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Abstract

This paper proposes a clustering method based on the sequential estimation of

the random partition induced by the Dirichlet process. Our approach relies on the

Sequential Importance Resampling (SIR) algorithm and on the estimation of the

posterior probabilities that each pair of observations are generated by the same

mixture component. Such estimates do not require the identification of mixture

components, and therefore are not affected by label switching. Then, a similarity

matrix can be easily built, allowing for the construction of a weighted undirected

graph, where nodes represent individuals and edge weights quantify the similarity

between pairs of individuals. The paper shows how, in such a context, spectral

clustering techniques can be applied in order to identify homogeneous groups.
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1 Dirichlet process mixtures and clustering

A very important class of models in Bayesian nonparametrics is based on the Dirichlet

process and is known as Dirichlet process mixture Antoniak (1974). In this model, the

observable random variables, Xi, i = 1, . . . , n, are assumed to be exchangeable and

generated by the following hierarchical model:

Xi|θi
ind∼ p(·|θi), θi ∈ Θ

θi|G
iid∼ G

G ∼ DP (α,G0),

where DP (α,G0) denotes a Dirichlet process (DP) with base measure G0 and precision

parameter α > 0. Since the DP generates almost surely discrete random measures on the

parameter space Θ, ties among the parameter values have positive probability, leading

to a batch of clusters of the parameter vector θ = [θ1, . . . , θn]T . Exploiting the Pólya urn

representation of the DP, the model can be rewritten as

Xi|si, θ∗si
iid∼ p(·|θ∗si), θ

∗
si
∈ Θ (1)

θ∗si
iid∼ G0 (2)

p(si = j|s<i) =


α

α+i−1
j = k

nj

α+i−1
j ∈ {k − 1},

(3)

si ⊥ θ∗j ∀i, j, (4)

where {k} = {1, . . . , k}, s<i = {sj, j ∈ {i−1}} (in the rest of the paper, the subscript < i

will refer to those quantities that involve all the observationsXi′ such that i′ < i), sj ∈ {k}

for j ∈ {k − 1}, and nj is the number of θi’s equal to θ∗j . In this model representation,

the parameter θ can be expressed as (s, θ∗), with s = {si : si ∈ {k}, i ∈ {n}}, θ∗ =

[θ∗1, . . . , θ
∗
k]
T with θ∗j

iid∼ G0, and θi = θ∗si . Consequently, the marginal distribution of Xi is

a mixture with k components, where k is an unknown random integer.
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In the case of finite mixtures with k components, with k fixed and known, under a

frequentist perspective it would be quite straightforward to cluster the data by maximising

the probability of the allocation of each datum to one of the k components, conditionally

on the observed sample (McLachlan and Peel, 2000). Under a Bayesian perspective, the

same results can be achieved, provided that either some identifiability constraints on

the parameters are introduced, or a suitable risk function is minimised (Stephens, 2000).

Unfortunately, under the assumptions we made, such computations are not feasible even

numerically, due to the well known label switching problem (Frühwirth-Schnatter, 2006)

that persists when the number of mixture components is not known, nor finite, as in the

case of Dirichlet process mixtures. Nevertheless, equations (1)–(4) are very helpful in

estimating posterior pairwise similarities and building hierarchical clustering algorithms

as in Medvedovic and Sivaganesan (2002) and Medvedovic and Guo (2004). In section

2, a sequential estimation algorithm analogous to the one in Maceachern et al. (1999) is

developed. In section 3, individuals are represented as nodes of a weighted undirected

graph. Nodes can then be classified throug a spectral clustering technique as in von

Luxburg (2007). The approach proposed in sections 2 and 3 has a double benefit. On

one hand, the sequential estimation algorithm guarantees a fast estimation of pairwise

similarities. On the other hand, the construction of the random walk on the graph

mentioned above, allows us to choose the optimal partition by a minimum description

length algorithm, so avoiding the subjective choice of a cut of the dendrogram usually

associated to hierarchical clustering algorithms. Furthermore, as a byproduct, the entropy

of any partition of the data can be computed and it is closely linked to the fitted model.

