
Procedurally Provisioned Access Control for
Robotic Systems

Ruffin White and Henrik I. Christensen
Contextual Robotics Institute

UC San Diego, California, USA

Gianluca Caiazza and Agostino Cortesi
Ca’ Foscari University of Venice

Venezia VE, Italy

Abstract—Security of robotics systems, as well as of the related
middleware infrastructures, is a critical issue for industrial and
domestic IoT, and it needs to be continuously assessed throughout
the whole development lifecycle. The next generation open source
robotic software stack, ROS2, is now targeting support for Secure
DDS, providing the community with valuable tools for secure
real world robotic deployments. In this work, we introduce a
framework for procedural provisioning access control policies
for robotic software, as well as for verifying the compliance of
generated transport artifacts and decision point implementations.

Index Terms—Cryptobotics, Cybersecurity, Networked Robots,
Industrial Robots, Robot Safety, Middleware, ROS2, Secure DDS

I. INTRODUCTION

Industry 4.0 represents a shift in the future towards ubiqui-
tous connected robotic systems. To cope with the requirement
for custom device-tailored solutions, a significant number of
different IoT platforms has emerged in the wild [1]. We can
easily observe how these are more oriented to the so called
Consumer Internet of Things (IoT) rather than to Industrial IoT
(IIoT) solutions. However, the high growth rate of consumer
solutions in addition to the steady development of Industrial
applications has rapidly overcome the security measures that
were deployed originally for one-purpose devices.

As discussed by Morante et al. [2], the emerging security
problems that the field of robotics faces now are similar to
those presented for computers in the early days of the Internet.
In fact, robotic networks are generally subject to classical
cyber-physical attacks such as: Denial of Service (DoS), eaves-
dropping, tampering, repetition, spoofing, etc. It’s tempting,
but we can’t simply apply the same counter measures as are
used in general computers. In fact, although robotic networks
and computer networks may seem similar, they are greatly
different [3]. In robotic networks we need to consider different
tradeoffs between safety critical corner cases, and security and
real-time constraints that are not present in other systems.

In robotic networks, we can find a significant number of
devices that need to operate in conjunction with each other. In
such cases, as discussed by Dieber et al. [4], the information
security pillars of Confidentiality, Integrity and Availability
(CIA) that are generally applied to secure information systems
assume different priorities.

Generally, in robotic middleware, we consider a subset of
the CIA pillars’ scope: confidentiality corresponds to privacy,

ObjectsSubjects

/talker
(node)

/listener
(node)

/chatter
(topic)

/logout
(topic)

/logger
(node)

/loglevel
(service)

Permissions

Publish

Subscribe

Call

Execute

N T

N S

Fig. 1: A semantic representation of an example computational
graph, often implemented via robotic middleware, modeled as
a set of bipartite graphs for each sub-system. Shared vertices
among the bigraphs are encompassed by a set of participating
nodes. For access control, subject permissions are visualized
by directional edges, reflecting the duality of the asymmetric
exchange between roles, as opposed to the flow of information.

authenticity coincides with integrity, while availability is nec-
essary for network protocols and hardware redundancy.

To provide those properties in middleware systems such as
the Robotic Operating System (ROS) [5] or Data Distribution
Service (DDS) [6], each node in the distributed computation
graph or participant on the data bus is attributed to an identity.
This is commonly done by provisioning each node with a
X.509 certificate, signed by a trusted Certificate Authority
(CA), using an established Public Key Infrastructure (PKI).

Furthermore, depending on the implementation, in addition
to the identification mechanism, access control is also de-
ployed. As we will see in Section II, access control may also be
enforced by allocating given roles or attributes to participants
in control policy.

However, the additional tasks and commitment that are
imposed upon developers to properly generate, maintain and
distribute the number of signed public certificates, ciphered
private keys, and access control documents attributed to every
identity within the distributed network can prove beyond te-
dious and be error prone. In fact, the additional complexity and

ar
X

iv
:1

81
0.

08
12

5v
1

 [
cs

.R
O

]
 1

8
O

ct
 2

01
8

Node

Topics Services

Actions

Params

Robot

Node
A

Node
B

Params

Fig. 2: High level overview of the subsystem for ROS mid-
dleware: Nodes organized under a global namespace hierarchy
may possess a set of subsystem types such as topics, param-
eters, services or actions. These subsystems are addressable
by other nodes via namespaces that can be orthogonal to the
originating node’s, but in practice often coincide for organiza-
tional clarity. Global parameters are also made available, while
in practice simply hosted via another dedicated node.

scalability of these networks makes the secure orchestration of
those systems a demanding process.

The main contribution of this paper is: in order to mitigate
the risks of improper provisioning, we contribute a set of tools
to provide users with an automated approach for systematic
generation and verification of necessary cryptographic artifacts
in a familiar, yet extendable, meta-build system layout via
workspaces and plugins.

Overview

• II Related Work: Discussion of robotic network vulner-
ability, as well as the limits of the existing approaches
on security research in robotic frameworks.

• III Approach: Outlines general structure of the presented
framework, design mechanisms and development choices.

• IV Results: Evaluates the capability of the proposed
framework with regards to integrity verification of se-
curing a general robotic application.

• V Conclusion and Future Work: Includes a discussion
of the presented work and possible improvements to
future robotic security by means of more powerful policy
definition mechanisms.

