
exchanges observed by the web browser, following the
so-called browser relayed messages methodology first
introduced by Wang et al. [46]. The specification of the
protocol flow defines the syntactic structure and the ex-
pected (sequential) order of the HTTP(S) messages, sup-
porting the choice of different execution branches when
a particular protocol message is sent or received by the
browser. The protocol specification is given in XML (cf.
Appendix A), but for the sake of readability, we use in
this paper an equivalent representation in terms of finite

3 https://sites.google.com/site/wpseproject/

state automata, like the one depicted in Figure 2. Intu-
itively, each state of the automaton represents one stage
of the protocol execution in the browser. By sending an
HTTP(S) request or receiving an HTTP(S) response as
dictated by the protocol, the automaton steps to the next
state until it reaches a final state denoting the end of the
protocol run. Afterwards, the automaton moves back to
the initial state and a new protocol run can start.

The edges of the automaton are labeled with message
patterns, describing the expected shape of the protocol
messages at each state. We represent HTTP(S) requests
as e〈a〉, where e is the remote endpoint to which the mes-
sage is sent and a is a list of parameters, while HTTP(S)
responses are noted e(h), where e is the remote end-
point from which the message is received and h is a
list of headers.4 The syntactic structure of e,a,h can be
described using regular expressions. The message pat-
terns should be considered as guards of the transition,
which are only enabled for messages matching the pat-
tern. For instance, the pattern φ2 in Figure 2 matches a
response from the endpoint G with a Location header
that contains a URL with a parameter named code. If an
HTTP(S) request or response does not satisfy any of the
patterns of the outgoing transitions of the current state, it
is blocked and the automaton is reset to the initial state,
i.e., the protocol run is aborted. In case of branches with
more than one transition enabled at a given state, we
solve the non-determinism by picking the first transition
(with a matching pattern) according to the order defined
in the XML specification. Patterns can be composed us-
ing standard logical connectives.

Each state of the automaton also allows for pausing the
protocol execution in presence of requests and responses
that are unrelated to the protocol. Messages are consid-
ered unrelated to the protocol if they are not of the shape
of any valid message in the protocol specification. In
the automaton, this is expressed by having a self-loop
for each state, labeled with the negated disjunction of all
patterns describing valid protocol messages. This is im-
portant for website functionality, because the input/out-
put behavior of browsers on realistic websites is complex
and hard to fully determine when writing a protocol spec-
ification. Also, the same protocol may be run on different
websites, which need to fetch different resources as part
of their protocol-unrelated functionalities, and we would
like to ensure that the same protocol specification can be
enforced uniformly on all these websites.

3.1.2 Security Policies

To incorporate secrecy and integrity policies in the au-
tomaton, we allow for binding parts of message patterns

4 We support HTTP headers also in requests. Here we omit them
since they are not used in the protocols that we consider.

initstart auth access end
φ1

¬(φ1∨φ2∨φ3)

φ2 :: πS

¬(φ1∨φ2∨φ3)

φ3 ∧ πI

¬(φ1∨φ2∨φ3)

φ1 , G〈response type:code, redirect uri:^(

origin︷ ︸︸ ︷
(https?://.*?/).*?)︸ ︷︷ ︸

uri1

(?:\?|$)〉

φ2 , G(Location:[?&]code= (.*?)︸ ︷︷ ︸
authcode

(?:&|$)) φ3 , (.*)︸ ︷︷ ︸
uri2

〈code:([^\s]{40,})〉

πS , authcode→{https://accounts.google.com,origin} πI , uri1= uri2

Figure 2: Automaton for OAuth 2.0 (authorization code mode) where G is the OAuth endpoint at Google.

to identifiers. For instance, in Figure 2 we bind the iden-
tifier origin to the content of the redirect uri pa-
rameter, more precisely to the part matching the regular
expression group (https?://.*?/).5 The scope of an
identifier includes the state where it is first introduced
and all its successor states, where the notion of successor
is induced by the tree structure of the automaton. For in-
stance, the scope of the identifier origin introduced in
φ1 includes the states auth,access,end.

The secrecy policy defines which parts of the HTTP(S)
responses included in the protocol specification must be
confidential among a set of web origins. We express se-
crecy policies πS with the notation x→ S to denote that
the value bound to the identifier x can be disclosed only
to the origins specified in the set S. We call S the se-
crecy set of identifier x and represent such a policy on
the message pattern where the identifier x is first intro-
duced, using a double colon symbol :: as a separator.
For instance, in Figure 2 we require that the value of
the authorization code, which is bound to the identifier
authcode introduced in φ2, can be disclosed only to
Google (at https://accounts.google.com) and the
relying party (bound to the identifier origin). Confiden-
tial message components are stripped from HTTP(S) re-
sponses and substituted by random placeholders, so that
they are isolated from browser accesses, e.g., computa-
tions performed by JavaScript. When the automaton de-
tects an HTTP(S) request including one of the generated
placeholders, it replaces the latter with the correspond-
ing original value, but only if the HTTP(S) request is
directed to one of the origins which is entitled to learn
it. A similar idea was explored by Stock and Johns to
strengthen the security of password managers [42]. Since
the substitution of confidential message components with
placeholders changes the content of the messages, poten-
tially introducing deviations with respect to the transition

5 https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Global_Objects/RegExp

labels, the automaton processes HTTP(S) responses be-
fore stripping confidential values and HTTP(S) requests
after replacing the placeholders with the original values.
This way, the input/output behavior of the automaton
matches the protocol specification.

The integrity policy defines runtime checks over the
HTTP(S) messages. These checks allow for the compar-
ison of incoming messages with the messages received
in previous steps of the protocol execution. If any of the
integrity checks fails, the corresponding message is not
processed and the protocol run is aborted. To express in-
tegrity policies πI in the automaton, we enrich the mes-
sage patterns to include comparisons ranging over the
identifiers introduced by preceding messages. In the case
of OAuth 2.0, we would like to ensure that the browser
is redirected by the IdP to the redirect URI specified
in the first step of the protocol. Therefore, in Figure 2
the desired integrity policy is modeled by the condition
uri1= uri2.

3.1.3 Enforcing Multiple Protocols

There are a couple of delicate points to address when
multiple protocol specifications P1, . . . ,Pn must be en-
forced by WPSE:

1. if two different protocols Pi and Pj share messages
with the same structure, there might be situations
where WPSE does not know which of the two pro-
tocols is being run, yet a message may be allowed
by Pi and disallowed by Pj or vice-versa;

2. if WPSE is enforcing a protocol Pi, it must block
any message which may be part of another protocol
Pj, otherwise it would be trivial to sidestep the secu-
rity policy of Pi by first making the browser process
the first message of Pj.

Both problems are solved by replacing the protocol spec-
ifications P1, . . . ,Pn with a single specification P with n

branches, one for each Pi. Using this construction, any
ambiguity on which protocol specification should be en-
forced is solved by the determinism of the resulting fi-
nite state automaton. Moreover, the self loops of the au-
tomaton will only match the messages which are not part
of any of the n protocol specifications, thereby prevent-
ing unintended protocol interleavings. Notice that the
semantics of WPSE depends on the order of P1, . . . ,Pn,
due to the way we enforce determinism on the compiled
automaton: if Pi starts with a request to u including two
parameters a and b, while Pj starts with a request to u in-
cluding just the parameter a, then Pi should occur before
Pj to ensure it is actually taken into account.

