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A B S T R A C T

High heterogeneity of grassland communities supports a high diversity of species and represents a key point for
the retention of pollinators in agricultural landscapes. In the present study, we explored whether the co-oc-
currence of different grassland communities has any effect on the stability of the network of pollination inter-
actions. We monitored pollination interactions in two co-occurring grassland communities, differing in dis-
turbance history and water and nutrient supply. The monitoring was carried out during the summer season (7
surveys). For each survey we compared the role in the pollination networks (i.e., keystone vs. peripheral species)
of habitat-specialist and habitat-generalist plant and pollinator species. We found that plant and pollinator
species of the two different grassland communities were highly interconnected, revealing that pollination in-
teractions occur at a level of organization above that of the single community. The co-occurrence of the two
grassland communities increased the type, number and frequency of contacts, thereby contributing to networks
stability. The role of habitat-specialist and habitat-generalist plant and pollinator species in pollination networks
was asymmetric, with habitat-specialist plants and habitat-generalist pollinators being keystone species, while
habitat-generalist plants and habitat-specialist pollinators being peripheral in the pollination networks. Our
results showed that the stability of the network does stem from the co-occurrence of different species pools
having different but complementary roles in the pollination networks. From a conservation perspective, the
maintenance of different grassland communities is important not only because they allow the conservation of
habitat-specialist species, but specifically because plant species specialized in either grassland community are
also keystone for the maintenance of the stability of the pollination networks.

1. Introduction

Pollinator populations are declining all over the world (Winfree
et al., 2009) with unavoidable consequences for the pollination service
delivery. Around 60% of both wild and cultivated plant species are
expected to potentially suffer from pollination limitation (Aizen et al.,
2008), thereby undergoing a decrease of fruit or seed set. At the same
time, both domesticated and wild pollinator populations are affected by
a range of impacts, such as increasing use of agrochemicals, parasites
and diseases as well as habitat loss and climate change (Traveset et al.,
2017). Local and global environmental degradation, and the loss of
natural and semi-natural habitats appear to be of great importance in
determining the decline of pollinator populations (Kosior et al., 2007;
Fantinato et al., 2018a). Indeed, several studies suggest that the re-
duction in wildflowers, which determines a drop of floral resources
(i.e., nectar and pollen), plays a major role in pollinators decline
(Biesmeijer et al., 2006; Fitzpatrick et al., 2007; Potts et al., 2010). The

decline of floral resources can trigger a negative feedback on mutua-
listic communities, leading to local pollinator extinctions, which can in
turn lead to the decline in pollination services for wild plants, thereby
further reducing floral resources for the pollinators (Potts et al., 2010).
In the end, the integrity of natural and semi-natural habitats will be
affected (Lázaro et al., 2016; Traveset et al., 2017).

Given the economic implications of reduced pollination service, the
decline of pollinator populations in agricultural landscapes has received
substantial attention. Human disturbance, in the form of large-scale
farming and urbanization, typically results in the loss of native vege-
tation, changes in species composition and reduction of floral resources
(Fahrig, 2003; Fischer and Lindenmayer, 2007 Buffa et al., 2018).
However, the long history of low-intensity agricultural land use in
Europe has also created unique and species-rich plant assemblages,
including semi-natural grassland communities. Semi-natural grasslands
shaped by traditional farming practices such as grazing or haymaking
and with little impact of artificial fertilizers and ploughing, are among
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the most species-rich habitats in Europe (Dengler et al., 2014; Török
et al., 2016). Beside the high diversity of plant species (Wilson et al.,
2012), they also provide habitat for rare species from different taxo-
nomic groups (Slaviero et al., 2016; Fantinato et al., 2017), including
thousands of pollinator species, such as bees, flies, beetles, butterflies
(Bastian, 2013; Zulka et al., 2014) and other invertebrates.