This allows for a model based comparison of any pair of partitions.
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2 Sampling importance resampling

Under the assumptions we introduced above, following the arguments of Maceachern

et al. (1999), we can write the conditional posterior distribution of si given x1, . . . , xi, as

p(si = j|s<i, θ∗,x(j)
<i , xi) =


nj

α+i−1
p(xi|θ∗j , s<i,x

(j)
<i ) j ∈ {k}

α
α+i−1

p(xi|θ∗k+1) j = k + 1,

where x
(j)
<i = {xi′ : i′ < i, si′ = j}, j = 1, . . . , k, and x

(k+1)
<i = ∅, since ∀i′ < i, si′ ∈ {k}.

We can marginalise the conditional posterior of si with respect to θ∗, obtaining

p(si = j|s<i,x(j)
<i , xi) =


nj

α+i−1
p(xi|si = j, s<i,x

(j)
<i ) j ∈ {k}

α
α+i−1

p(xi|si = k + 1, s<i,x<i) j = k + 1,

where

p(xi|si = j, s<i,x<i) =∫
Θ

p(xi|θ, si = j, s<i,x
(j)
<i )p(θ|si = j, s<i,x

(j)
<i )dθ (5)

and

p(xi|si = k + 1, s<i,x<i) =

∫
Θ

p(xi|θ)dG0(θ). (6)

Notice that when G0 is a conjugate prior for (1), the computation of (5) and (6) is often

straightforward.

The following importance sampler has been introduced in Maceachern et al. (1999).

SIR algorithm. For i = 1, . . . , n, repeat steps (A) and (B)

(A) Compute

g(xi|s<i,x<i) ∝
k+1∑
j=1

nj
α + i− 1

p(xi|si = j, s<i,x
(j)
<i ),

with nk+1 = α.
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(B) Generate si from the multinomial distribution with

p(si = j|s<i,x(j)
<i , xi) ∝

nj
α + i− 1

p(xi|si = j, s<i,x
(j)
<i ).

Taking R independent replicas of this algorithm we obtain s
(r)
i , i = 1, . . . , n,

r = 1, . . . , R, and θ∗j ∼ p(θ|x(j)), with x(j) = {xi : i ∈ {n} , si = j}, and compute the

importance weights

wr ∝
n∏
i=1

g(xi|s<i,x<i)

such that
∑R

r=1wr = 1. Should the variance of the importance weights be too small, the

efficiency of the sampler could be improved by resampling as follows (Cappé et al., 2005):

1. compute Neff = (
∑R

r=1w
2
r)

(−1);

2. if Neff<R
2
, draw R particles from the current particle set with probabilities equal to

their weights, replace the old particle with the new ones and assign them constant

weights wr = 1
R

.

3 Pairwise similarities and spectral clustering

3.1 Pairwise similarities

Intuitively, we can state that two individuals, i and j, are similar if xi and xj are gen-

erated by the same mixture component, i.e. if si = sj. Label switching prevents us

from identifying mixture components, but not from assessing similarities among individ-

uals. In fact, the algorithm introduced in the previous section may help us in estimating

pairwise similarities between individuals. The posterior probability that xi and xj are

generated by the same component, i.e. the posterior probability of the event {si = sj},

can be estimated as

p̂ij =
R∑
r=1

wrI
(
s

(r)
i , s

(r)
j

)
,
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where I(x, y) = 1 if x = y and I(x, y) = 0 otherwise. We can then define a similarity

matrix S with ij-th element sij = p̂ij.

3.2 Graph representation

The matrix S can be used to build the weighted undirected graph G = (V,E), where

each node in the set V represents an individual in the sample, i.e. V = {n}, and the set

E contains all the edges in G. Furthermore, the weight of the generic edge (i, j) is given

by wij = sij if i 6= j, and wij = 0 otherwise. We want to find a partition of the graph

such that the edges between different groups have low weight and edges within clusters

have high weight.

