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Abstract 
We define a premium principle under the continuous cumulative prospect theory which 
extends the equivalent utility principle. In prospect theory risk attitude and loss aversion are 
shaped via a value function, whereas a transformation of objective probabilities, which is 
commonly referred as probability weighting, models probabilistic risk perception. In 
cumulative prospect theory, probabilities of individual outcomes are replaced by decision 
weights, which are differences in transformed, through the weighting function, counter-
cumulative probabilities of gains and cumulative probabilities of losses, with outcomes ordered 
from worst to best. Empirical evidence suggests a typical inverse-S shaped function: decision 
makers tend to overweight small probabilities, and underweight medium and high probabilities; 
moreover, the probability weighting function is initially concave and then convex. We study 
some properties of the behavioral premium principle. We also assume an alternative framing of 
the outcomes; then we discuss several applications to the pricing of insurance contracts. 
 
  
Keywords  
Continuous Cumulative Prospect Theory, Insurance Premium Principles, Zero Utility 
Principle, Framing, Probability Weighting Function 
 
JEL Codes 
D81, G22, G41 
 

 
 Address for correspondence: 

Martina Nardon 
Department of Economics 

Ca’ Foscari University of Venice 
Cannaregio 873, Fondamenta S.Giobbe 

30121 Venezia - Italy 
e-mail: mnardon@unive.it 

 

This Working Paper is published under the auspices of the Department of Economics of the Ca’ Foscari University of Venice. Opinions 
expressed herein are those of the authors and not those of the Department. The Working Paper series is designed to divulge preliminary or 
incomplete work, circulated to favour discussion and comments. Citation of this paper should consider its provisional character.

 



1 Introduction

According to prospect theory, individuals do not always take their decisions con-
sistently with the maximization of expected utility. Decision makers are risk averse
when they evaluate gains and risk-seeking with respect to losses. They are also loss
averse, as they are more sensitive to losses than gains of comparable magnitude.
Investment opportunities are evaluated based on potential gains and losses relative
to a reference point, rather than in terms of final wealth. Moreover, decision mak-
ers apply decision weights that are biased with respect to objective probabilities; in
particular, they tend to underweight medium and high probabilities and overweight
low probabilities of extreme outcomes (Quiggin 1993), they are more sensitive to
changes in the probability of extreme outcomes than mid outcomes. Kahneman
and Tversky (1979) and many other studies based on survey data reported such
behaviors.

Risk attitude and loss aversion are shaped via a value function and objective
probabilities through a probability weighting (or distortion) function, which mod-
els probabilistic risk perception. In cumulative prospect theory, decision weights
are differences in transformed, through the weighting function, of counter-cumu-
lative probabilities of gains and cumulative probabilities of losses, with outcomes
ordered from worst to best, and not the probabilities of individual outcomes.

In this contribution, we define a premium principle under the continuous cu-
mulative prospect theory (Tversky and Kahneman 1992; Davis and Satchell 2007)
based on the equivalent utility, or zero utility, principle introduced by Gerber (1979),
extending previous work of Kaluszka and Krzeszowiec (2012).

A few contributions study premium principles under rank dependent utility
theory (e.g. Heilpern 2003, and Goovaerts et al. 2010); van der Hoek and Sher-
ris (2001) consider different probability weighting functions for gains and losses,
with linear utility; Kaluszka and Krzeszowiec (2012) extend the equivalent pre-
mium principle under cumulative prospect theory for linear and exponential utility
functions; Kaluszka and Krzeszowiec (2013) study iterativity conditions of the
premium principle defined in Kaluszka and Krzeszowiec (2012). Also Sung et al.
(2011) apply cumulative prospect theory in order to study the optimality of insur-
ance from the viewpoint of the insured maximizing her/his prospect value subject
to a proportional premium principle adopted by the insurer.

The premium principles we discuss have some common features with respect
to the approach based on distortion risk measures. Distorted probabilities were
introduced by Wang (1996) in the definition of a premium principle based on a
proportional hazard transform of the decumulative distribution function of the in-
surance risk. Wang (2000) applies distortion operators in order to price financial
and insurance risks; the approach is more related to the dual theory of Yaari (1987).
Along the same line of research, one may include the contributions of van der Hoek
and Sherris (2001), Hamada and Sherris (2003), Balbás et al. (2009), Tsanakas
(2009), Belles-Sampera et al. (2013) and Belles-Sampera et al. (2016).