The presence of semi-natural grasslands may thus represent a key
point for the retention of pollinators in agricultural landscapes. Indeed,
although some pollinator-dependent crops can provide local temporal
concentration of floral resources, their relatively short flowering period
cannot assure the continuity in forage provision needed for long-lived
pollinators (Corbet, 1991). Importance of grasslands for survival of
plants and pollinators in agricultural landscapes has led several studies
to attempt to find which ecological conditions and management prac-
tices mostly influence the maintenance of a diverse community of
plants and pollinators (Fantinato et al., 2016a, 2019). Findings proved
that different grassland communities support different local pools of
plant and pollinator species (Öckinger et al., 2012; Valkó et al., 2012),
and that only the co-occurrence of grasslands differing in disturbance
history as well as in water and nutrient supply, can meet the require-
ments of a high species diversity (van Klink et al., 2015; Török et al.,
2016).

The co-occurrence of grassland communities hosting different pools
of species does certainly increase the regional species pool. However,
increased diversity of species showing high habitat specialization does
not necessarily correspond to improved stability of the network of
pollination interactions, which is a function of the type, number and
frequency of interactions (Kaiser-Bunbury and Blüthgen, 2015;
Fantinato et al., 2019, 2018b). Arguably, we might expect that species
with a narrow ecological niche, i.e. being specialized in one grassland
community, will likely interact with species of their own community,
resulting in a highly compartmentalized (i.e. selective) network of
pollination interactions. Conversely, species characterized by a broader
ecological tolerance (i.e., habitat-generalist species) can occur in more
than one grassland community, thereby contributing to connect dif-
ferent communities through dispersal events. This, in turn, will con-
tribute to enhance the redundancy of pollination interactions by
widening the type, number and frequency of contacts (Blüthgen and
Klein, 2011).

We can thus hypothesize that within the regional species pool,
species specialized in a particular grassland community would occupy a
much more peripheric position in the network of pollination interac-
tions and play a marginal role in sustaining the network structure.
Conversely, species occurring in more than one grassland community
should exhibit a high degree of connection with the other species,
playing an important role in sustaining the structure of the overall
pollination network (i.e., keystone species; sensu Koski et al., 2015;

Traveset et al., 2018), ultimately increasing its stability. We addressed
the hypothesis by answering the following questions: (i) are different
co-occurring grassland communities interconnected through pollination
networks? (ii) do habitat-specialist and habitat-generalist plant and
pollinator species show different roles in pollination networks?

2. Materials and methods

2.1. Study area

The study took place in the Euganean Hills (NE Italy), a group of 81
volcanic hills ranging from 27 to 601m a.s.l.. Average annual rainfall is
720mm (Kaltenrieder et al., 2010), distributed according to an equi-
noctial pattern; two peaks, in correspondence to the months of April
and September, are intermingled with two minima, in the months of
December and July. Annual mean temperature is 13.0 °C; the highest
average temperature values can be found in July, while the lowest in
December. Bioclimatic classification (Rivas-Martínez, 2008) shows a
Temperate-Oceanic type, with the exception of the southern part of the
study area where a Temperate-Continental bioclimate can be observed.

The history of human influence on the land use of the Euganean
Hills dates back to the Neolithic; from 4300 to 4400 cal. BP sedimentary
pollen analysis proved pasture and grassland species, together with
Castanea, Juglans and Olea, to constantly occur in the study area
(Kaltenrieder et al., 2010). The presence of humans since ancient times
resulted in a fine-scale landscape structure with arable fields, orchards,
groves, and semi-natural grasslands intermingled with natural habitats,
such as forests and rocky outcrops, in a complex agricultural landscape.
The study area hosts two semi-natural grassland communities. Open
pioneer grasslands are characterized by sparse vegetation cover and are
dominated by low-growing dwarf shrubs (chamaephytes; e.g., Artemisia
alba Turra). They establish on poorly developed calcareous soils char-
acterized by low water retention capacity and high leaching rates
(Fantinato et al., 2016b). Dense late-successional grasslands are domi-
nated by perennial herbaceous plants (hemicryptophytes; e.g., Bromus
erectus Huds.), and establish on more developed calcareous soils, with
higher water retention capacity (Fantinato et al., 2016b). Historically,
the two grassland communities have been maintained through different
management practices. The low productivity of open pioneer grasslands
made them suited for grazing, while late-successional grasslands are
mowed for hay making (Fig. 1). Nowadays, management practices
slowed down, and grasslands are mowed or grazed every three years
(Fantinato et al., 2016a)

2.2. Data collection

Altogether 26 plots of 2m×2m were selected using a stratified

Fig. 1. Physiognomy of the pioneer grasslands (left) and the late-successional grasslands (right).
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random sampling design on two co-occurring grassland communities.
Overall, 13 plots were placed on open pioneer grasslands, and 13 plots
on dense late-successional grasslands.