Let us define the degree of node i as di =
∑n

j=1wij, i = 1, . . . , n and the degree matrix

as D = diag(d1, . . . , dn). Furtehrmore, let A ⊆ V and Ā = V \ A. Then A is identified

by the membership vector

1A = (f1, . . . , fn)′ ∈ Rn : fi = 1⇔ i ∈ A, fi = 0⇔ i ∈ Ā.

The subset A is connected if any pair of nodes in A can be joined by a path containing only

nodes in A; A is a connected component if it is connected and there are no connections

between A and Ā. The family of subsets {A1, . . . , Ak} form a partition of V if ∪ni=1Ai = V

and Ai ∩ Aj = ∅.

The unnormalised laplacian is defined as L = D−S and it has the following properties:

1. For any f ∈ Rn

f ′Lf =
1

n

n∑
i,j=1

sij(fi − fj)2

2. L is symmetric and positive semi-definite

3. The smallest eigenvalue of L is 0 and the corresponding eigenvector is 1

4. L has non-negative real valued eigenvalues 0 = λ1 ≤ λ2 ≤ · · · ≤ λn
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The multiplicity k of the eigenvalue 0 of L equals the number of connected components

A1, . . . , Ak in G. The eigenspace of the eigenvalue 0 is spanned by the indicator vectors

1A1 , . . . ,1Ak
. This result is important, since, as we shall see later, the values taken by the

eigenvalues of a suitably normalised laplacian allow us to set the number of components

in the optimal clustering.

Usually, for clustering purposes, the following normalised graph Laplacians are con-

sidered:

LSym = D−1/2LD−1/2 = I −D−1/2SD−1/2

LRW = D−1L = I −D−1S.

Here, we shall focus our attention on LRW , the random walk normalised laplacian. and

consider the clustering algorithm introduced in Shi and Malik (2000). Let S ∈ Rn×n, k =

number of clusters

1. Build a similarity graph with adjacency matrix S

2. Compute the unnormalised Laplacian, L = D − S

3. Compute the first k eigenvectors of LRW = I −D−1S, u1, . . . , uk

4. Let U = [u1, . . . , uk] ∈ Rn×k

5. For i = 1, . . . , n let yi denote the i-th row of U

6. Cluster the yi’s in Rk with the k-means algorithm into k clusters, C1, . . . , Ck

Output: clusters A1, . . . , Ak with Aj = i : yi ∈ Cj

How many clusters? (von Luxburg, Statistics and Computing 2007)

Choose k such that λ1, . . . , λk are very small, but λk+1 is relatively large

The eigengap euristic

• Compute ∆i = λi − λi+1, i = 1, n− 1

• Set k : ∆k = maxi ∆i.
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4 Examples

In this section we apply the spectral clustering methods based on the Dirichlet process

prior to some datasets for which the true clustering is known. We compare the the

clusterings provided by our method with the ones produced by standard spectral cluster-

ing techniques, where pairwise similarities are defined as the inverse Euclidean distances

between observations, and with the MAP classifications produced by finite Gaussian mix-

tures estimated via maximum likelihood (Fraley and Raftery, 2000). Comparisons are

made by computing the Rand and the adjusted Rand indeces between each partition and

the known true clustering.

4.1 Example 1

Figure 1 shows a simulated data set composed by observations generated by a bivariate

Gaussian distribution (red), a banana shaped cluster (black), and a uniform noise (green).

The data have been standardised and the following model has been fitted:

Xi|µi,ΨΨΨi
ind∼ N(µi,ΨΨΨi)

(µi,ΨΨΨi)|G
iid∼ G

G ∼ DP (α,NW (µ0, κ0, ν0,S0))

with α = 0.5,µµµ0 = 000, κ0 = 0.05, ν0 = 4,S0 = I2; R = 5000, n = 410.