We also discuss some examples under the rank dependent utility and the dual
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theory as particular cases. Differently from previous contributions, here we focus
on the representation of the cumulative prospect theory value for continuous dis-
tributions (Davis and Satchell, 2007). We study some properties of the premium
principle, providing alternative proofs under continuous cumulative prospect the-
ory.

Moreover, we introduce the assumption that alternative framing (see Thaler,
1985) of the results may be evaluated by the insurer into different mental accounts.
Decision makers may aggregate or segregate outcomes, leading to different pre-
mium principles. In the segregated model, we obtain explicit solutions for the
premium. Under specific assumptions on the value function and the probability
weighting function, the premium has an integral representation and can be com-
puted by numerical approximation.

Then we discuss several applications to the pricing of insurance contracts, con-
sidering alternative value functions and probability weighting functions proposed
in the literature, and different mental accounting.

Finally, we focus on the transformation of objective probabilities and provide
some remarks on the shape of the probability weighting function. Empirical evi-
dence suggests a typical inverse-S shaped function: decision makers tend to over-
weight small probabilities, and underweight medium and high probabilities; more-
over, the probability weighting function is initially concave and then convex. We
will see that curvature and elevation of the weighting function have an interesting
interpretation in terms of probabilistic optimism and pessimism.

The paper is organized as follows. Section 2 summarizes the main features of
cumulative prospect theory. Section 3 introduces the behavioral premium princi-
ples and some of their properties. Section 4 analyzes applications to the evaluation
of insurance contracts. Section 5 concludes.

2 Cumulative prospect theory

Prospect theory has been proposed by Kahneman and Tversky (1979) as an alter-
native to expected utility theory to explain actual behaviors. Formally, prospect
theory relies on two key transformations: the value function v, which replaces the
utility function for the evaluation of outcomes, and a probability weighting, or
probability distortion, function for objective probabilities w, which models proba-
bilistic risk behavior. Risk attitudes are derived from the shapes of these functions
as well as their interaction.

Prospect theory1, in its formulation initially proposed by Kahneman and Tver-
sky (1979), is based on the subjective evaluation of prospects. A preference rela-
tion is introduced over the set of all prospects; originally prospect theory deals only
with a limited set of prospects. With n possible future outcomes {x1,x2, . . . ,xn},
a prospect is a vector of pairs (∆xi, pi), for i = 1,2, . . . ,n. A probability pi is as-
signed to each outcome. Assume ∆xi ≤ ∆x j, for i < j, with ∆xi ≤ 0 for i ≤ k and

1The book of Wakker (2010) provides a thorough treatment on prospect theory.
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∆xi > 0 for i > k. Infinitely many outcomes may also be considered (Schmeidler
1989).

Outcome ∆xi is defined relative to a certain reference point x∗; xi being the
absolute outcome, we have ∆xi = xi − x∗. Zero is usually taken as a reference
point (the status quo), even though prospect theory does not explain clearly how to
locate such reference points (see Shiller 1999, Werner and Zank 2018). It is also
relevant to separate gains from losses, as negative and positive outcomes may be
evaluated differently by decision makers: results are evaluated through a strictly
increasing value function v, which is typically convex and steeper in the range of
losses (loss aversion) and concave in the range of gains. An important feature of
prospect theory, with respect to expected utility, is the discontinuity in the slope
of v in correspondence of the reference point. The curvature of the value function
represents sensitivity to values away from the reference point, rather than marginal
returns (see Davis and Satchell 2007).

Specific parametric forms have been suggested in the literature for the value
function. Let x be an outcome, a function which is used in Tversky and Kahneman
(1992) and in many empirical studies is

v(x) =
{

v+(x) = xa x ≥ 0
v−(x) =−λ (−x)b x < 0,

(1)

with positive parameters that control risk attitude (curvature), 0 < a ≤ 1 and 0 <
b ≤ 1, and loss aversion, λ ≥ 1. v− and v+ denote the value function for losses
and gains, respectively. Function (1) is continuous, strictly increasing, has zero as
reference point; it is concave for positive outcomes and convex for negative ones, it
is steeper for losses. Parameters values equal to one imply risk and loss neutrality.