The monitoring season started on 15th of April and ended on 14th of
July 2016, the time of the year in which both grassland communities
showed flowering species and active pollinators. We surveyed the 26
plots every 15 days, for a total of seven surveys. At each survey we
censused and identified pollinators. Since previous investigations
(Fantinato et al., 2018a) in the study area proved that recorded animal-
pollinated plants are predominantly pollinated by diurnal flying insects,
pollinator surveys were performed under warm and sunny weather
conditions. Pollination interactions were monitored for 14min per plot,
split into two 7-min sets distributed during two daily intervals (from 10
a.m. to 1 p.m. and from 1 p.m. to 4 p.m.) to ensure the observation of
pollinators showing different daily periods of activity (Fantinato et al.,
2018a). We considered and counted as pollinators only those insects
visiting flowers for more than 1 s, and getting in direct contact with the
floral reproductive organs (Hegland and Totland, 2005).

2.3. Data analysis

To evaluate the role of species in pollination networks, as well as the
organization of pollination interactions when different grassland com-
munities spatially co-occur, we adopted the network approach, in
which plant and pollinator species represent the network nodes, while
interactions between plants and pollinators are the links between
nodes. The network approach allows to calculate several metrics at both
the species and the whole network level and to describe the network
structure and the role of species in the functioning of the whole net-
work.

We created 7 quantitative pollination interaction matrices (one per
survey), in which rows represented pollinator species, columns plant
species and entries the number of contacts between each pair of plant
and pollinator species. We chose to organize pollination interactions in
one matrix per survey to avoid the formation of impossible interactions
through pollinator sharing between plant species flowering during
different surveys (i.e., forbidden links; Olesen et al., 2010).

For each pollination interaction matrix, we calculated three quan-
titative descriptors of the structure of pollination networks (i.e., net-
work selectiveness, weighted nestedness and quantitative modularity;
in the R-based package bipartite; Dormann et al., 2008). Besides being a
necessary step in the analysis of species role in pollination networks,
these attributes are relevant for the comprehension of the network
structure and functioning. Network selectiveness (Blüthgen et al., 2006)
is linked to the redundancy of interaction, which influences the re-
sistance and resilience of pollination networks by acting as a buffer
against species loss. Weighted nestedness (WNODF; Galeano et al.,
2009) is a measure of the asymmetry of interactions. In a nested net-
work, specialist species interact with generalist partners, while gen-
eralist species interact with both specialist and generalist partners. This
means that as specialists are lost from the network, the core of inter-
acting generalists remains unaltered (Tylianakis et al., 2010). A nested
structure is supposed to minimize inter-specific competition, thereby
enhancing the coexistence of a higher number of species and to increase
network stability (Vázquez and Aizen, 2004; Thébault and Fontaine,
2010). Beside the nestedness organization of interactions, network
modularity (Q; Dormann and Strauss, 2013) has been highlighted to
hugely influence the capability of pollination networks to withstand
perturbations (i.e., species loss). Modularity describes the degree to
which species interactions are organized in modules, or compartments,
in which species belonging to the same module interact more between
each other than with species belonging to other modules (Olesen et al.,
2007). A modular organization of interactions makes the overall pol-
lination network more resistant and resilient against the spread of
secondary extinctions through modules (Tylianakis et al., 2010). The
significance of network selectiveness, weighted nestedness and

quantitative modularity was assessed against a null model obtained by
constructing 1000 randomized networks with identical margin totals as
the empirical network and comparing the index values between ob-
served and random networks using the null model ‘r2d’ (Guimerà and
Amaral, 2005).