II. RELATED WORK

In the early days, robotic systems were simply intended as
‘physically’ enhanced computers without specific constraints
or limitations. Since the goal was to develop the fastest,
lightest and most practical solution for prototyping and de-
ploying products, overall, often the security component and
the associated privacy risks were overlooked.

As in the early era of the Internet for Personal Computers
(PC), the possibility of a robotic system being compromised
was neglected since physical access to the robot was re-
quired. For example, in ROS1 the subsystem components
communication and parameters handling were designed with-
out considering any security or privacy measures at all (see
Figure 2). However, now the large scale introduction of robotic

applications into daily life coupled with the further adoption of
wireless remote access mechanisms has made the possibility
of compromised applications a widespread concern.

In this regard, Denning et al. [7] presented an interesting
analysis of future risks and general problems deriving from the
use of household robots. They analyzed three consumer robots,
focusing on their exploitable features. The authors have stated
several novel questions to be posed when evaluating future
products for both security and privacy design.

Morante et al. [2] dubbed this new research area which
unifies cyber safety and best practices in developing and
distributing robot software as cryptobotics. In their analysis, by
presenting some real-world examples, they pointed out several
fields in robotics where security and privacy are critical.

Lee et al. [8] presented security enhancements for the
medical field in ’Interoperable Telesurgery Protocol’ (ITP) by
adding X.509 certificates and encryption by means of TLS in
the TCP communication channel. Their novel approach, named
Secure ITP, represents one of the first applications of what
we discuss in Section I about security measures in robotic
frameworks such as the Data Distribution Services (DDS).

With a similar goal, Huang et al. [9] have developed ROSRV
a runtime verification framework for robotic applications on
top of ROS1. ROSRV addresses the security of the ROS
computational graph by putting itself in between nodes and
master. In this way, if necessary it can amend potentially
’blacklisted’ malicious messages in addition to enforcing a
manually defined IP based access control policy. There are
some drawbacks to this approach: since their access control
mechanism relies on IP addresses it remains vulnerable to
attacks coming from processes that are running on the same IP.
Also, the defined policy profiles are not scalable to different
network topologies that may need to be rewritten.

Dóczi et al. [10] proposed for a medical surgery robot based
on ROS1 the introduction of authentication and authorization
(AA) mechanisms that rely on an additional AA-node to verify
the identity of a node in the graph. Their goal was to overcome
the delay limitation of other ROS1 oriented security solutions
in mission-critical devices. Still, their solution introduced a
strong Single Point of Failure (SPOF) - the AA-node - and
demanded non trivial setup of the static AA infrastructure.

As reported by Portugal et al. [11] in recent years, several
initiatives have been created to support security in ROS.
SROS1 has been proposed as addition to the ROS1 API and
ecosystem to support cryptography and security [12] [13];
SRI’s Secure ROS provided an alternative version of core
ROS packages to enable secure communication by means of
IPSec, still its IP was based on ROSRV and it suffered the
same drawbacks discussed above [14]; Secure-ROS-Transport
sought to enhance the ROS application-level architecture by
adding cryptography to the communication channel and an
authentication server similar to Dóczi et al. [15], [16].

In addition, we conducted an in deep analysis on how
decoupling the provisioning model and improving the policy
syntax in ROS1, as well as introducing the ideas presented in
this paper, can benefit the robotic community [17]. In fact, all

the solutions that have been developed so far require a certain
degree of knowledge of the whole network topology.

Interestingly, McClean et al. [18] have shown how exploits
and malfunctions debugging in robotic frameworks remains
a particularly challenging task. To the same end, Cortesi et
al. [19] discussed the use of semantics-based static analysis
techniques for software verification. Overall, considering how
challenging and error-prone this process remains, the use of
automatic analysis techniques might help more readily disclose
unexpected software behaviours. The use of pluggable security
strategies derived from other generated pub/sub frameworks
such as Data Distribution Services (DDS) Security might
also follow suit, as might Specification1 from the Object
Management Group (OMG), as now used in SROS2.

III. APPROACH

As stated in Section I, we seek to mitigate the risks imposed
from improper provisioning of robotic middleware credentials
that could otherwise compromise system security. To achieve
this, we procedulize the provisioning process of all transport
artifacts via build automation. Such compilation is made
possible by defining an intermediate representation to express
the higher level semantics of general permission policies, en-
abling the compiler to abstract away lower level cryptographic
operations. This approach also affords administrators to design
policy profiles that are agnostic to the deployed transport,
facilitating further consistency of security permissions across
transport type, version and vendor.

Our approach contributes two original complementary tools
to be used to describe and automate the process for secure and
access-controlled communication in data-driven middleware.
The first tool consists of a syntactic language to succinctly
describe policy profiles for subjects including any rules for
objects while establishing their respective first and second
order priorities. The second tool builds off the first, and
consists of a cryptographic tool chain for compiling a global
symbolic policy representation resulting in individual transport
artifacts as required to deploy each subject.