Subjective values v(∆xi) are not multiplied by objective probabilities pi, but
using decision weights πi = w(pi), computed via a probability weighting (or prob-
ability distortion) function. The shape of the value function and the weighting
function becomes significant in capturing the full complexity of actual choice pat-
terns.

A weighting function w is a strictly increasing function which maps the prob-
ability interval [0,1] into [0,1], with w(0) = 0 and w(1) = 1. In this work we
will assume continuity of w on [0,1], even thought in the literature discontinuous
weighting functions are also considered. Evidence suggests a typical inverse-S
shape: small probabilities of extreme events are overweighted, w(p)> p, whereas
medium and high probabilities are underweighted, w(p)< p. The curvature of the
weighting function is related to the risk attitude towards probabilities; the func-
tion is initially concave (probabilistic risk seeking or optimism) for probabilities
in the interval (0, p∗), and then convex (probabilistic risk aversion or pessimism)
in the interval (p∗,1), for a certain value of p∗. A linear weighting function de-
scribes probabilistic risk neutrality or objective sensitivity towards probabilities,
which characterizes expected utility. Empirical findings indicate that the intersec-
tion (elevation) between the weighting function and the 45 degrees line, w(p) = p,
is for p around 1/3.
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Let us now denote with ∆xi, for −m ≤ i < 0, negative outcomes and for 0 < i ≤
n positive outcomes, with ∆xi ≤ ∆x j for i < j. The subjective value of a prospect
is displayed as follows:

V =
n

∑
i=−m

πi · v(∆xi) , (2)

with decision weights πi and values v(∆xi) based on relative outcomes. In the case
of expected utility, the weights are πi = pi and a utility function is considered. In
the following, in order to simplify the notation, it will be convenient to write xi

instead of ∆xi for the net outcomes, but still considering outcomes interpreted as
deviations from a reference point.

Cumulative prospect theory developed by Tversky and Kahnemann (1992)
overcomes some drawbacks (such as violations of first order stochastic dominance)
of the original prospect theory. In cumulative prospect theory, the prospect value
depends also on the rank of the outcomes, and decision weights πi are defined
as differences in transformed (through the function w) cumulative probabilities of
losses and counter-cumulative probabilities of gains. Formally:

πi =


w−(p−m) i =−m

w− (∑i
j=−m p j

)
−w−

(
∑i−1

j=−m p j

)
i =−m+1, . . . ,−1

w+
(
∑n

j=i p j
)
−w+

(
∑n

j=i+1 p j
)

i = 0, . . . ,n−1
w+(pn) i = n,

(3)

where w− denotes the weighting function for losses and w+ for gains, respectively.
As above, we consider outcomes ranked from worst to best.

As Quiggin (1993) pointed out2:“The general notion of a weighting function
depending on the entire vector of probabilities rather than on the probabilities of
individual events was first proposed by Allais (1953). Allais did not, at that time,
suggest a functional form or a set of axioms, and the idea remained undeveloped for
another 25 years”. Later Quiggin (1982) introduced the rank-dependent expected
utility theory; Yaari (1987) developed the dual theory; Allais (1988) discussed his
cardinal utility; Tversky and Kahnemann (1992) proposed the cumulative version
of prospect theory (Kahnemann and Tversky 1979). All such theories have been
developed almost independently and share the idea that individual probabilities
are distorted through a weighting function and the degree of risk aversion or risk
seeking appears to depend not only on the values, but also on the probability and
ranking of the outcomes.