3.2 Discussion
A number of points of the design and the implementation
of WPSE are worth discussing more in detail.

3.2.1 Protocol Flow

WPSE provides a significant improvement in security
over standard web browsers, as we show in the remainder
of the paper, but the protection it offers is not for free, be-
cause it requires the specification of a protocol flow and a
security policy. We think that it is possible to develop au-
tomated techniques to reconstruct the intended protocol
flow from observable browser behaviours, while synthe-
sizing the security policy looks more difficult. Manually
finding the best security policy for a protocol may re-
quire significant expertise, but even simple policies can
be useful to prevent a number of dangerous attacks, as
we demonstrate in Section 4.

The specification style of the protocol flow supported
by WPSE is simple, because it only allows sequential
composition of messages and branching. As a result,
our finite state automata are significantly simpler than
the request graphs proposed by Guha et al. [24] to rep-
resent legitimate browser behaviors (from the server per-
spective). For instance, our finite state automata do not
include loops and interleaving of messages, because it
seems that these features are not extensively used in web
protocols. Like standard security protocols, web proto-
cols are typically specified in terms of a fixed number of
sequential messages, which are appropriately supported
by the specification language we chose.

3.2.2 Secrecy Enforcement

The implementation of the secrecy policies of WPSE is
robust, but restrictive. Since WPSE substitutes confiden-
tial values with random placeholders, only the latter are
exposed to browser-side scripts. Shielding secret values
from script accesses is crucial to prevent confidentiality
breaches via untrusted scripts or XSS, but it might also

break the website functionality if a trusted script needs to
compute over a secret value exchanged in the protocol.
The current design of WPSE only supports a limited use
of secrets by browser-side scripts, i.e., scripts can only
forward secrets unchanged to the web origins entitled to
learn them. We empirically show that this is enough to
support existing protocols like OAuth 2.0 and SAML, but
other protocols may require more flexibility.

Dynamic information flow control deals with the prob-
lem of letting programs compute over secret values while
avoiding confidentiality breaches and it has been applied
in the context of web browsers [21, 26, 8, 36, 7]. We be-
lieve that dynamic information flow control can be fruit-
fully combined with WPSE to support more flexible se-
crecy policies. This integration can also be useful to
provide confidentiality guarantees for values which are
generated at the browser-side and sent in HTTP(S) re-
quests, rather than received in HTTP(S) responses. We
leave the study of the integration of dynamic information
flow control into WPSE to future work.

3.2.3 Extension APIs

The current prototype of WPSE suffers from some lim-
itations due to the Google Chrome extension APIs. In
particular, the body of HTTP messages cannot be mod-
ified by extensions, hence the secrecy policy cannot be
implemented when secret values are embedded in the
page contents or the corresponding placeholders are sent
as POST parameters. Currently, we protect secret values
contained in the HTTP headers of a response (e.g., cook-
ies or parameters in the URL of a Location header) and
we only substitute the corresponding placeholders when
they are communicated via HTTP headers or as URL pa-
rameters. Clearly this is not a limitation of our general
approach but rather one of the extension APIs, which can
be solved by implementing the security monitor directly
in the browser or as a separate proxy application. De-
spite these limitations, we were able to test the current
prototype of WPSE on a number of real-world websites
with very promising results, as reported in Section 5.

4 Fortifying Web Protocols with WPSE

To better appreciate the security guarantees offered by
WPSE, we consider two popular web protocols: OAuth
2.0 and SAML. The security of both protocols has al-
ready been studied in depth, so they are an excellent
benchmark to assess the effectiveness of WPSE: we re-
fer to [6, 19, 43] for security analyses of OAuth 2.0 and
to [3, 4] for research studies on SAML. Remarkably,
by writing down a precise security policy for SAML,
we were able to expose a new critical attack against the
Google implementation of the protocol.

Detected
Violation

Attack

Protocol
flow

deviation

Session swapping [43]
Social login CSRF on stateless clients [6]
IdP mix-up attack (web attacker) [19]

Secrecy
violation

Unauthorized login by authentication
code redirection [6]
Resource theft by access token redirec-
tion [6]
307 redirect attack [19]
State leak attack [19]

Integrity
violation

Cross social-network request forgery [6]
Naı̈ve RP session integrity attack [19]

Table 1: Overview of the attacks against OAuth 2.0.

4.1 Attacks Against OAuth 2.0

We review in this section several attacks on OAuth 2.0
from the literature, analysing whether they are prevented
by our extension. We focus in particular on those pre-
sented in [6, 19, 43], since they apply to the OAuth 2.0
flows presented in this work. In Table 1 we provide an
overview of the attacks that WPSE is able to prevent,
grouped according to the type of violation of the security
properties that they expose.

4.1.1 Protocol Flow Deviations

This category covers attacks that force the user’s browser
to skip messages or to accept them in a wrong order. For
instance, some attacks, e.g., some variants of CSRF and
session swapping, rely on completing a social login in
the user’s browser that was not initiated before. This is a
clear deviation from the intended protocol flow and, as a
consequence, WPSE blocks these attacks.

We exemplify on the session swapping attack dis-
cussed in Section 2.2. Here the attacker tricks the user
into sending a request containing the attacker’s autho-
rization credential (e.g., the authorization code) to RP
(step 4© of the protocol flow). Since the state parame-
ter is not used, the RP cannot verify whether this request
was preceded by a social login request by the user. Our
security monitor blocks the (out-of-order) request since
it matches the pattern φ3, which is allowed by the au-
tomaton in Figure 2 only in state access. Thus, the attack
is successfully prevented.

4.1.2 Secrecy Violations

This category covers attacks where sensitive information
is unintentionally leaked, e.g., via the Referer header or
because of the presence of open redirectors at RP. Sen-

sitive data can either be leaked to untrusted third parties
that should not be involved in the protocol flow (as in the
state leak attack) or protocol parties that are not trusted
for a specific secret (as in the 307 redirect attack). WPSE
can prevent this class of attacks since the secrecy policy
allows one to specify the origins that are entitled to re-
ceive a secret.

We illustrate how the monitor prevents these attacks in
case of the state leak attack discussed in Section 2.3, fo-
cusing on the authorization code. In the attack, the autho-
rization code is leaked via the Referer header of the re-
quest fetching a resource from the attacker website which
is embedded in the page located at the redirect URI of RP
(step 4© of the protocol). When the authorization code
(authcode) is received (step 2©), the monitor extracts
it from the Location header and replaces it with a ran-
dom placeholder before the request is processed by the
browser. After step 4©, the request to the attacker’s web-
site is sent, but the monitor does not replace the place-
holder with the actual value of the authorization code
since the secrecy set associated to authcode in πS does
not include the domain of the attacker.

4.1.3 Integrity Violations

This category contains attacks that maintain the general
protocol flow, but the contents of the exchanged mes-
sages do not satisfy some integrity constraints required
by the protocol. WPSE can prevent these attacks by en-
forcing browser-side integrity checks.