At the species level, we chose indices revealing the role of each
plant and pollinator species in the network of pollination interactions.
Specifically, we calculated species selectiveness (Blüthgen et al., 2006),
which measures the exclusiveness of a species partner spectrum com-
pared with other species in the network; species strength (S; Bascompte
et al., 2006), which measures the degree of dependence of a given
species partners on the selected species; nested contribution (ni;
Saavedra et al., 2011), which measures how individual species’ inter-
actions contribute to the degree of nestedness, calculated at the com-
munity level and compared to a random null model; weighted closeness
centrality (wCC; Ballantyne et al., 2017), as a measure of the centrality
of individual species within the topography of the network; standar-
dized connection (c; Olesen et al., 2007) and participation values (z;
Olesen et al., 2007), which measure the degree of connection of a
species between modules and within its own module, respectively.

To identify differences between pioneer and late-successional
grasslands in the composition of plant and pollinator species we re-
ported all temporal observations into two presence/absence matrices: a
plant species× plot matrix and a pollinator species× plot matrix.
Differences in the composition of plants and pollinators between pio-
neer and late successional grasslands were tested by conducting two
one-way PERMANOVAs (one for plants and one for pollinators;
Anderson and ter Braak, 2003) with 9999 permutations using the R-
based package vegan (version 2.4; Oksanen et al., 2016). Plant and
pollinator species were used as dependent variables and grassland
communities as fixed factor.

Habitat specialization of plant species was defined by performing an
Indicator Species Analysis (ISA; Dufrêne and Legendre, 1997). We
performed ISA using the multipatt function in R package indicspecies (De
Cáceres and Legendre, 2009; De Cáceres et al., 2010) and choosing ‘r.g’
as the statistical value to identify species fidelity to a grassland com-
munity. Only species with P‐values< 0.1 were considered specialized
for a grassland community (Hart and Chen, 2008; Kumar et al., 2017).
Therefore, we defined as habitat-specialist pollinators all those species
visiting exclusively habitat-specialist plants or visiting habitat-gen-
eralist plants exclusively in one of the two grassland communities. To
detect differences in the role of habitat-specialist and habitat-generalist
plant species in pollination networks we performed one-way PERMA-
NOVA with 9999 randomizations and Tukey Test (Anderson and Ter
Braak, 2003). We used metrics describing plant species role in polli-
nation networks (i.e., d', S, ni, wCC, c and z) as dependent variables,
and habitat specialization of species (i.e., habitat-specialist vs. habitat-
generalist species) as fixed factor. We followed the same procedure to
compare the role in pollination networks of habitat-specialist and ha-
bitat-generalist pollinators. We used the values of metrics describing
plant and pollinator species role in pollination networks calculated in
each survey as replicates. All calculations were done within the R sta-
tistical framework (R Development Core Team, 2012).

3. Results

Overall, we recorded 411 contacts between 27 plant and 63 polli-
nator species. Composition of both plant and pollinator species differed
widely between pioneer and late-successional grassland communities
(plants; pseudo-F1,25= 5.230; P<0.0001; pollinators; pseudo-
F1,65= 1.901; P= 0.001) showing narrow groups of shared species.
Specifically, 7 plant species were specialized in pioneer grasslands and
5 in late-successional grasslands, while 15 species were in common
between grassland communities (i.e., habitat-generalist species;
Table 2). Among plant families (13 families), Fabaceae, Gentianaceae,
Lamiaceae, Liliaceae, Orchidaceae, Rubiaceae and Scrophulariaceae
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were in common between grassland communities, while Cistaceae,
Convolvulaceae, and Plantaginaceae occurred only in pioneer grass-
lands, and Dipsacaceae, Geraniaceae, and Linaceae in late-successional
grasslands. As for pollinator species, 24 were specialized in pioneer
grasslands, 24 in late-successional grasslands, while 21 species were in
common between grassland communities (i.e., habitat-generalist spe-
cies). All recorded pollinators were insects, and belonged to six orders:
Coleoptera, Diptera, Hemiptera, Hymenoptera, Lepidoptera and Or-
toptera. Although orders of pollinating insects were not clearly asso-
ciated with different grassland communities, Hymenoptera were the
most representative order among shared pollinators (52% of species).

Values of network selectiveness, nestedness and modularity were
nonrandom during all the monitoring surveys (H2’, WNDOF and Q;
P < 0.001; Table 1), revealing a high network stability and capability
to withstand possible perturbations (i.e., resistance and resilience).