Different parametric forms for the weighting function with the above men-
tioned features have been proposed in the literature, and their parameters have
been estimated in many empirical studies. Some forms are derived axiomatically
or are based on psychological factors. Single parameter and two (or more) param-
eter weighting functions have been suggested; some functions have linear, poly-
nomial or other forms, and there is also some interest for discontinuous (such as

2See Quiggin (1993), p 56.
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Figure 1: Weighting function w(p) = pγ

(pγ+(1−p)γ )1/γ for different values of the pa-

rameter γ < 1. As γ approaches the value 1, w tends to the identity function

neo-additive) weighting functions3. Two commonly applied weighting functions
are those proposed by Tversky and Kahneman (1992):

w(p) =
pγ

(pγ +(1− p)γ)1/γ , (4)

with w(0) = 0 and w(1) = 1, and γ > 0 (with some constraint in order to have an
increasing function); and Prelec (1998):

w(p) = e−δ (− ln p)γ
, (5)

with w(0) = 0 and w(1) = 1, 0 < δ < 1, γ > 0. When γ < 1, one obtains the
inverse-S shape. Figure 1 shows some examples of the weighting function used in
Tversky and Kahneman (1992).

2.1 Cumulative prospect theory for continuous distributions

Prospects may involve a continuum of values, in particular when considering appli-
cations in finance and insurance; hence, prospect theory cannot be applied directly
in its original or cumulative versions. In this work, we consider the cumulative
prospect value for a continuous random variable as defined by Davies and Satchell
(2007)4. Let w+ and w− be strictly increasing functions with w+(0) = w−(0) = 0

3For a discussion on probability weighting functions and their shape, see e.g. Nardon and Pianca
(2018) and references therein.

4See also Rieger and Wang (2008), Wakker (2010), and Kothiyal et al. (2011).
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and w+(1) = w−(1) = 1, and v a strictly increasing function (denoting v+(x) for
x > 0 and v−(x) for x < 0, with v(0) = 0). A preference relation can be expressed
by the continuous cumulative prospect value

V (v(X)) =

∫ 0

−∞
v−(x)ψ−[F(x)] f (x)dx+

∫ +∞

0
v+(x)ψ+[1−F(x)] f (x)dx, (6)

where ψ = dw(p)
d p is the derivative of the weighting function w with respect to the

probability variable, F is the cumulative distribution function and f is the proba-
bility density function of the random outcomes X . If we use the notation Ew(v(X))
(when w+ = w− = w) and Ew+w−(v(X)), in much analogy with the notation in
Heilpern (2003) and Kaluszka and Krzeszowiec (2012), we can also define the
continuous cumulative prospect value as V (v(X)) = Ew+w−(v(X)).

A special case of (6) is when the value function is linear and, in particular,
v(x) = x:

V (X) = Ew+w−(X) =
∫ 0

−∞
xψ−[F(x)] f (x)dx+

∫ +∞

0
xψ+[1−F(x)] f (x)dx ; (7)

and when w+ = w− = w, we have

V (X) = Ew(X) =
∫ +∞

−∞
xψ[1−F(x)] f (x)dx. (8)

For an arbitrary random variable, the cumulative prospect value can also be
defined using the generalized Choquet integral:

Ew+w−(v(X)) =
∫ +∞

0
w+
(
P(v+(X)> y)

)
dy−

∫ 0

−∞

[
1−w− (P(v−(X)> y)

)]
dy ;

with special cases

Ew+w−(X) =
∫ +∞

0
w+ (P(X > x)) dx−

∫ 0

−∞

[
1−w− (P(X > x))

]
dx

and
Ew(X) =

∫ +∞

−∞
w(P(X > x)) dx .

3 A behavioral premium principle under continuous
cumulative prospect theory

Let u denote the utility function, and W be the initial wealth; the utility indifference
price P is the premium from the insurer’s viewpoint which satisfies (if it exists) the
condition:

u(W ) = E[u(W +P−X)], (9)
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where X is the claim amount; the severity of the loss caused by a risk event can be
modeled by a non-negative random variable. The premium P makes indifferent the
insurance company about accepting the risky position and not selling the insurance
policy. The well known equivalent utility principle has been introduced by Gerber
(1979) for concave utility functions; we refer to the zero utility principle when
the initial wealth is W = 0 or the utility function is defined with respect to the a
reference point which is set equal to the status quo û(x) = u(W + x) (see Heilpern
2003).