A. ComArmor

ComArmor2 is a profile configuration language for defining
Mandatory Access Control (MAC) policies for communication
graphs. ComArmor is akin to other MAC systems, but rather
than defining policy profiles for Linux security modules as
with AppArmor3 [20], ComArmor defines policy profiles for
armoring communications, as the project name’s alliteration
plays upon. ComArmor provides a formalized XML based
markup for specifying governance, and accompanied XML
Schema Definition (XSD) for validation. These policies, con-
structed from hierarchical nesting of compositional profiles
that bind objects to subjects with prescribed permissions via
attachment expressions, are later read by meta-build stages to

1DDS Security: omg.org/spec/DDS-SECURITY
2ComArmor Project: github.com/comarmor/comarmor
3AppArmor Project: gitlab.com/apparmor/apparmor

<profiles xmlns:xi="http://www.w3.org/2001/XInclude">
 <xi:include href="tunables/global.xml" parse="xml"/>
 <profile name="My Talker Profile">
 <attachment>/talker</attachment>
 <xi:include href="tunables/node.xml" parse="xml"/>
 <topic qualifier="ALLOW">
 <attachment>/chatter</attachment>
 <permissions>
 <publish/>
 </permissions>
 </topic>
 </profile>
 <profile name="My Listener Profile">
 <attachment>/listener</attachment>
 <xi:include href="tunables/node.xml" parse="xml"/>
 <topic qualifier="ALLOW">
 <attachment>/chatter</attachment>
 <permissions>
 <subscribe/>
 </permissions>
 </topic>
 </profile>
</profiles>

Fig. 3: A minimal access control policy for the talker listener
example formulated in ComArmor’s profile language. Profiles
define the scope of rules to bind to a subject via attachment
expressions. Rules also make use of attachments to fixate onto
objects that are applicable. Profiles may be nested to afford
recursive inclusions, affording a high level of composability
and reuse of common sub-policies across multiple subjects.

procedurally generate end use transport credentials. An excerpt
from an example ComArmor profile is shown in Figure 3.

Borrowing design patterns from the AppArmor community,
ComArmor provides an equivalent profile concept, but as
opposed to attaching to a process by its executable’s path,
ComArmor attaches profiles to subjects by their Uniform
Resource Identifier (URI), e.g. a node namespace in ROS. A
profile encapsulates an un-ordered set of rules, child profiles
and includes statements recursively importing more of the
former. A nested grand child profile is only made applicable
if all of its parent profiles are applicable as well.

Defined rules either allow or deny a specified set of per-
missions for a given object by URI attachment, e.g. a topic
namespace in ROS. ComArmor also works under the same
MAC assumptions in AppArmor, i.e. deny by default, where
access to any resource or action necessitates it first be explic-
itly allowed in the policy. Additionally, given deny supersedes
any allow, an applicable allow rule alone is insufficient as the
absence of any precedent deny rule must also be satisfied. In
this way, users can curtail policies with blanketed allow rules
over subspaces of an object, but then punch holes in those
subspaces, thus revoking specific access to unique resources.

Compared to other more general formats, such as eXtensible
Access Control Markup Language (XACML), ComArmor
takes an approach that is more straight forward in horizontally
transferring permission polices onto the computation graph,
where objects are essentially channels on a data buss. Addi-
tionally, ComArmor is meant to be compactly human readable
while also remaining easily machine generatable. However, we
would still like to eventually supply a translation compiler to
piggyback on the additional static analysis tools available for
XACML, affording more formal verification methods.

http://www.omg.org/spec/DDS-SECURITY
https://github.com/comarmor/comarmor
https://gitlab.com/apparmor/apparmor

B. Keymint

Keymint4 is a framework for generating cryptographic ar-
tifacts used in securing middleware systems like ROS, DDS,
etc. Keymint is akin to other meta-build systems, but rather
than compiling source code and installing executables in
workspaces as with Ament5, Keymint mints keys and notarizes
documents in keystores, as the project name’s alliteration
again plays upon. Keymint provides users pluggable tools for
automating the provision process for customizing PKI artifacts
used with SROS, or Secure DDS plugins.

Keymint’s approach in minting cryptographic artifacts re-
sembles that of other common meta-build systems, like Ament,
used to compile binary artifacts from source code. Similarly,
users create keymint packages within an workspace initialized
by a keymint profile; a package being a structured source
manifest describing how and what artifacts are to be generated
for an identity, while the workspace provides a tunable profile
to adjust the global build context for all packages. In addi-
tion, Keymint shares a staggered development cycle, where a
workspace is initialized, built, and installed. While each
stage in the cycle is subject to the behavior of the plugin
invoked as determined by the package’s declared format. An
example workflow with Keymint is shown in Figure 4.

While the Keymint library and CLI are intended to be both
transport and policy format agnostic, and instead simply op-
erate upon source packages in a workspace containing public
and private resources, plugins for ComArmor and ROS2/DDS
are included by default. Future policy acquisition plugins for
XACML and mySQL may also be added for more advanced
policy management. The ComArmor profile and ROS2/DDS
build plugins work together with Keymint’s Keymake compiler
to gather the applicable policy from the package’s URI and
compile it into an intermediate representation before installing
the generated PKI and fixating the permission and governance
files via SMIME.

Essentially, this automates many of the delicate steps in
correctly formulating the policy as to be compliant for the
transport specific format, the evaluation circuit for DDS Se-
curity which is described in Algorithm 1, not to mention the
additional details in X.509 certificate and keypair generation.
Given the mantra that security and usability must go hand in
hand, Keymint provides a conservative default bootstrapped
workspace suitable for basic users, in which the only config-
uration required on part of the user is to provide an initial
ComArmor profile for the targeted deployment. This in itself
is a task that can be automated via training as demonstrated
and further exemplified in Section IV.