Consider the naı̈ve RP session integrity attack pre-
sented in Section 2.4. In this attack, the malicious iden-
tity provider AIdP redirects the user’s browser to the redi-
rect URI of the honest identity provider HIdP at RP dur-
ing step 4© of the protocol. At step 2©, the redirect URI is
provided to AIdP as parameter. This request corresponds
to the pattern φ1 of the automation and the redirect URI
associated to AIdP is bound to the identifier uri1. At
step 4©, AIdP redirects the browser to a different redirect
URI, which is bound to the identifier uri2. Although
the shape of the request satisfies pattern φ3, the moni-
tor cannot move from state access to state end since the
constraint uri1 = uri2 in the integrity policy πI is vi-
olated. Thus, no transition is enabled for the state access
and the request is blocked by WPSE, therefore prevent-
ing the attack.

4.2 Attacks Against SAML

The Security Assertion Markup Language (SAML)
2.0 [34] is an open standard for sharing authentication
and authorization across a multitude of domains. SAML
is based on XML messages called assertions and defines
different profiles to account for a variety of use cases and

C SP IdP
1○ URI

2○ SAMLRequest=AuthnRequest, RelayState=URI

3○ login form

User credentials

4○ SAMLResponse=Response, RelayState=URI

5○ URI

6○ resource

Figure 3: SAML 2.0 SP-Initiated SSO with Redirect/POST Bindings.

deployment scenarios. SSO functionality is enabled by
the SAML 2.0 web browser SSO profile, whose typi-
cal use case is the SP-Initiated SSO with Redirect/POST
Bindings [33, 4]. Similarly to OAuth 2.0, there are three
entities involved: a user controlling a web browser (C),
an identity provider (IdP) and a service provider (SP).
The protocol prescribes how C can access a resource pro-
vided by an SP after authenticating with an IdP.

The relevant steps of the protocol are depicted in Fig-
ure 3. In step 1©, C requests from SP the resource lo-
cated at URI; in 2© the SP redirects the browser to the
IdP sending an AuthnRequest XML message in deflated,
base64-encoded form and a RelayState parameter; C pro-
vides his credentials to the IdP in step 3© where they are
verified; in step 4© the IdP causes the browser to issue
a POST request to the Assertion Consumer Service at
the SP containing the base64-encoded SamlResponse and
the RelayState parameters; in 5© the SP processes the re-
sponse, creates a security context at the service provider
and redirects C to the target resource at URI; given that
a security context is in place, the SP provider returns the
resource to C.

The RelayState is a mechanism for preserving some
state information at the SP, such as the resource URI re-
quested by the user [20]. If the RelayState parameter
is used within a request message, then subsequent re-
sponses must maintain the exact value received with the
request [35]. A violation of this constraint enables at-
tacks such as [3], in which C requests a resource URIi at
a malicious SPi. SPi pretends to be C at the honest SP
and requests a different resource at SP located at URISP
which is returned to SPi. The malicious service provider
replies to C by providing a redirection address containing
a different resource URI, thus causing the browser to send
URIi instead of instead of URI as the value of RelayState

at steps 2©, 4©. The result is that C forcibly accesses a
resource at SP, while he originally asked for a resource
from SPi.

Interestingly, by using WPSE it is possible to instruct
the browser with knowledge of the protocol in such a way
that the client can verify whether the requests at steps
2©, 4© are related to the initial request. We distilled a

simple policy for the SAML 2.0 web browser SSO pro-
file that enforces an integrity constraint on the value of
the RelayState parameter, thus blocking requests to un-
desired resources due to a violation of the policy.

Furthermore, SAML 2.0 does not specify any way to
maintain a contextual binding between the request at step
2© and the request at step 4©. It follows that only the

SAMLResponse and RelayState parameters are enough
to allow C to access the resource at URI. We discov-
ered that this shortcoming in the protocol has a critical
impact on real SPs using the SAML-based SSO profile
described in this section. Indeed, we managed to mount
an attack against Google that allows a web attacker to
authenticate any user on Google’s suite applications un-
der the attacker’s account, with effects similar to a Login
CSRF attack. Since Google can act as a Service Provider
(SP) with a third party IdP, an attacker registered to a
given IdP can simulate a login attempt with his legiti-
mate credentials to obtain a valid POST request to the
Google assertion consumer service (step 4©). Once ac-
cessed, a malicious web page can then cause a victim’s
browser to issue the attacker’s request to the Google as-
sertion consumer service, thus forcing the victim inside
the attacker’s controlled authenticated session.

The vulnerability can be exploited by any web attacker
with a valid account on a third party IdP that uses Google
as SP. In particular, our university uses SAML 2.0 with
Google as a Service provider to offer email and storage

facilities to students and employees. We have imple-
mented the attack by constructing a malicious webpage
that silently performs a login on Google’s suite applica-
tions using one of our personal accounts. The vulnera-
bility allows the attacker to access private information of
the victim that has been saved in the account, such as ac-
tivity history, notes and documents. We have responsibly
reported this vulnerability to Google who rewarded us
according to their bug bounty program. As soon as they
are available, we will provide on our website the details
of the fixes that Google is implementing to resolve the
issue [14].

From the browser standpoint, this attack is clearly
caused by a violation of the protocol flow given that steps
1©- 3© are carried out by the attacker and step 4© and sub-

sequent ones involve the victim. WPSE identifies the
outgoing request to the IdP as a protocol flow deviation,
thereby preventing the attack.

4.3 Out-of-Scope Attacks
We have shown that WPSE is able to block a wide range
of attacks on existing web protocols. However, some
classes of attacks cannot be prevented by browser-side
security monitoring. Specifically, WPSE cannot prevent:

1. attacks which do not deviate from the expected pro-
tocol flow. An example of such an attack against
OAuth 2.0 is the automatic login CSRF attack pre-
sented in [6], which exploits the lack of CSRF pro-
tection on the login form of the relying party to
force an authentication to the identity provider. This
class of attacks can be prevented by implementing
appropriate defenses against known web attacks;

2. attacks which cause deviations from the expected
protocol flow that are not observable by the browser.
In particular, this class of attacks includes network
attacks, where the attacker corrupts the traffic ex-
changed between the protocol participants. For in-
stance, a network attacker can run the IdP mix-up
attack from [19] when the first step of OAuth 2.0
is performed over HTTP. This class of attacks can
be prevented by making use of HTTPS, preferably
backed up by HSTS;

3. attacks which do not involve the user’s browser at
all. An example is the impersonation attack on
OAuth 2.0 discussed in [43], where public infor-
mation is used for authentication. Another exam-
ple is the DuoSec vulnerability found on several
SAML implementations [30] that exploits a bug in
the XML libraries used by SPs to parse SAML mes-
sages. This class of attacks must be necessarily
solved at the server side.

5 Experimental Evaluation

Having discussed how WPSE can prevent several real-
world attacks presented in the literature, we finally move
to on-field experiments. The goal of the present sec-
tion is assessing the practical security benefits offered
by WPSE on existing websites in the wild, as well as to
test the compatibility of its browser-side security mon-
itoring with current web technologies and programming
practices. To this end, we experimentally assessed the ef-
fectiveness of WPSE by testing it against websites using
OAuth 2.0 to implement SSO at high-profile IdPs.

5.1 Experimental Setup
We developed a crawler to automatically identify exist-
ing OAuth 2.0 implementations in the wild. Our analysis
is not meant to provide a comprehensive coverage of the
deployment of OAuth 2.0 on the web, but just to identify
a few popular identity providers and their relying parties
to carry out a first experimental evaluation of WPSE.