Differently from expected utility theory, in prospect theory individuals are risk
averse when considering gains and risk-seeking with respect to losses; moreover,
they are more sensitive to losses than to gains of comparable magnitude (loss aver-
sion). The final result W +P−X in (9) could be positive or negative. The relative
result W +P−X will be considered through a value function v, which is continu-
ous and strictly increasing, with v(0) = 0. Objective probabilities are replaced by
decision weights, as defined in the previous section.

The equivalent utility principle (9) under cumulative prospect theory becomes

v+(W ) =V [v(W +P−X)] = Ew+w− [v(W +P−X)] . (10)

Heilpern (2003) introduces a zero utility principle under rank-dependent utility
theory, Kaluszka and Krzeszowiec (2012) extend the definition of the premium
principle in a cumulative prospect framework, discussing some special cases with
linear and exponential utility functions and the properties of the related premium.

In the present work, we adopt the continuous cumulative prospect theory rep-
resentation as defined in (6). Let the loss severity X be modeled by a non-negative
continuous random variable, with distribution function FX and probability density
function fX ,5 then condition (10) becomes

v+(W ) =
∫ W+P

0
v+(W +P− x)ψ+[FX(x)] fX(x)dx+

+
∫ +∞

W+P
v−(W +P− x)ψ−[1−FX(x)] fX(x)dx.

(11)

As already pointed out, in prospect theory results are evaluated considering
potential gains and losses relative to a reference point, rather than in terms of final
wealth; the value function may be non differentiable at the reference point. When
zero is assumed as reference point (the status quo), or taking W = 0 in (11), then
the premium P for insuring X is defined by the condition

V [v(P−X)] = Ew+w− [v(P−X)] = 0 ,

5When there is no ambiguity, we simply use the notation F(x) = P(X ≤ x) and S(x) = 1−F(x) =
P(X > x), and f for the probability density function of the random loss X .
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and is implicitly determined by the following equation

0 =
∫ P

0
v+(P− x)ψ+[FX(x)] fX(x)dx+

+
∫ +∞

P
v−(P− x)ψ−[1−FX(x)] fX(x)dx.

(12)

Condition (12) defines the zero prospect value premium principle based on cumu-
lative prospect theory for continuous random variables.

3.1 Properties of the behavioral premium principle

We discuss some properties of the principles defined above. It is easy to show that,
when the utility or value functions are identity functions, u(x) = x or v(x) = x, and
probabilities are not distorted, w(p) = p, then the behavioral premium is equal to
the equivalence premium,

P = E(X).

When probabilities are not distorted and we consider a utility function u, we have

V (u(W +P−X)) = E[u(W +P−X)],

and the equivalent utility premium principle follows.
Let u(x) = x and w = w+ = w−, which corresponds to the dual utility model

(see Yaari 1987); then V (Y ) = Ew(Y ) as defined in (8), for any continuous random
variable,

V (Y ) = Ew(Y ) =
∫ +∞

−∞
yψ[1−FY (y)] fY (y)dy.

Define Y =W +P−X , then

Ew(W +P−X) =
∫ +∞

0
(W +P− x)ψ[FX(x)] fX(x)dx

= (W +P)[w(1)−w(0)]−
∫ +∞

0
xψ[FX(x)] fX(x)dx

= (W +P)−Ew(X),

where w is the dual probability weighting function w(p) = 1 − w(1 − p), with
w′(p) = w′(1− p). Note that Ew(−X) =−Ew(X). If we impose condition

u(W ) = Ew[u(W +P−X)]

(we can also consider W = 0), the solution is the following premium principle

P = Ew(X). (13)

It is worth noting that when w is concave (convex), w is convex (concave).6

More generally, if w has an inverse-S shape (S-shape), w has an S-shape (inverse-
S shape). In Section 4, we will discuss the case with linear utility and different

6The premium principle defined in Wang (1996) assumes an increasing and concave distortion
function and maintains the second order stochastic dominance.
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probability distortions for positive and negative outcomes w+ ̸= w−, and two cases
with exponential utility functions with both w+ = w− and w+ ̸= w−.

The premium principle under continuous cumulative prospect theory satisfies
the following properties.

No unjustified safety (or risk) loading: P(a) = a, for all constants a.