In addition to compliance, the Keymint policy compilation
process can also ensure the transport artifacts result in a
faithful interpretation of the original symbolic policy. For ex-
ample, ComArmor’s un-ordered rules sets and deny overrides
must be considered accordingly when translating to Secure
DDS default plugin permission structure given that its Policy

4Keymint Project: github.com/keymint/keymint tools
5Ament Project: github.com/ament/ament tools

Algorithm 1 DDS Security v1.0 Default Access Control Logic

1: procedure EVALUATE(permissions, subject)
2: for grant in permissions do
3: match← grant.subject name.match(subject)
4: valid← grant.validity(current date time)
5: if match and valid then
6: qualifier ← CHECKRULES(rules, subject)
7: if qualifier is None then
8: return grant.default
9: else

10: return qualifier
11: end if
12: end if
13: end for
14: return ERROR
15: end procedure
16: function CHECKRULES(rules, subject)
17: for rule in rules do
18: domain← subject.domain in rule.domainSet
19: criteria← rule.get(subject.action.type)
20: . Action types: publish, subscribe, relay
21: match← CHECKCRITERIA(criteria, subject)
22: if domain and match then
23: return rules.qualifier
24: . Qualifier types: ALLOW,DENY
25: end if
26: end for
27: return None
28: end function
29: function CHECKCRITERIA(criteria, subject)
30: for criterion, i in criteria.criterions do
31: matches[i]← any (criterion.match(subject))
32: . Criterion types: topics, partitions, tags
33: end for
34: return all (matches)
35: end function

Decision Point (PDP) evaluates upon the first found matching
rule in an ordered list. Thus ComArmor deny rules must
be arranged in the list as to always be considered first for
a given object. Additionally, only the minimally applicable
subset of the global ComArmor policy is finally embedded
into an individual subject’s credentials.

These optimizations are perhaps two of many to consider,
with additional ones including: policy compression via folding
of collapsible rules that share compatible criteria, thus saving
payload overhead in secure transport handshaking; perhaps
another ordered prioritization of rules, i.e. quickening average
handshakes by placing more frequently requested rules further
ahead in the list for faster lookup. Either of these could be
beneficial for real time communication that must be adapted
to support security overhead.

We have delayed implementing such further optimization
until ROS2’s DDS namespace mapping is declared stable. As
of this writing, ROS2 Ardent has proved cumbersome to regu-

https://github.com/keymint/keymint_tools
https://github.com/ament/ament_tools

$ keymint create “/foo/bar/wheatley”
$ keymint build src/foo/bar/wheatley
$ keymint install build/foo/bar/wheatley

$ tree keymint_ws/
keymint_ws/
├── build/foo/bar
│ └── wheatley
│ ├── csr.pem
│ ├── key.pem
│ ├── permissions.xml
│ └── governance.xml
├── install/foo/bar
│ └── wheatley
│ ├── cert.pem
│ ├── key.pem
│ ├── permissions.p7s
│ └── governance.p7s
├── src/foo/bar
│ └── wheatley
│ └── keymint_package.xml
├── private
│ ├── identity.key.pem
│ └── permissions.key.pem
├── profile
│ ├── comarmor.d
│ │ ├── example.xml
│ │ └── ...
│ └── keystore.cnf
└── public
 ├── identity.cert.pem
 └── permissions.cert.pem

Subject name:
 Permissions CA
Issuer Name:
 Aperture Science
…

X.509
CA

keystore.cnf
 Identity CA:
 Issuer:
 Aperture Sci
 Hash: SHA256
 Type: RSA
 Size: 4096
 Valid: ~52k AD
...

governance.p7s
<dds xmlns:xsi=...
 <access_rules>
 <domain_rule>
 <domains>

S

governance.xml
<dds xmlns:xsi=...
 <access_rules>
 <domain_rule>
...

Subject name:
 Identity CA
Issuer Name:
 Aperture Science
…

X.509
CA

permissions.p7s
<dds xmlns:xsi=...
 <permissions>
 <grant_name=...
 <subject_name>

S

permissions.xml
<dds xmlns:xsi=...
 <permissions>
 <grant_name=...
...

comarmor.d/* (example.xml)
Profile:
 Attachment: /foo/*/wheatley
 #include <tunables/node>
 param /use_sim_time r,
 topic /chatter{,/**} p,
 deny topic /chatter/foo p,
 deny topic /*/e-stop{,/**} p,
 service /wheatley/get_loggers x,
 service /wheatley/set_logger_level x,

keymint_package.xml
Format:
 keymint_ros2_dds
...

Subject name:
 /foo/bar/wheatley
Issuer Name:
 Identity CA
…

X.509
CA

Fig. 4: Flow chart visualization of keymint keystore pipeline. Global environment for the keymint workspace is set via keystore
config, defining originating hierarchy of trust; i.e. Certificate Authorities. Upon package creation, workspace profiles are used
to provision the policy for the target subject; e.g. filtering applicable permissions via the ComArmor plugin. The resulting
artifacts for secure & controlled transport are staged within separate build and install phases, enabling users to customize final
documents via entrypoint plugins etc, resembling community’s familiar workflow for building and installing source packages.

late due to the fact ROS subsystem namespaces are split across
both DDS topics and partitions while additionally prefixed
with the subsystem type’s action. This mapping approach is
also shown be susceptible in section IV. At present, controlling
for ROS2 subsystems via DDS security criteria are almost
all orthogonal in nature given their entangled relation, thus
necessitating a larger number of individual rules than would
be otherwise expected. E.g. even ROS2 topics must not share
the same DDS publish rule given the chance the union of topic
namespace prefixes and names would allow crosstalk between
namespaces:

[/foo/bar, /baz/spam] −→ [/baz/bar, /foo/spam]

Abstracting policy definitions away from such complex
entanglements is perhaps yet another reason for relying on
using intermediate representations and compilers to preform
the task on behalf of the system administrator. With ROS2
Bouncy migrating to a more one to one mapping between DDS
topics and ROS2 subsystems, compilation will become more
straightforward, leaving DDS partitions available as higher
level criteria for expressing resource policy definitions as
described in section V-A.