The eigenvalues of LRW suggest a classification in four clusters for the spectral clus-

tering based on the DP prior, and in two clusters for the standard spectral clustering

technique (Figure 2). The finite mixture model identifies three clusters, as shown in

Figure 3. Table 1 shows that the DP based spectral clustering outperforms the two

competitors in terms of both Rand and Adjusted Rand index.
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Figure 1: Example 1. A simulated data set composed by observations generated by a
bivariate Gaussian distribution (red), a banana shaped cluster (black), and a uniform
noise (green).
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Figure 2: Example 1. Eigenvalues of LRW in the banana shaped cluster application.
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Figure 3: Example 1. Clusterings produced by the alternative methods

ARI RI
DP - spectral 0.71 0.86

Spectral 0.65 0.82
ML mixture 0.45 0.74

Table 1: Example 1. Comparison of the alternative classifications with the true clustering

4.2 Example 2.

In this example we consider a dataset presented in Jain and Law (2005). The data are

shown in Figure 4. After standardisation, the following model has been fitted:

Xi|µi,ΨΨΨi
ind∼ N(µi,ΨΨΨi)

(µi,ΨΨΨi)|G
iid∼ G

G ∼ DP (α,NW (µ0, κ0, ν0,S0))

with α = 0.3,µµµ0 = 000, κ0 = 0.1, ν0 = 4,S0 = 5I2; R = 5000, n = 373.

Figure 4 shows also the clusterings provided by the alternative methods. Notice that

the eigenvalues of LRW suggest a unique cluster, as shown in Figure 5.

Table 2 shows that DP based spectral clustering outperforms the classification pro-

10
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Figure 4: Example 2. The data and the clusterings produced by the alternative methods.

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300

0.
0

0.
4

0.
8

DP − spectral

Index

ei
ge

nv
al

ue
s

●

●

●

●
●●
●
●●●●
●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 100 200 300

0.
0

0.
4

0.
8

spectral

Index

ei
ge

nv
al

ue
s

Figure 5: Example 2. Eignevalues of LRW for DP based and standard spectral clustering.
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ARI RI

DP 0.53 0.77
ML mixture 0.06 0.46

Table 2: Comparison with the classification produced by the finite mixture model.

duced by the finite Gaussian mixture model.

4.3 Example 3.

The dataset we consider in this example consists 178 measurements of 13 variables

(Alcohol, Malic acid, Ash, Alcalinity, Magnesium, Phenols, Flavanoids, Nonflavanoids,

Proanthocyanins, Color intensity, Hue, OD280.OD315Dilution, Proline) on three types

of wine(Barolo, Grignolino and Barbera) (Forina et al., 2008). The data are shown in

Figure 6. Five clustering variables have been selected by applying the method suggested

in Raftery and Dean (2006). After standardisation, the following model has been fitted:

Xi|µi,ΨΨΨi
ind∼ N(µi,ΨΨΨi)

(µi,ΨΨΨi)|G
iid∼ G

G ∼ DP (α,NW (µ0, κ0, ν0,S0))

with α = 0.1,µµµ0 = 000, κ0 = 0.01, ν0 = 100,S0 = 50I5; R = 5000, n = 178.

Figure 7 shows that DP based spectral clustering identifies three groups, whereas

standard spectral clustering does not capture any cluster in the dataset. Figures 8 and

9 show the classifications produced by the DB based clustering and the clustering based

on the finite mixture model. Table 3 shows that these two partitions are equivalent in

terms of both Rand and Adjusted Rand index.