Significant differences in the role in pollination networks of plant
species specialized in pioneer and late-successional grasslands (habitat-
specialists), and those in common between grassland communities
(habitat-generalists) were revealed by PERMANOVA (pseudo-
F1,57= 4.534; P= 0.006). Tukey tests indicated that pollinator species
depended more on habitat-specialist plant species than on habitat-
generalist species (S; Ppion. vs. comm. = 0.042; Plate-succ. vs. comm.=0.009;
Fig. 2). Furthermore, habitat-specialist plant species had both higher
standardized connection (c) and participation values (z) than habitat-
generalist plant species (c; Ppion. vs. comm. = 0.040; Plate-succ. vs.
comm.=0.038; z; Ppion. vs. comm. = 0.004; Plate-succ. vs. comm.=0.018;
Fig. 2), indicating that plant species specialized in either grassland
community were more connected with both species of their module,
and of the other modules than habitat-generalist species (Fig. 2). Plant
species with high values of strength coupled with high values of stan-
dardized connection and participation value were Convolvulus cantab-
rica L., Globularia bisnagarica L. and Helianthemum nummularium ssp.
obscurum (Čelak.) Holub. in pioneer grasslands, while Crepis vesicaria
ssp. taraxacifolia (Thuill.) Thell., Dorycnium herbaceum Vill., Geranium
sanguineum L. and Linum tenuifolium L. in late-successional grasslands.

Similarly, the role of pollinator species in pollination networks
significantly differed between habitat-specialists and habitat-generalists
(pseudo-F1,117= 17.353; P < 0.0001). Tukey tests revealed that ha-
bitat-generalist pollinator species had a significantly higher strength
(S), standardized connection (c) and participation value (z) than ha-
bitat-specialist pollinator species (S; Ppion. vs. comm. = 0.0003; Plate-succ.
vs. comm=0.004; c; Ppion. vs. comm. = 0.0003; Plate-succ. vs. comm. = 0.042;
z; Ppion. vs. comm. = 0.041; Plate-succ. vs. comm. = 0.012; Fig. 2). Therefore,
in contrast to plant species, habitat-generalist pollinator species con-
nected species within and between modules significantly better than
those specialized in either grassland community.

Pollinator species with high values of strength coupled with high
values of standardized connection and participation value were Apis
mellifera (L., 1758), Anthidium manicatum (L., 1758), Bombus hortorum
(L., 1761), B. terrestris (L., 1758), Episyrphus balteatus (De Geer, 1776)
and Osmia rufohirta (Latreille, 1811), which were in common between
grassland communities (i.e., habitat-generalist species).

4. Discussion

Semi-natural grasslands support a high diversity of strict habitat-
specialist species, representing important habitats for biodiversity

conservation (Ekroos and Kuussaari, 2012). Moreover, by considering
the pollination interactions our study allowed us to demonstrate that
the different grassland communities are interconnected through polli-
nation networks, and that processes like pollination occur at a level of
organization above that of the single community. Besides their role in
enhancing the regional species pool and hosting species of conservation
concern, our findings suggest that mosaics of different grasslands con-
tribute to the long-lasting provision of ecosystem services by enhancing
the stability of the pollination network.

Indeed, plant and pollinator species of the two different grassland
communities were highly interconnected and did not form two distinct
sets of interactions, increasing the type, number and frequency of
contacts. As a result, the pollination networks showed a moderate to
low degree of selectiveness (i.e., of compartmentalization; H’2), coupled
with a significantly nested organization of interactions (WNODF) and a
significant modular structure (Q). This result is particularly important,
since a nested organization of interactions is assumed to increase
system stability by decreasing the probability of local extinction of
peripheral species, which are considered the most vulnerable network
members (Fortuna and Bascompte, 2006; Joppa et al., 2010). Con-
currently, a modular structure slows the spread of secondary extinc-
tions, further increasing the stability of pollination networks (e.g.,
Krause et al., 2003).