We started from a comprehensive list of OAuth 2.0
identity providers6 and we collected for each of them
the list of the HTTP(S) endpoints used in their imple-
mentation of the protocol. Inspired by [45], our crawler
looks for login pages on websites to find syntactic occur-
rences of these endpoints: after accessing a homepage,
the crawler extracts a list of (at most) 10 links which may
likely point to a login page, using a simple heuristic. It
also retrieves, using the Bing search engine, the 5 most
popular pages of the website. For all these pages, the
crawler checks for the presence of the OAuth 2.0 end-
points in the HTML code and in the 5 topmost scripts
included by them. By running our crawler on the Alexa
100k top websites, we found that Facebook (1,666 web-
sites), Google (1,071 websites) and VK (403 websites)
are the most popular identity providers in the wild.

We then developed a faithful XML representation of
the OAuth 2.0 implementations available at the selected
identity providers. There is obviously a large overlap be-
tween these specifications, though slight differences are
present in practice, e.g., the use of the response type

parameter is mandatory at Google, but can be omitted
at Facebook and VK to default to the authorization code
mode. For the sake of simplicity, we decided to model
the most common use case of OAuth 2.0, i.e., we as-
sume that the user has an ongoing session with the iden-
tity provider and that authorization to access the user’s
resources on the provider has been previously granted to
the relying party. For each identity provider we devised
a specification that supports the OAuth 2.0 authorization
code and implicit modes, with and without the optional

6 https://en.wikipedia.org/wiki/List_of_OAuth_
providers

state parameter, leading to 4 possible execution paths.
Finally, we created a dataset of 90 websites by sampling
30 relying parties for each identity provider, covering
both the authorization code mode and the implicit mode
of OAuth 2.0. We have manually visited these websites
with a browser running WPSE both to verify if the proto-
col run was completed successfully and to assess whether
all the functionalities of the sites were working properly.
In the following we report on the results of testing our ex-
tension against these websites from both a security and a
compatibility point of view.

5.2 Security Analysis
We devised an automated technique to check whether
WPSE can stop dangerous real-world attacks. Since we
did not want to attack the websites, we focused on two
classes of vulnerabilities which are easy to detect just
by navigating the websites when using WPSE. The first
class of vulnerabilities enables confidentiality violations:
it is found when one of the placeholders generated by
WPSE to enforce its secrecy policies is sent to an unin-
tended web origin. The second class of vulnerabilities,
instead, is related to the use of the state parameter: if
the state parameter is unused or set to a predictable static
value, then session swapping becomes possible (see Sec-
tion 2.2). We can detect these cases by checking which
protocol specification is enforced by WPSE and by mak-
ing the state parameter secret, so that all the values bound
to it are collected by WPSE when they are substituted by
the placeholders used to enforce the secrecy policy.

We observed that our extension prevented the leakage
of sensitive data on 4 different relying parties. Interest-
ingly, we found that the security violation exposed by the
tool are in all cases due to the presence of tracking or ad-
vertisements libraries such as Facebook Pixel,7 Google
AdSense,8 Heap9 and others. For example, this has been
observed on ticktick.com, a website offering collabo-
rative task management tools. The leakage is enabled by
two conditions:

1. the website allows its users to perform a login via
Google using the implicit mode;

2. the Facebook tracking library is embedded in the
page which serves as redirect URI.

Under these settings, right after step 4© of the proto-
col, the tracking library sends a request to https://

www.facebook.com/tr/ with the full URL of the cur-
rent page, which includes the access token issued by

7 https://www.facebook.com/business/a/facebook-
pixel

8 https://www.google.com/adsense
9 https://heapanalytics.com/

Google. We argue that this is a critical vulnerability,
given that leaking the access token to an unauthorized
party allows unintended access to sensitive data owned
by the users of the affected website. We promptly re-
ported the issue to the major tracking library vendors
and the vulnerable websites. Library vendors informed
us that they are not providing any fix since it is a respon-
sibility of web developers to include the tracking library
only in pages without sensitive contents.10

For what concerns the second class of vulnerabilities,
55 out of 90 websites have been found affected by the
lack or misuse of the state parameter. More in detail,
we identified 41 websites that do not support it, while
the remaining 14 websites miss the security benefit of
the state parameter by using a predictable or constant
string as a value. We claim that such disheartening situa-
tion is mainly caused by the identity providers not setting
this important parameter as mandatory. In fact, the state
parameter is listed as recommended by Google and op-
tional by VK. On the other hand, Facebook marks the
state parameter as mandatory in its documentation, but
our experiments showed that it fails to fulfill the require-
ment in practice. Additionally, it would be advisable to
clearly point out in the OAuth 2.0 documentation of each
provider the security implications of the parameter. For
instance, according to the Google documentation,11 the
state parameter can be used “for several purposes, such
as directing the user to the correct resource in your appli-
cation, sending nonces, and mitigating cross-site request
forgery”: we believe that this description is too vague
and opens the door to misunderstandings.

5.3 Compatibility Analysis

To detect whether WPSE negatively affects the web
browser functionality, we performed a basic navigation
session on the websites in our dataset. This interaction
includes an access to their homepage, the identification
of the SSO page, the execution of the OAuth 2.0 proto-
col, and a brief navigation of the private area of the web-
site. In our experiments, the usage of WPSE did not im-
pact in a perceivable way the browser performance or the
time required to load webpages. We were able to navi-
gate 81 websites flawlessly, but we also found 9 websites
where we did not manage to successfully complete the
protocol run.

In all the cases, the reason for the compatibility is-
sues was the same, i.e., the presence of an HTTP(S) re-
quest with a parameter called code after the execution
of the protocol run. This message has the same syntactic

10 See, for instance, Google AdSense program policy available at
https://support.google.com/adsense/topic/6162392

11 https://developers.google.com/identity/protocols/
OAuth2WebServer

structure as the last request sent as part of the authoriza-
tion code mode of OAuth 2.0 and is detected as an attack
when our security monitor moves back to its initial state
at the end of the protocol run, because the message is
indistinguishable from a session swapping attempt (see
Section 2.2). We manually investigated all these cases: 2
of them were related to the use of the Gigya social login
provider, which offers a unified access interface to many
identity providers including Facebook and Google; the
other 7, instead, were due to a second exchange of the au-
thorization code at the end of the protocol run. We were
able to solve the first issue by writing an XML specifica-
tion for Gigya (limited to Facebook and Google), while
the other cases openly deviate from the OAuth 2.0 spec-
ification, where the authorization code is only supposed
to be sent to the redirect URI and delivered to the relying
party from there. These custom practices are hard to ex-
plain and to support and, unsurprisingly, may introduce
security flaws. In fact, one of the websites deviating from
the OAuth 2.0 specification suffers from a serious secu-
rity issue, because the authorization code is first com-
municated to the website over HTTP before being sent
over HTTPS, thus becoming exposed to network attack-
ers. We responsibly disclosed this security issue to the
website owners.