This is a consequence of the definition of the premium principle, strict monotonic-
ity of v, and property Ew+w−(c) = c, so that

v(W ) = Ew+w−(v(W +P(a)−a)) = v(W +P(a)−a),

thus P = a. 2

Non-excessive loading: when v is a continuous and increasing function, with
v(0) = 0, and w+ and w− are probability weighting functions, P(X)≤ sup(X).

Given Ew+w−c = c, for all c, and Ew+w−(X)≤ Ew+w−(Y ), if X ≤ Y , then

v(W ) = Ew+w−(v(W +P−X))≥ Ew+w−(v(W +P− supX)) = v(W +P− supX),

hence P ≤ sup(X). 2

Translation invariance: P(X +b) = P(X)+b, for all b.

Indeed we have

v(W ) = Ew+w− [v(W +P(X +b)− (X +b))] = Ew+w− [v(W +P(X)+b− (X +b))],

or using the representation (6) we can prove that

v(W ) =
∫ W+P(X+b)−b

0
v+(W +P(X +b)− (X +b))ψ+(FX(x)) fX(x)dx+

+
∫ +∞

W+P(X+b)−b
v−(W +P(X +b)− (X +b))ψ−(1−FX(x)) fX(x)dx

=
∫ W+P(X)

0
v+(W +P(X)+b− (X +b))ψ+(FX(x)) fX(x)dx+

+
∫ +∞

W+P(X)
v−(W +P(X)+b− (X +b))ψ−(1−FX(x)) fX(x)dx ,

so that P(X +b) = P(X)+b. 2

9



Positive scale invariance: P(aX) = aP(X), for a > 0.
This property holds under rank dependent utility if and only if the value function
is linear (for the proof, see Heilpern 2003). Under cumulative prospect theory,
Kaluszka and Krzeszowiec (2012) prove that scale invariance holds when: (i) W =
0, if and only if v− = c1(−x)d and v+ = c2(x)d , for d > 0, c1 < 0 < c2; (ii) W > 0,
for a random variable X such that P(X = 0) = 1− q and P(X = s) = q (s > 0,
q ∈ [0,1]), if and only if v(x) = cx, c > 0 and w+ = w−. 2

Additivity for independent risks, additivity for comonotonic risks, sub-additivity,
stop-loss order preservering are studied and proved under rank dependent utility
and cumulative prospect theory (see Gerber 1985; Heilpern 2003; Goovaerts et al.
2004, 2010; Kaluszka and Krzeszowiec 2012) for a class of functions including
linear and exponential utility, with some restrictions on the value function and on
the shape of the probability weighting function. The assumptions we make about
v and w are more general; in particular, for the shape of the probability weighting
function, an inverse-S is more realistic.

3.2 Behavioral premium principle and framing

In this contribution, we also assume that decision makers are not indifferent among
frames of cash flows: the framing of alternatives exerts a crucial effect on actual
choices. People may keep different mental accounts for different types of out-
comes, and when combining these accounts to obtain overall result, typically they
do not simply sum up all monetary amounts, but intentionally use hedonic framing
(Thaler 1985) such that the combination of the outcomes appears more favorable
and increases their utility. The term framing is also used to refer to the way in
which alternatives (e.g. outcomes from financial investments, products sold in-
bundle, insurance or derivatives embedded in some other contracts) are presented
and explained to the decision maker, and may influence mental accounting.

Outcomes are aggregated v(x+y) or segregated v(x)+v(y) depending on what
leads to the highest possible prospect value: multiple gains are preferred to be
segregated, v+(x)+ v+(y) (with x > 0, y > 0); losses are preferred to be integrated
with other losses, v−(x+ y) (with x < 0, y < 0), or large gains, in order to ease
the pain of the loss. Mixed outcomes would be integrated in order to cancel out
losses when there is a net gain or a small loss; for large losses and a small gain,
they usually are segregated in order to preserve the silver lining.7 This is due to
the shape of the value function in prospect theory, characterized by risk-seeking or
risk aversion, diminishing sensitivity and loss aversion.

Regarding the valuation of insurance contracts, different aggregations or seg-
regations of the results are possible. One can consider a single position (narrow
framing) or a portfolio of insurance policies. In the premium principle defined by
(12) narrow framing is applied, where X is the random amount that will be paid
by the insurer to settle each claim; moreover, the random result on a single policy

7See Thaler (1985), p. 202.
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is considered in a mental account separated from the wealth own by the insurance
company and zero is the reference point.