With ComArmor and Keymint enabling repeatable and
reproducible cryptographic artifacts, revision controlling the
source configurations now becomes both rational and elegant.
With this, as with the AppArmor community and Debian pack-
aging, we envision further adoptions to afford ROS package

maintainers the opportunity to provide default configurations,
audited and maintained by the community and domain experts.

Anticipating further development of static analysis or mani-
fests of the topology of a system employing orchestration tools
and upstarts, using Keymint it is possible to pre-provision all
necessary artifacts for deployment. Alternatively, Keymint’s
API could be called dynamically to generate artifacts on the
fly, as required when remapping subsystem namespaces using
the ROS2 launch orchestration.

Public key infrastructure as we know it has remained
relatively unchanged for many years, at least as it is used
in industry. With rapid advances in cryptographic research,
new and more powerful cryptographic mechanisms such as
Ciphertext-Policy Attribute-Based Key Encapsulation Mech-
anisms (CP-AB-KEM) [21] or other functional encryption
schemes that could afford roboticists more flexible and secure
access control definitions. With Keymint, we have abstracted
the policy from the transport-specific details, so with the
ratification and industrial adoption of new paradigms, it is
possible to simply upgrade the Keymint Keymake compiler
to support newer artifact types.

/t
al

ke
r/

ge
t_

pa
ra

m
et

er
s

/t
al

ke
r/

se
t_

pa
ra

m
et

er
s

/li
st

en
er

/g
et

_p
ar

am
et

er
s

/t
al

ke
r/

lis
t_

pa
ra

m
et

er
s

/li
st

en
er

/s
et

_p
ar

am
et

er
s

/c
ha

tt
er

/li
st

en
er

ro
s_

su
bs

cr
ib

e

ro
s_

ca
ll

ro
s_

ca
ll

/li
st

en
er

/g
et

_p
ar

am
et

er
_t

yp
es

ro
s_

ca
ll

/li
st

en
er

/d
es

cr
ib

e_
pa

ra
m

et
er

s

ro
s_

ca
ll

/li
st

en
er

/li
st

_p
ar

am
et

er
s

ro
s_

ca
ll

/p
ar

am
et

er
_e

ve
nt

s

ro
s_

pu
bl

is
h

/t
al

ke
r/

de
sc

rib
e_

pa
ra

m
et

er
s

/c
lo

ck

ro
s_

su
bs

cr
ib

e

/t
al

ke
r

ro
s_

su
bs

cr
ib

e

ro
s_

ca
ll

ro
s_

ca
ll

ro
s_

ca
ll

ro
s_

pu
bl

is
h

ro
s_

ca
ll

/t
al

ke
r/

ge
t_

pa
ra

m
et

er
_t

yp
es

ro
s_

ca
ll

ro
s_

pu
bl

is
h

ro
s_

su
bs

cr
ib

e

ro
s_

su
bs

cr
ib

e

/t
al

ke
r/

ge
t_

pa
ra

m
et

er
s

/t
al

ke
r

ro
s_

ex
ec

ut
e

/li
st

en
er

ro
s_

ex
ec

ut
e

/li
st

en
er

/g
et

_p
ar

am
et

er
s

ro
s_

ca
ll

/li
st

en
er

/s
et

_p
ar

am
et

er
s

ro
s_

ca
ll

/c
lo

ck

ro
s_

pu
bl

is
h

/li
st

en
er

/g
et

_p
ar

am
et

er
_t

yp
es

ro
s_

ca
ll

/li
st

en
er

/d
es

cr
ib

e_
pa

ra
m

et
er

s

ro
s_

ca
ll

/li
st

en
er

/li
st

_p
ar

am
et

er
s

ro
s_

ca
ll

ro
s_

ca
ll

/t
al

ke
r/

se
t_

pa
ra

m
et

er
s

ro
s_

ca
ll

/t
al

ke
r/

lis
t_

pa
ra

m
et

er
s

ro
s_

ca
ll

/c
ha

tt
er

ro
s_

pu
bl

is
h

/t
al

ke
r/

de
sc

rib
e_

pa
ra

m
et

er
s

ro
s_

ca
ll

ro
s_

pu
bl

is
h

/t
al

ke
r/

ge
t_

pa
ra

m
et

er
_t

yp
es

ro
s_

ca
ll

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

su
bs

cr
ib

e
ro

s_
ex

ec
ut

e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

ro
s_

ex
ec

ut
e

/p
ar

am
et

er
_e

ve
nt

s

Fi
g.