In the end, all the compatibility issues we found boil
down to the fact that a web protocol message has a rela-
tively weak syntactic structure, which may end up match-
ing a custom message used by websites as part of their
functionality. We think that most of these issues can be
robustly solved by using more explicit message formats
for standardized web protocols like OAuth 2.0: explic-
itness is indeed a widely recognized prudent engineer-
ing practice for traditional security protocols [1]. Having
structured message formats could be extremely helpful
for a precise browser-side fortification of web protocols
which minimizes compatibility issues.

6 Formal Guarantees

Now we formally characterize the security guarantees of-
fered by our monitoring technique. Here we provide an
intuitive description of the formal result, referring the in-
terested reader to [15] for a complete account.

The formal result states that given a web protocol that
is proven secure for a set of network participants and an
uncorrupted client, by our monitoring approach we can
achieve the same security guarantees given a corrupted
client (e.g., due to XSS attacks). More precisely this
means that all attacks that will not occur in the presence
of an ideally behaving client can be fixed by our moni-
tor. Of course, these security guarantees only span the
run of the protocol that is proven secure and its protocol-
specific secrets. So the monitor can e.g., ensure that the

Figure 4: Visual description of Theorem 1

OAuth 2.0 protocol is securely executed in the presence
of compromised scripts which might result in successful
authentication and the setting of a session cookie. How-
ever, the monitor cannot prevent that this session cookie
is leaked by a malicious script after the protocol run is
over. So other security techniques (e.g., the HttpOnly

attribute for cookies) have to be in place or the protocol
specification can in principle be extended to include the
subsequent application steps (e.g., we can protect session
cookies like we do for access tokens).

Our theory is elaborated within the applied pi calcu-
lus [37], a popular process calculus for the formal anal-
ysis of cryptographic protocols, which is supported by
various automated cryptographic protocol verifiers, such
as ProVerif [10]. Bansal et al. [6] have recently presented
a technique to leverage ProVerif for the analysis of web
protocol specifications, including OAuth.

We give an overview on the theorem in Figure 4. We
assume that the protocol specification has already been
proven secure in a setting where the browser-side appli-
cation is well-behaved and, in particular, follows the pro-
tocol specification (Sorig). Intuitively, our theorem says
that security carries over to a setting (Snew) where the
browser-side application is totally under the control of
the attacker (e.g., because of XSS attacks or a simple bug
in the code) but the communication between the browser
and the other protocol parties is mediated by our monitor.

Specifically, Sorig includes a browser B and an uncom-
promised application App, which exchange messages via
private (green) communication channels bain,baout. The
communication between the browser B and the network
N is performed via the public (red) channels bsin,bsout
that can be observed and infiltrated by the network at-
tacker. Snew shows the setting in which the application
is compromised: channel bain for requests from the ap-
plication to the browser is made public, modeling that

arbitrary requests can be performed on it by the attacker.
In addition, we assume the channel baout modeling the
responses from the browser to the app to leak all mes-
sages and consequently modeling that the compromised
application might leak these secrets. Indeed, the com-
promised application can communicate with the network
attacker, which can in turn use the learned information to
attack the protocol.

We state a simplified version of the correctness theo-
rem as follows:

Theorem 1 (Monitor Correctness). Let processes App,
N, B and M as defined in Sorig and P be a property on
execution traces against a network attacker. Assume that
the following conditions hold:

(H1) Sorig � P (‘Sorig satisfies P’)

(H2) M ↓ bsin,bsout 4 Sorig ↓ bsin,bsout (‘the set of
requests/responses on bsin,bsout allowed by M are a
subset of those produced by Sorig’)

(H3) M does not leak any secrets (i.e., messages initially
unknown to the attacker) on baout

Then it also holds that:

(C) Snew � P (‘Snew satisfies P’).

Assumption (H1) states that the process as shown in
Sorig satisfies a certain trace property. In the applied pi
calculus, this is modeled by requiring that each partial
execution trace of Sorig in parallel with an arbitrary net-
work attacker satisfies the trace predicate P. Assump-
tion (H2) states that the requests/responses allowed by
the monitor M on the channels bsin, bsout, which model
the communication between the browser and the net-
work, are a subset of those possibly performed by the
process Sorig. Intuitively, this means that the monitor al-
lows for the intended protocol flow, filtering out mes-
sages deviating from it. Formally this is captured by
projecting the execution traces of the corresponding pro-
cesses to those components that model the input and out-
put behavior on bsin and bsout and by requiring that for
every such execution trace of M there is a correspond-
ing one for Sorig. Finally, assumption (H3) states that the
monitor M should not leak any secrets with its outputs
on channel baout. In applied pi calculus this is captured
by requiring that the outputs of M on channel baout do
not to contain any information that increases the attacker
knowledge.

Together these assumptions ensure that the monitored
browser behaves as the ideal protocol participant in Sorig
towards the network and additionally assure that an at-
tacker cannot gain any additional knowledge via a com-
promised application that could enable her to perform at-
tacks against the protocol over the network. Formally,

this is captured in conclusion (C) that requires the partial
execution traces of Snew to satisfy the trace predicate P.

6.1 Discussion
Our formal result is interesting for various reasons. First,
it allows us to establish formal security guarantees in
a stronger attacker model by checking certain semantic
conditions on the monitor, without having to prove from
scratch the security of the protocol with the monitor in
place on the browser-side. Second, the theorem demon-
strates that enforcing the three security properties identi-
fied in Section 2 does indeed suffice to protect web proto-
cols from a large class of bugs and vulnerabilities on the
browser side: (H2) captures the compliance with the in-
tended protocol flow as well as data integrity, while (H3)
characterizes the secrecy of messages.

Finally, the three hypotheses of the theorem are usu-
ally extremely easy to check. For instance, let us con-
sider the OAuth protocol. As previously mentioned, this
has been formally analyzed in [6], so (H1) holds true.
In particular, the intended protocol flow is directly deriv-
able from the applied pi calculus specification. The au-
tomaton in Figure 2 only allows for the intended pro-
tocol flow, which is clearly contained in the execution
traces analyzed in [6]. Hence (H2) holds true as well.
Finally, the only secrets in the protocol specification are
those subject to the confidentiality policy in the automa-
ton in Figure 2: as previously mentioned, these are re-
placed by placeholders, which are then passed to the web
application. Hence no secret can ever leak, which vali-
dates (H3).

7 Related Work

7.1 Analysis of Web Protocols
The first paper to highlight the differences between web
protocols and traditional cryptographic protocols is due
to Gross et al. [22]. The paper presented a model of web
browsers, based on a formalism reminiscent of input/out-
put automata, and applied it to the analysis of password-
based authentication, a key ingredient of most browser-
based protocols. The model was later used to formally
assess the security of the WSFPI protocol [23].

Traditional protocol verification tools have been suc-
cessfully applied to find attacks in protocol specifica-
tions. For instance, Armando et al. analyzed both the
SAML protocol and a variant of the protocol imple-
mented by Google using the SATMC model-checker [4].
Their analysis exposed an attack against the authenti-
cation goals of the Google implementation. Follow-up
work by the same group used a more accurate model to
find an authentication flaw also in the original SAML

specification [3]. Akhawe et al. used the Alloy frame-
work to develop a core model of the web infrastructure,
geared towards attack finding [2]. The paper studied the
security of the WebAuth authentication protocol among
other case studies, finding a login CSRF attack against
it. The WebSpi library for ProVerif by Bansal et al. has
been successfully applied to find attacks against exist-
ing web protocols, including OAuth 2.0 [6] and cloud
storage protocols [5]. Fett et al. developed the most
comprehensive model of the web infrastructure avail-
able to date and fruitfully applied it to the analysis of
a number of web protocols, including BrowserID [17],
SPRESSO [18] and OAuth 2.0 [19].