ARI RI
DP - spectral 0.78 0.90

Spectral 0.00 0.34
ML mixture 0.78 0.90

Table 3: Example 3. Comparison of the alternative classifications with the true clustering
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Figure 6: Example 3. The data: colours identify the three different wine types.
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Figure 7: Example 3. Eigenvalues of Lrw for DP based and standard spectral clustering

13



Malic

−1 0 1 2 3

●

●
●

●
●

●
●
●●

● ●
●

●● ●●

●

●

●

●●

●

●
●

●

●
●

●
●

●
●

●

●●●
●

●

● ● ●●
●● ●●●

●

●

●

●

● ●●
●

●

●

●●
●

●

●
●

●
●
●

●
●●● ●

●
●● ●●

●

●

●

●●

●

●
●

●

●
●
●

●

●
●

●

●● ●
●

●

● ● ●●
●● ●●●

●

●

●

●

● ● ●
●

●

●

●●
●

−2 −1 0 1 2

●

●
●

●
●

●
●

● ● ●●
●

●●●●

●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●●●
●

●

● ●●●
● ●●●●

●

●

●

●

● ●●
●

●

●

●●
●

−
1

0
1

2
3

●

●
●

●
●

●
●

●●● ●
●

● ●● ●

●

●

●

● ●

●

●
●

●

●
●

●
●

●
●

●

●● ●
●

●

●● ● ●
●● ●●●

●

●

●

●

●● ●
●

●

●

●●
●

−
1

0
1

2
3

●●
●

●
●

●

●
●●

●
●

●

●
●

●●

●

●
●●

●
●●●

●●●

●

●

●

●
●

●
●●

●
●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●
●
●

●
●

●●

● Flavanoids
●●

●
●

●

●

●
●●

●
●

●

●
●

●●

●

●
●●

●
●●●
●● ●

●

●

●

●
●

●
● ●
●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●
●
●

●
●

●●

●

●●
●

●
●

●

●
● ●

●
●
●

●
●

●●

●

●
●●

●
● ●●

●●●

●

●

●

●
●

●
●●

●
●

●
●

●

●
● ●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●
●

●
●

●

●
●●

●
●

●

●
●

● ●

●

●
●●

●
● ●●
● ● ●

●

●

●

●
●
●

● ●
●

●

●
●

●

●
●●

●
●

●

●
●

●

●

●

●
●

●

●
●

●●

●

●●

●

●

●●
●

●
●

●

●

●

●●

●
●

●●
●

●
● ●●

●
●●

●
●●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

●●
●●

●

●

● ●
●
●
●

●

●

●

●●

●
●

●●
●
●

● ●●
●

●●
●

●●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

●●

Color
●●

●

●

●●
●

●
●

●

●

●

●●

●
●

● ●
●

●
●● ●

●
●●

●
●●

●
●

●

●
●

●
●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●

●●

● ●

●

● ●

−
1

1
2

3

●●

●

●

●●
●

●
●

●

●

●

● ●

●
●

● ●
●

●
●● ●
●

● ●
●

● ●

●
●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

● ●

●●

●

● ●

−
2

−
1

0
1

2

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●●

● ●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●
●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●
●

●
●●

●

OD280.OD315Dilution

●

●

●
●

●

●
●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●●●

●●

●

●

●

●

●

●
●

●
●●

●

−1 0 1 2 3

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●●

● ●●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

● ●

●● ●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

● ●

●● ●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●●

●● ●

●

●
●

●

●
●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

−1 0 1 2 3

−
1

0
1

2
3

Proline

DP − spectral

Figure 8: Example 3. DP based spectral clustering.
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Figure 9: Example 3. Clustering produced by the finite mixture model
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5 Discussion

The flexibility of Bayesian nonparametric models improves robustness of classification

with respect to finite mixture models. Sampling importance resampling algorithms allow

for efficient computations, particularly when the base measure is conjugate to model

likelihood. The DP based spectral clustering does not require any restrictions on the

parameters or post processing of the posterior simulations. Furthermore, in the examples

we have considered, it always outperform the performance of standard spectral clustering.

It has also shown to be competitive with the mixture model based classification method.

One limitation of the DP based spectral clustering is the selection of the clustering

variables when a high number of attribute measurements is collected. Research on this

topic is under way.
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