5:
A

nn
ot

at
ed

gr
ap

hs
de

pi
ct

in
g

tr
an

sp
or

t
te

st
re

su
lts

w
he

re
on

ly
th

e
su

bj
ec

t
ta
lk
er

’s
po

lic
y

am
en

de
d

fo
r

th
e

em
pt

y
pa

rt
iti

on
.

T
he

co
lo

re
d

ed
ge

s
gr

ee
n/

re
d

co
rr

es
po

nd
to

al
lo

w
ed

/d
en

ie
d

ac
tio

ns
re

sp
ec

tiv
el

y.
A

dd
iti

on
al

ly
,T

ru
e

po
si

tiv
e/

ne
ga

tiv
e

la
be

ls
ar

e
da

sh
ed

,w
hi

le
Fa

ls
e

po
si

tiv
es

/n
eg

at
iv

es
ar

e
so

lid
.T

op
gr

ap
h

de
pi

ct
s

th
e

in
te

rs
ec

tio
n

be
tw

ee
n

la
be

ls
fr

om
G

tp
w

ith
gr

ap
h
G

s
,w

hi
le

bo
tto

m
is

th
e

re
la

tiv
e

co
m

pl
em

en
to

f
G

s
in

G
tp

.G
iv

en
th

e
am

en
dm

en
t,
ta
lk
er

is
no

w
pr

op
er

ly
ca

pa
bl

e
of

co
nn

ec
tin

g
to

its
ow

n
ob

je
ct

s,
as

th
e

ca
se

is
op

po
se

d
fo

r
li
st
en

er
sh

ow
n

vi
a

so
lid

ed
ge

s.
H

ow
ev

er
,
ta
lk
er

is
no

w
al

so
ca

pa
bl

e
of

ac
ce

ss
in

g
ob

je
ct

s
in

te
nd

ed
so

le
ly

fo
r
li
st
en

er
.

A
nu

an
ce

ex
is

ts
he

re
in

th
at

ta
lk
er

an
d
li
st
en

er
sh

ar
e

a
co

m
m

on
se

rv
ic

e
na

m
e,

th
ou

gh
no

na
m

es
pa

ce
,

an
y

pa
rt

ic
ip

an
t

w
ith

m
is

co
nfi

gu
re

d
Q

O
S/

po
lic

y
ex

ch
an

gi
ng

w
ith

li
st
en

er
co

ul
d

le
ak

m
es

sa
ge

s
to

ta
lk
er

.S
um

m
ar

iz
in

g,
an

y
at

te
m

pt
ed

fix
th

at
ex

pa
nd

s
th

e
m

in
im

al
po

lic
y

se
t

on
ly

se
rv

es
to

op
en

ne
w

at
ta

ck
su

rf
ac

es
.

N

T

S

Publish &
Subscribe

Call &
Execute

Permissions

/talker
(node)

/listener
(node)

/chatter
(topic)

/logout
(topic)

/logger
(node)

/loglevel
(service)

Fig. 6: For verification, a complete bipartite graph is formu-
lated from the deployment scenario to provide exhaustive test
coverage for each subject and object governed by the policy
in question. Vertex pairings are made cyclic as to ensure every
permission for each object is also inspected. The graph is then
tested both via transport and ComArmor to ensure the allowed
and denied edge sets match, and that the allowed set exactly
equates to the target deployment scenario.

IV. RESULTS

For evaluating our framework, a test procedure was devel-
oped for verifying the integrity of both the policy and its
realized implementation in transport. We begin by generating
a semantic graph model Gs from an operational yet insecure
robotic application, in this case by collecting DDS transport
discovery data from the classic ROS2 talker and listener demo
publishing and subscribing over the topic chatter. In addition
to the topic chatter, many more subsystem level topics are also
utilized to extend ROS2 node functionality, the later of which
will be shown troubling to properly secure in ROS2 Ardent.

A minimal satisfactory ComArmor policy Ps is then ex-
tracted from Gs. Gs is then used again to extrapolate a fully
connected bigraph Gfc, as shown in Figure 6, that essentially
adds all permissions to all objects for all subjects. We then
evaluate graph model Gfc semantically using policy Ps to
classify the edges and output labels Lfc for permitted actions.

Next, we generate the transport policies Ptp from Ps by
procedurally compiling with Keymint, in this case manifesting
as DDS Security artifacts. Ptp is then tested by attempting to
deploy Gfc using a transport implementation. We then infer
the permitted action labels Ltp for edges in Gfc via logged
runtime events from the transport.

Finally, we assert that the set of allowed edges in both Lfc

and Ltp each equate to the set of original edges in Gs. From
the differences between the labels vs original model, the set of
false positive (unintended allow) or false negative (unintended
deny) for either of the policy tests can be determined. For our
case example with the simple talker and listener deployment,
experimentation results are shown in Figure 5, where Gtp is
the graph equivalent of acquired experimental labels Ltp.

Results show a number of false positives and negative for

the transport label set enabling unintended circumvention of
the policy by way of cross talk between ROS2 subsystems with
namespace omitted. Essentially, this derives from an issue with
the current ROS2 Ardent rmw connext cpp implementation
where upon runtime start-up, certain core ROS2 node services
are first initialized to the empty string partition. This has
resulted in a temporary workaround within SROS2 that simply
amends the empty string partition to the list of allowed
partition criteria in the transport policy to afford node start
up. As of writing, this issue has been ticketed with the ROS2
development team with a resolution forthcoming, anticipated
by additional changes in approach to DDS namespace mapping
in ROS2 Bouncy release. The source material6 for repeating
and reproducing our experimental results has also been made
available. This experimental material additionally exemplifies
a typical work flow using ComArmor and Keymint.