Protocol analysis techniques are useful to verify the
security of protocols, but they assume websites are cor-
rectly implemented and do not depart from the specifica-
tion, hence many security researchers performed empiri-
cal security assessments of existing web protocol imple-
mentations, finding dangerous attacks in the wild. Pro-
tocols which deserved attention by the research commu-
nity include SAML [41], OAuth 2.0 [43, 27] and OpenID
Connect [28]. Automated tools for finding vulnerabili-
ties in web protocol implementations have also been pro-
posed by security researchers [46, 50, 48, 31]. None of
these works, however, presented a technique to protect
users accessing vulnerable websites in their browsers.

7.2 Security Automata

The use of finite state automata for security enforcement
is certainly not new. The pioneering work in the area is
due to Schneider [40], which first introduced a formal-
ization of security automata and studied their expressive
power in terms of a class of enforceable policies. Secu-
rity automata can only stop a program execution when a
policy violation is detected; later work by Ligatti et al.
extended the class of security automata to also include
edit automata, which can suppress and insert individual
program actions [29]. Edit automata have been applied
to the web security setting by Yu et al., who used them
to express security policies for JavaScript code [49]. The
focus of their paper, however, is not on web protocols and
is only limited to JavaScript, because input/output oper-
ations which are not JavaScript-initiated are not exposed
to their security monitor.

Guha et al. also used finite state automata to en-
code web security policies [24]. Their approach is based
on three steps: first, they apply a static analysis for
JavaScript to construct the control flow graph of an Ajax
application to protect and then they use it to synthesize a
request graph, which summarizes the expected input/out-
put behavior of the application. Finally, they use the re-
quest graph to instruct a server-side proxy, which per-
forms a dynamic monitoring of browser requests to pre-

vent observable violations to the expected control flow.
The security enforcement can thus be seen as the com-
putation of a finite state automaton built from the request
graph. Their technique, however, is only limited to Ajax
applications and operates at the server side, rather than at
the browser side.

7.3 Browser-Side Defenses
The present paper positions itself in the popular research
line of extending web browsers with stronger security
policies. To the best of our knowledge, this is the first
work which explicitly focuses on web protocols, but a
number of other proposals on browser-side security are
worth mentioning. Enforcing information flow policies
in web browsers is a hot topic nowadays and a few
fairly sophisticated proposals have been published as of
now [21, 26, 8, 36, 7]. Information flow control can be
used to provide confidentiality and integrity guarantees
for browser-controlled data, but it cannot be directly used
to detect deviations from expected web protocol execu-
tions, which instead are naturally captured by security
automata. Combining our approach with browser-based
information flow control can improve its practicality, be-
cause a more precise information flow tracking would
certainly help a more permissive security enforcement.

A number of browser changes and extensions have
been proposed to improve web session security, both
from the industry and the academia. Widely deployed
industrial proposals include Content Security Policy
(CSP) and HTTP Strict Transport Security (HSTS). No-
table proposals from the academia include Allowed Re-
ferrer Lists [16], SessionShield [32], Zan [44], CS-
Fire [38], Serene [39], CookiExt [11], SessInt [12] and
Michrome [13]. Moreover, JavaScript security policies
are a very popular research line in their own right: we
refer to the survey by Bielova [9] for a good overview
of existing techniques. None of these works, however,
tackles web protocols.

8 Conclusion

We presented WPSE, the first browser-side security mon-
itor designed to address the security challenges of web
protocols, and we showed that the security policies en-
forceable by WPSE suffice to prevent a large number of
real-world attacks. Our work encompasses a thorough
review of well-known attacks reported in the literature
and an extensive experimental analysis performed in the
wild, which exposed several undocumented security vul-
nerabilities fixable by WPSE in existing OAuth 2.0 im-
plementations. We also discovered a new attack on the
Google implementation of SAML 2.0 by formalizing its
specification in WPSE. In terms of compatibility, we

showed that WPSE works flawlessly on many existing
websites, with the few compatibility issues being caused
by custom implementations deviating from the OAuth
2.0 specification, one of which introducing a critical vul-
nerability. In the end, we conclude that the browser-side
security monitoring of web protocols is both useful for
security and feasible in practice.

As to future work, we observe that our current as-
sessment of WPSE in the wild only covers two specific
classes of vulnerabilities, which can be discovered just
by navigating the tested websites: extending the analy-
sis to cover active attacks (in an ethical manner) is an
interesting direction to get a better picture of the cur-
rent state of the OAuth 2.0 deployment. We would also
like to improve the usability of WPSE by implementing
a more graceful error handling procedure: e.g., when an
error occurs, we could give users the possibility to pro-
ceed just as it routinely happens with invalid HTTPS cer-
tificates. Using more descriptive warning messages may
also be useful for web developers that are visiting their
websites with WPSE so that they can understand the is-
sue and provide the appropriate fixes to the server side
code. Finally, we plan to identify automated techniques
to synthesize protocol specifications for WPSE starting
from observable browser behaviours in order to make it
easier to adopt our security monitor in an industrial set-
ting.

Acknowledgments. This work has been partially sup-
ported by the European Research Council (ERC) un-
der the European Unions Horizon 2020 research (grant
agreement No 771527-BROWSEC), by Netidee through
the project EtherTrust (grant agreement 2158), by
the Austrian Research Promotion Agency through the
Bridge-1 project PR4DLT (grant agreement 13808694)
and COMET K1 SBA. The paper also acknowledges
support from the MIUR project ADAPT and by CINI
Cybersecurity National Laboratory within the project
FilieraSicura: Securing the Supply Chain of Domestic
Critical Infrastructures from Cyber Attacks funded by
CISCO Systems Inc. and Leonardo SpA.

References

[1] M. Abadi and R. M. Needham. Prudent Engineer-
ing Practice for Cryptographic Protocols. IEEE
Transactions on Software Engineering, 22(1):6–15,
1996.

[2] D. Akhawe, A. Barth, P. E. Lam, J. C. Mitchell,
and D. Song. Towards a Formal Foundation of
Web Security. In Proceedings of the 23rd IEEE
Computer Security Foundations Symposium (CSF
2010), pages 290–304, 2010.

[3] A. Armando, R. Carbone, L. Compagna, J. Cuéllar,
G. Pellegrino, and A. Sorniotti. An Authentication
Flaw in Browser-Based Single Sign-On protocols:
Impact and Remediations. Computers & Security,
33:41–58, 2013.

[4] A. Armando, R. Carbone, L. Compagna, J. Cuéllar,
and M. L. Tobarra. Formal Analysis of SAML
2.0 Web Browser Single Sign-On: Breaking the
SAML-Based Single Sign-On for Google Apps. In
Proceedings of the 6th ACM Workshop on Formal
Methods in Security Engineering (FMSE 2008),
pages 1–10, 2008.

[5] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and
S. Maffeis. Keys to the Cloud: Formal Analysis
and Concrete Attacks on Encrypted Web Storage.
In Proceedings of the 2nd International Conference
on Principles of Security and Trust (POST 2013),
pages 126–146, 2013.