When the role of plant and pollinator species in pollination net-
works was assessed, significant differences emerged between habitat-
specialist and habitat-generalist species. Specifically, habitat-specialist
plants were more important than habitat-generalists in the maintenance
of pollinator species, with plant species growing either in pioneer or in
late-successional grassland showing significantly higher values of
strength (S) than those growing indistinctly in both grassland commu-
nities. Furthermore, habitat-specialist plants had significantly higher
values of standardized connection (c) and participation value (z) and
were, therefore, more connected with other species in other modules
and within their modules than habitat-generalist plants. Being at the
core of pollination networks, habitat-specialist plants can thus be con-
sidered keystone species, and their loss caused by grassland abandon-
ment or destruction would eventually lead to the collapse of networks’
structure (Fortuna et al., 2013; Fantinato et al., 2019) and to the loss of
pollination service.

On the other hand, pollinator species showed an opposite pattern,
with habitat-generalists being more important than habitat-specialists
in the sustainment of grasslands’ pollination networks. Indeed, habitat-
generalist pollinators exhibited a significantly higher strength (S) than
those specialized in either grassland community, revealing that plant
species depended more on habitat-generalists than on habitat-specialist
pollinators. Furthermore, habitat-generalist pollinators connected spe-
cies within and between network modules more than habitat-specialists
(i.e., they showed higher values of standardized connection – c, and of
participation value – z). In heterogeneous landscapes, pollinator species
that visit a wide range of plant communities may exert a stabilizing
effect by widening the range of interactions (i.e., the redundancy of
pollination interactions), ultimately conferring stability to the pollina-
tion networks (Blütghen et al., 2011; Kaiser-Bunbury et al., 2015;
Fantinato et al., 2019). In this regard, it is worth to consider that little
variation could be observed between the identity of keystone pollinator
species recorded in grassland communities and those found in a huge
variety of ecosystems (Olesen et al., 2007). Indeed, according to the

Table 1
Network parameters for each survey. H’2: complementary specialization; WNODF: weighted nestedness; Q: quantitative modularity. (*** P < 0.001).

Survey 1st 2nd 3rd 4th 5th 6th 7th

H’2 0.364*** 0.503*** 0.638*** 0.424*** 0.593*** 0.538*** 0.619***

WNDOF 17.342*** 10.655*** 2.391*** 5.857*** 7.842*** 5.952*** 7.692***

Q 0.421*** 0.534*** 0.705*** 0.562*** 0.585*** 0.667*** 0.494***
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literature, the functional role of pollinator species is less variable than
that of plant species (e.g., Burkle and Irwin, 2009; Nielsen and Totland,
2014; Koski et al., 2015), with Hymenoptera playing a crucial role in
sustaining pollination networks in many ecosystems of the world (e.g.,
Fang and Huang, 2012; Forup and Memmott, 2005).

Summarizing, the role of habitat-specialist and habitat-generalist
plant and pollinator species in pollination networks was asymmetric,
with habitat-specialist plants and habitat-generalist pollinators being
keystone species, while habitat-generalist plants and habitat-specialist
pollinators being peripheric in the topography of pollination networks.
Interestingly, plant species pollination and ecological niche (e.g., with
regard to the variety of grassland communities in which they can occur)
did not show comparable breadths. In other words, plant species with
broad ecological tolerance do not necessarily interact with a wide
spectrum of pollinator species, and not necessarily occupy a central role
in the network of pollination interactions. Certainly, our findings de-
serve further investigation, but results might originally contribute with
new insights on the understanding of trade-offs in different aspects of
plant species life history.

Semi-natural grasslands are among the most important habitats in
Europe (Gigante et al., 2018; Jannsen et al., 2018). However, they are
severely threatened by changes in land use, both through intensification
of agriculture as well as abandonment followed by decreased habitat
quality and the consequent decline of the biodiversity they host (Valkó
et al., 2014). Being characteristic of agricultural landscapes grassland
communities can crucially contribute to the pollination service reten-
tion by providing a stable habitat available for foraging and life cycle
completion of pollinators. By focusing on pollination interactions, we
found that the maintenance of different grassland communities is im-
portant because they improve the redundancy, namely the resistance
and resilience, of the pollination networks. Indeed, our findings show
that the stability of the network stems from the co-occurrence of

different species pools having different, but complementary roles in
pollination networks. From a conservation perspective, the main-
tenance of different grassland communities is important not only be-
cause they allow the conservation of habitat-specialist species, but
specifically because plant species specialized in either grassland com-
munity are also keystone for the maintenance of the stability of polli-
nation networks.
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