While auditing experimental results, a set of gratuitous per-
missions within SROS2 default template was also brought to
our attention through simple comparative analysis between our
minimum spanning policy generated from runtime discovery
data and that provided by the SROS2 template. This issue
stems from a forgotten holdover workaround in whitelisting
DCPS related topics previously necessary for an older DDS
security implementation, and has also been ticketed upstream.

V. CONCLUSION

In this work we proposed ComArmor as a syntactic access
control markup language applicable for robotic systems and
computational graphs that leverage channelized hierarchies for
invoking actions on subsystem objects. This policy schema
was then demonstrated as a proof of concept profile plugin
in Keymint, our open source cryptographic meta-build system
designed for automating the provisioning of transport specific
artifacts enabling secure and controlled communications.

Additionally, we have provided a degree of model ver-
ification for semantic permission profiles and a systematic
test methodology for checking both application satisfiability
and rigour of deployed implementation of a governing policy.
The take-away here being the surmountable inherent value of
higher level policies that service intermediate representations
can provide when coupled with a compile framework to afford
transport/vendor agnostic access control definitions.

Although the majority of the model verification has so far
assumed finite graphs sizes and policies with exact string
attachments, we believe the utilities created during our ex-
perimentation will prove helpful for the community, since
exhaustive access control evaluation for amenable polices and
transport can help bolster unit tests and code coverage.

Lastly, we’ve covered potential vulnerabilities in SROS2
as encountered over the development and experimentation of
our frameworks, emphasizing the importance of continuous
security evaluation throughout design development cycle. The
authors hope the work presented will be incorporated by the
community to help tighten and close the design loop further.

6PPAC ROS2 Experiments: github.com/ruffsl/PPAC ROS2

https://github.com/ruffsl/PPAC_ROS2

Swarm (Domain)

Robot 1
(Partition)

Robot 2
(Partition)

Robot 3
(Partition)

Base Station
(Domain)

Routing Routing Routing

Logger
(Node)

Front UI
(Partition) Rviz

(Node)
Planer
(Node)

Fig. 7: A hypothetical setup for ROS2 enabled swarm lever-
aging DDS concepts. Traditional ROS namespaces are rooted
to an individual robot. Using partitions, robots could switch
broadcasts to any or all robots’ namespaces. Domains could
be used to scope a swarm, utilizing DDS routing for differenti-
ating QOS necessary for intra vs extra swarm communication,
such as with lossy remote station vs nearby robot peers.

A. Future Work

The use of regular expressions within policy profiles offers
a powerful and succinct representation to bind subjects and
object permissions. Although the default DDS Security access
control plugin specification supports a sub set of regular ex-
pressions that can be used in binding attachment, and although
ComArmor has been designed to support this feature, more
formal model verification could be applied to this domain.
Even moderate set theory analysis with the restriction to the set
of all namespace strings starting or ending with a given sub-
string could provide roboticists and system designers greater
assurances when using more flexible definitions.

Another valuable contribution for secure and scalable
robotic deployment would be investigating the design of al-
ternate namespace mapping arrangements in ROS2 that could
play to the strengths of DDS, while remaining agnostic to the
transport. One such idea would be introducing the concept of
robots and swarms into the addressable hierarchy for ROS2
substems (see Figure 7) that could serve equally as additional
access criteria for broader policy management.

In the authors’ opinion, being able to verify the security
features at scale is pivotal to quickening and easing progress
toward the realization of secure real world robotic products.

ACKNOWLEDGMENT

The authors would like to thank the Open Source Robotics
Foundation for their support in this work and for the op-
portunity to contribute to SROS2 and future robot security.
Work partially supported by CINI Cybersecurity National
Laboratory within the project ”FilieraSicura”.

REFERENCES

[1] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis
of Internet-of-Things platforms,” Computer Communications, vol.
89-90, pp. 5–16, 2016. [Online]. Available: http://dx.doi.org/10.1016/j.
comcom.2016.03.015

[2] S. Morante, J. G. Victores, and C. Balaguer, “Cryptobotics:
Why Robots Need Cyber Safety,” Frontiers in Robotics and AI,
vol. 2, no. September, pp. 23–26, sep 2015. [Online]. Available:
http://journal.frontiersin.org/Article/10.3389/frobt.2015.00023/abstract

[3] A. A. Cárdenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry,
“Challenges for Securing Cyber Physical Systems.”

[4] B. Dieber, B. Breiling, S. Taurer, S. Kacianka, S. Rass, and
P. Schartner, “Security for the Robot Operating System,” Robotics
and Autonomous Systems, vol. 98, pp. 192–203, dec 2017. [Online].
Available: https://doi.org/10.1016/j.robot.2017.09.017http://linkinghub.
elsevier.com/retrieve/pii/S0921889017302762

[5] M. Quigley, K. Conley, B. Gerkey, J. Faust, T. Foote, J. Leibs,
R. Wheeler, and A. Y. Ng, “ROS: an open-source robot operating
system,” in ICRA workshop on open source software, vol. 3, no. 3.2.
Kobe, Japan, 2009, p. 5.