[6] C. Bansal, K. Bhargavan, A. Delignat-Lavaud, and
S. Maffeis. Discovering Concrete Attacks on Web-
site Authorization by Formal Analysis. Journal of
Computer Security, 22(4):601–657, 2014.

[7] L. Bauer, S. Cai, L. Jia, T. Passaro, M. Stroucken,
and Y. Tian. Run-time Monitoring and Formal
Analysis of Information Flows in Chromium. In
Proceedings of the 22nd Network and Distributed
System Security Symposium (NDSS 2015), 2015.

[8] A. Bichhawat, V. Rajani, D. Garg, and C. Hammer.
Information Flow Control in WebKit’s JavaScript
Bytecode. In Proceedings of the 3rd International
Conference on Principles of Security and Trust
(POST 2014), pages 159–178, 2014.

[9] N. Bielova. Survey on JavaScript Security Poli-
cies and their Enforcement Mechanisms in a Web
Browser. Journal of Logic and Algebraic Program-
ming, 82(8):243–262, 2013.

[10] B. Blanchet. An Efficient Cryptographic Protocol
Verifier Based on Prolog Rules. In Proceedings
of the 14th IEEE Computer Security Foundations
Workshop (CSFW 2001), pages 82–96, 2001.

[11] M. Bugliesi, S. Calzavara, R. Focardi, and
W. Khan. CookiExt: Patching the Browser against
Session Hijacking Attacks. Journal of Computer
Security, 23(4):509–537, 2015.

[12] M. Bugliesi, S. Calzavara, R. Focardi, W. Khan,
and M. Tempesta. Provably Sound Browser-Based

Enforcement of Web Session Integrity. In Proceed-
ings of the IEEE 27th Computer Security Foun-
dations Symposium (CSF 2014), pages 366–380,
2014.

[13] S. Calzavara, R. Focardi, N. Grimm, and M. Maf-
fei. Micro-policies for web session security. In
Proceedings of the 29th IEEE Computer Security
Foundations Symposium (CSF 2016), pages 179–
193, 2016.

[14] S. Calzavara, R. Focardi, M. Maffei, C. Schnei-
dewind, M. Squarcina, and M. Tempesta.
Login-CSRF on Google due to SAML2.0 flaws.
https://secgroup.dais.unive.it/login-
csrf-google-saml2-flaws/.

[15] S. Calzavara, R. Focardi, M. Maffei, C. Schnei-
dewind, M. Squarcina, and M. Tempesta. WPSE:
Fortifying Web Protocols via Browser-Side Secu-
rity Monitoring - Technical report. https://

sites.google.com/site/wpseproject/.

[16] A. Czeskis, A. Moshchuk, T. Kohno, and H. J.
Wang. Lightweight Server Support for Browser-
Based CSRF Protection. In Proceedings of the 22nd
International World Wide Web Conference (WWW
2013), pages 273–284, 2013.

[17] D. Fett, R. Küsters, and G. Schmitz. An Expressive
Model for the Web Infrastructure: Definition and
Application to the Browser ID SSO System. In Pro-
ceedings of the 35th IEEE Symposium on Security
and Privacy (S&P 2014), pages 673–688, 2014.

[18] D. Fett, R. Küsters, and G. Schmitz. SPRESSO:
A Secure, Privacy-Respecting Single Sign-On Sys-
tem for the Web. In Proceedings of the 22nd ACM
Conference on Computer and Communications Se-
curity (CCS 2015), pages 1358–1369, 2015.

[19] D. Fett, R. Küsters, and G. Schmitz. A Compre-
hensive Formal Security Analysis of OAuth 2.0. In
Proceedings of the 23rd ACM Conference on Com-
puter and Communications Security (CCS 2016),
pages 1204–1215, 2016.

[20] Google. GSuite Administrator Help, Set up
SSO via a third party Identity provider. https:

//support.google.com/a/answer/6262987,
2018.

[21] W. D. Groef, D. Devriese, N. Nikiforakis, and
F. Piessens. FlowFox: a Web Browser with Flexible
and Precise Information Flow Control. In Proceed-
ings of the 19th ACM Conference on Computer and
Communications Security (CCS 2012), pages 748–
759, 2012.

[22] T. Groß, B. Pfitzmann, and A. Sadeghi. Browser
Model for Security Analysis of Browser-Based
Protocols. In Proceedings of the 10th European
Symposium on Research in Computer Security (ES-
ORICS 2005), pages 489–508, 2005.

[23] T. Groß, B. Pfitzmann, and A. Sadeghi. Proving
a WS-Federation Passive Requestor Profile with a
Browser Model. In Proceedings of the 2nd ACM
Workshop On Secure Web Services, SWS 2005,
Fairfax, VA, USA, November 11, 2005, pages 54–
64, 2005.

[24] A. Guha, S. Krishnamurthi, and T. Jim. Using
Static Analysis for Ajax Intrusion Detection. In
Proceedings of the 18th International Conference
on World Wide Web (WWW 2009), pages 561–570,
2009.

[25] D. Hardt. The OAuth 2.0 Authorization Frame-
work. http://tools.ietf.org/html/rfc6749,
2012.

[26] D. Hedin, L. Bello, and A. Sabelfeld. Information-
flow Security for JavaScript and its APIs. Journal
of Computer Security, 24(2):181–234, 2016.

[27] W. Li and C. J. Mitchell. Security Issues in OAuth
2.0 SSO Implementations. In Proceedings of the
17th International Conference in Information Se-
curity (ISC 2014), pages 529–541, 2014.

[28] W. Li and C. J. Mitchell. Analysing the Security of
Google’s Implementation of OpenID Connect. In
Proceedings of the 13th International Conference
on Detection of Intrusions and Malware, and Vul-
nerability Assessment (DIMVA 2016), pages 357–
376, 2016.

[29] J. Ligatti, L. Bauer, and D. Walker. Edit Automata:
Enforcement Mechanisms for Run-Time Security
Policies. International Journal of Information Se-
curity, 4(1-2):2–16, 2005.

[30] K. Ludwig. Duo Finds SAML Vulnerabil-
ities Affecting Multiple Implementations.
https://duo.com/blog/duo-finds-saml-
vulnerabilities-affecting-multiple-

implementations, 2018.

[31] C. Mainka, V. Mladenov, J. Schwenk, and T. Wich.
SoK: Single Sign-On Security–An Evaluation of
OpenID Connect. In Proceedings of the 2nd IEEE
European Symposium on Security and Privacy (Eu-
roS&P 2017), pages 251–266, 2017.

[32] N. Nikiforakis, W. Meert, Y. Younan, M. Johns,
and W. Joosen. SessionShield: Lightweight Pro-
tection against Session Hijacking. In Proceedings
of the 3rd International Symposium on Engineering
Secure Software and Systems (ESSoS 2011), pages
87–100, 2011.

[33] OASIS. Profiles for the OASIS Security As-
sertion Markup Language (SAML) V2.0.
http://docs.oasis-open.org/security/
saml/v2.0/saml-profiles-2.0-os.pdf, 2005.

[34] OASIS. Security Assertion Markup Language
(SAML) v2.0. https://www.oasis-open.org/
standards#samlv2.0, 2005.

[35] OASIS. Bindings for the OASIS Security
Assertion Markup Language (SAML) V2.0.
http://www.oasis-open.org/committees/
download.php/56779/sstc-saml-bindings-
errata-2.0-wd-06.pdf, 2015.

[36] V. Rajani, A. Bichhawat, D. Garg, and C. Hammer.
Information Flow Control for Event Handling and
the DOM in Web Browsers. In Proceedings of the
28th IEEE Computer Security Foundations Sympo-
sium (CSF 2015), pages 366–379, 2015.

[37] M. D. Ryan and B. Smyth. Applied Pi Calculus. In
Formal Models and Techniques for Analyzing Secu-
rity Protocols, chapter 6. IOS Press, 2011.

[38] P. D. Ryck, L. Desmet, W. Joosen, and F. Piessens.
Automatic and Precise Client-Side Protection
against CSRF Attacks. In Proceedings of the 16th
European Symposium on Research in Computer Se-
curity (ESORICS 2011), pages 100–116, 2011.

[39] P. D. Ryck, N. Nikiforakis, L. Desmet, F. Piessens,
and W. Joosen. Serene: Self-Reliant Client-Side
Protection against Session Fixation. In Proceedings
of the 2012 Distributed Applications and Interop-
erable Systems - 12th IFIP WG 6.1 International
Conference, DAIS 2012, pages 59–72, 2012.

[40] F. B. Schneider. Enforceable Security Policies.
ACM Transactions on Information and System Se-
curity, 3(1):30–50, 2000.

[41] J. Somorovsky, A. Mayer, J. Schwenk, M. Kamp-
mann, and M. Jensen. On Breaking SAML: Be
Whoever You Want to Be. In Proceedings of the
21th USENIX Security Symposium, pages 397–412,
2012.

[42] B. Stock and M. Johns. Protecting users against
XSS-based password manager abuse. In Proceed-
ings of the 9th ACM Asia Conference on Informa-
tion, Computer and Communications Security (Asi-
aCCS 2014), pages 183–194, 2014.

[43] S. Sun and K. Beznosov. The Devil is in the (Im-
plementation) Details: An Empirical Analysis of
OAuth SSO Systems. In Proceedings of the 19th
ACM Conference on Computer and Communica-
tions Security, (CCS’12), pages 378–390, 2012.

[44] S. Tang, N. Dautenhahn, and S. T. King. Fortifying
web-based applications automatically. In Proceed-
ings of the 18th ACM Conference on Computer and
Communications Security (CCS 2011), pages 615–
626, 2011.

[45] S. Van Acker, D. Hausknecht, and A. Sabelfeld.
Measuring Login Webpage Security. In Proceed-
ings of 32nd ACM Symposium on Applied Comput-
ing (SAC 2017), pages 1753–1760, 2017.

[46] R. Wang, S. Chen, and X. Wang. Signing Me
onto Your Accounts through Facebook and Google:
A Traffic-Guided Security Study of Commercially
Deployed Single-Sign-On Web Services. In Pro-
ceedings of the 33rd IEEE Symposium on Security
and Privacy (S&P 2012), pages 365–379, 2012.

[47] R. Wang, Y. Zhou, S. Chen, S. Qadeer, D. Evans,
and Y. Gurevich. Explicating SDKs: Uncover-
ing Assumptions Underlying Secure Authentica-
tion and Authorization. In Proceedings of the
22th USENIX Security Symposium, pages 399–314,
2013.

[48] R. Yang, G. Li, W. C. Lau, K. Zhang, and P. Hu.
Model-based Security Testing: An Empirical Study
on OAuth 2.0 Implementations. In Proceedings of
the 11th ACM Asia Conference on Computer and
Communications Security (AsiaCCS 2016), pages
651–662, 2016.

[49] D. Yu, A. Chander, N. Islam, and I. Serikov.
JavaScript Instrumentation for Browser Security. In
Proceedings of the 34th ACM Symposium on Prin-
ciples of Programming Languages (POPL 2007),
pages 237–249, 2007.

[50] Y. Zhou and D. Evans. SSOScan: Automated Test-
ing of Web Applications for Single Sign-On Vul-
nerabilities. In Proceedings of the 23rd USENIX
Security Symposium, pages 495–510, 2014.

A Sample XML Specification

Figure 5 shows the XML specification of the OAuth 2.0
automaton in Figure 2. The protocol is enclosed within
<Protocol> tags and describes the flow as a sequence
of requests and responses. For every message we detail
its pattern, possibly specifying the endpoint and a list of
parameters for requests or a list of headers for responses.

Identifiers can be introduced in the protocol flow spec-
ification by adding the id attribute to the tag of the mes-
sage component of interest. Additional identifiers can
be defined within <Definition> tags, where the value
that is associated to the new identifier is the part of the
<Source> matching the regular expression <Regexp>.
If the regular expression contains a capturing group, de-
noted by parenthesis, only the string matching the group
is selected. The syntax ${id} can be used to refer to the
value bound to the identifier id.

Security policies are defined within <Secrecy> and
<Integrity> tags. The secrecy policy specifies that the
value in <Target> must be sent only to the enumerated
origins. The integrity policy specifies that the value in
<Target> must match the content of <Matches>, which
can possibly be a regular expression.

1 <Specification name="google-explicit-nostate">

2 <Protocol>

3 <Request method="GET" desc="req_init">

4 <Endpoint>

5 <Regexp> https://accounts\.google\.com/o/oauth2/(?:.*?/)?auth </Regexp>

6 </Endpoint>

7 <Parameter name="response_type"> code </Parameter>

8 <Parameter name="redirect_uri" id="req_init_redirect_uri" />

9 </Request>

10 <Response desc="resp_init">

11 <Endpoint>

12 <Regexp> https://accounts\.google\.com/o/oauth2/(?:.*?/)?auth </Regexp>

13 </Endpoint>

14 <Header name="Location" id="resp_init_location" />

15 </Response>

16 <Request method="GET" desc="req_code">

17 <Endpoint id="uri2"/>

18 <Parameter name="code">

19 <Regexp> [^\s]{40,} </Regexp>

20 </Parameter>

21 </Request>

22 </Protocol>

23 <Identifiers>

24 <Definition id="uri1">

25 <Source> ${req_init_redirect_uri} </Source>

26 <Regexp> ^(https?://.*?)(?:\?|$) </Regexp>

27 </Definition>

28 <Definition id="origin">

29 <Source> ${req_init_redirect_uri} </Source>

30 <Regexp> ^(https?://.*?/).* </Regexp>

31 </Definition>

32 <Definition id="authcode">

33 <Source> ${resp_init_location} </Source>

34 <Regexp> [?&]code=(.*?)(?:&|$) </Regexp>

35 </Definition>

36 </Identifiers>

37 <Policy>

38 <Secrecy> <!-- the auth code contained in the Location header must be kept secret -->

39 <Target> ${authcode} </Target>

40 <Origin> ${origin} </Origin>

41 <Origin> https://accounts.google.com/ </Origin>

42 </Secrecy>

43 <Integrity> <!-- the last message must be sent to the redirect URI initially specified -->

44 <Target> ${uri2} </Target>

45 <Matches> ${uri1} </Matches>

46 </Integrity>

47 </Policy>

48 </Specification>

Figure 5: XML specification for the automaton in Figure 2.