[6] G. Pardo-Castellote, “Omg data-distribution service: architectural
overview,” in 23rd International Conference on Distributed Computing
Systems Workshops, 2003. Proceedings., May 2003, pp. 200–206.

[7] T. Denning, C. Matuszek, K. Koscher, J. R. Smith, and T. Kohno, “A
spotlight on security and privacy risks with future household robots: At-
tacks and lessons,” in Proceedings of the 11th International Conference
on Ubiquitous Computing, ser. UbiComp ’09, 2009, pp. 105–114.

[8] G. S. Lee and B. Thuraisingham, “Cyberphysical systems
security applied to telesurgical robotics,” Computer Standards
& Interfaces, vol. 34, no. 1, pp. 225–229, jan 2012.
[Online]. Available: http://dx.doi.org/10.1016/j.csi.2011.09.001http:
//linkinghub.elsevier.com/retrieve/pii/S0920548911000870

[9] J. Huang, C. Erdogan, Y. Zhang, B. Moore, Q. Luo, A. Sundaresan, and
G. Rosu, “Rosrv: Runtime verification for robots,” in Proceedings of the
14th International Conference on Runtime Verification, ser. LNCS, vol.
8734. Springer International Publishing, September 2014, pp. 247–254.

[10] R. Dczi, F. Kis, B. St, V. Pser, G. Kronreif, E. Jsvai, and M. Kozlovszky,
“Increasing ros 1.x communication security for medical surgery robot,”
in 2016 IEEE International Conference on Systems, Man, and Cyber-
netics (SMC), Oct 2016, pp. 4444–4449.

[11] D. Portugal, M. A. Santos, S. Pereira, and M. S. Couceiro, “On the
security of robotic applications using ROS,” in Artificial Intelligence
Safety and Security. CRC Press, December 2017.

[12] R. White, M. Quigley, and H. Christensen, “SROS: Securing ROS over
the wire, in the graph, and through the kernel,” in Humanoids Workshop:
Towards Humanoid Robots OS. Cancun, Mexico, 2016.

[13] R. White and M. Quigley, “{,S}ROS: Securing ROS over the wire, in
the graph, and through the kernel,” 2016, ROSCon, Seoul South Korea.
[Online]. Available: https://vimeo.com/187705073

[14] M. K. A. Sundaresan, L. Gerard. (2017) Secure ros 0.9.2 documentation.
[Online]. Available: https://sri-csl.github.io/secure ros

[15] B. Dieber, S. Kacianka, S. Rass, and P. Schartner, “Application-level
security for ROS-based applications,” in Intelligent Robots and Systems
(IROS), 2016 IEEE/RSJ International Conference on. IEEE, 2016, pp.
4477–4482.

[16] B. Breiling, B. Dieber, and P. Schartner, “Secure communication for the
robot operating system,” in 2017 Annual IEEE International Systems
Conference (SysCon), April 2017, pp. 1–6.

[17] R. White, G. Caiazza, H. Christensen, and A. Cortesi, “SROS1: Using
and developing secure ROS1 system,” in Robot Operating System (ROS):
The Complete Reference (Volume 3). Springer, to appear, 2018.

[18] J. McClean, C. Stull, C. Farrar, and D. Mascareñas, “A
preliminary cyber-physical security assessment of the Robot
Operating System (ROS),” vol. 8741, p. 874110, 2013. [Online].
Available: http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=
10.1117/12.2016189

[19] A. Cortesi, P. Ferrara, and N. Chaki, “Static analysis techniques for
robotics software verification,” in Proceedings of the 44th Internationel
Symposium on Robotics, IEEE ISR 2013, Seoul, Korea (South), October
24-26, 2013, 2013, pp. 1–6.

[20] M. Bauer, “Paranoid penguin: an introduction to novell apparmor,” Linux
Journal, vol. 2006, no. 148, p. 13, 2006.

[21] S. Hohenberger and B. Waters, “Online/offline attribute-based encryp-
tion,” in International Workshop on Public Key Cryptography. Springer,
2014, pp. 293–310.

[22] F. J. R. Lera, J. Balsa, F. Casado, C. Fernández, F. M. Rico, and
V. Matellán, “Cybersecurity in autonomous systems: Evaluating the
performance of hardening ROS,” Málaga, Spain-June 2016, p. 47, 2016.

http://dx.doi.org/10.1016/j.comcom.2016.03.015
http://dx.doi.org/10.1016/j.comcom.2016.03.015
http://journal.frontiersin.org/Article/10.3389/frobt.2015.00023/abstract
https://doi.org/10.1016/j.robot.2017.09.017 http://linkinghub.elsevier.com/retrieve/pii/S0921889017302762
https://doi.org/10.1016/j.robot.2017.09.017 http://linkinghub.elsevier.com/retrieve/pii/S0921889017302762
http://dx.doi.org/10.1016/j.csi.2011.09.001 http://linkinghub.elsevier.com/retrieve/pii/S0920548911000870
http://dx.doi.org/10.1016/j.csi.2011.09.001 http://linkinghub.elsevier.com/retrieve/pii/S0920548911000870
https://vimeo.com/187705073
https://sri-csl.github.io/secure_ros
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189
http://proceedings.spiedigitallibrary.org/proceeding.aspx?doi=10.1117/12.2016189

	I Introduction
	II Related Work
	III Approach
	III-A ComArmor
	III-B Keymint

	IV Results
	V Conclusion
	V-A Future Work

	References