It is also possible to segregate results across time: e.g. one can evaluate sep-
arately the cashed premium and the final loss. Moreover, when time is relevant8,
one can assume that the premium received at time t = 0 is invested at the risk-free
interest rate r, obtaining PerT at some maturity T of the contract.

If we segregate the cashed premium from the possible loss and evaluate the
results in two separate mental accounts, condition (12) becomes

0 = v+(P)+
∫ +∞

0
v−(−x)ψ−[1−FX(x)] fX(x)dx, (14)

and the premium can be determined as

P = φ−1 (−Ew−(v−(−X))
)
, (15)

where φ = v+, and Ew−(v−(−X)) =
∫ +∞

0 v−(−x)ψ−[1−FX(x)] fX(x)dx.
Equation (14) defines an alternative premium principle based on continuous

cumulative prospect theory when the premium is segregated from the random loss.
Hence, premium principle in (12) is the one determined in the aggregated model.

It is worth noting that, when the value function is linear, in particular a = b = 1
and λ = 1 for function (1), and there is no probability distortion, w+(p) =w−(p) =
p, the resulting premium is P =E(X). Properties discussed in the previous subsec-
tion for the premium principle obtained in the aggregated model may be in general
no longer valid.

4 Applications of the behavioral premium principle

Alternative functional forms both for the utility or value function and the prob-
ability weighting function, embedded in rank dependent utility and cumulative
prospect theory, yield different models with potentially different implications for
choice behavior. In this section, we discuss several examples and some properties
of the related premium principle.

In the first example, we consider the premium principle defined by (10) with a
linear value function. This case generalizes a property previously discussed and it
has also been analyzed by Kaluszka and Krzeszowiec (2012).

Example 1 Let v(x) = cx, with c > 0. Consider also W ≥ 0. Condition (10) is
satisfied when9

W =
∫ W+P

0
(W +P− x)ψ+[FX(x)] fX(x)dx+

+
∫ +∞

W+P
(W +P− x)ψ−[1−FX(x)] fX(x)dx .

8Time-value of money is normally disregarded when dealing with non-life insurance contracts,
but may become important on a multi-year horizon.

9Note that Ew+w−(cX) = cEw+w−(X), for c ≥ 0.
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It is possible to show that10

Ew+w−(W +P−X) =−
∫ +∞

0
xψ−(1−FX(x)) fX(x)dx + (W +P)+

+

∫ W+P

0
(W +P− x)[ψ+(FX(x))−ψ−(1−FX(x))]dx

=−Ew−(X)+(W +P)+

+
∫ W+P

0
[w−(1−FX(x))−w+(1−FX(x))]dx ,

where Ew−(X) =
∫ +∞

0 xψ−(1−FX(x)) fX(x)dx.
Hence, condition (10) can also be expressed as follows

W +Ew−(X) = (W +P)+
∫ W+P

0
[w−(1−FX(x))−w+(1−FX(x))]dx .

Let us denote t = W +P, then the right-hand side is a function G(t) with G′ =
1+(w−(1−FX(t))−1+w+(FX(t)))> 0.

The resulting premium is solution of

P = G−1(W +Ew−(X))−W ,

and for W = 0 we have
P = G−1(Ew−(X)) , (16)

which requires numerical computation. 2

In the next two examples, we consider the behavioral premium principle with
exponential utility functions under rank dependent utility theory (see also Heilpern
2003, and Tsanakas 2009) and cumulative prospect theory (see also Kaluszka and
Krzeszowiec 2012); we provide also an alternative discussion of the results based
on the continuous representation (6).

Example 2 Exponential premium principle under rank dependent utility theory
Assume a utility function11 u(x) = (1− e−bx)/a, with a > 0 and b > 0. With W ≥
0, we have u(W ) = (1− e−bW )/a. When w+ = w− = w, the right-hand side of

10In general, linearity does not hold for the generalized Choquet integral. In Section 3.1 we dis-
cussed the case with w+ = w−. When w+ ̸= w−, and c ∈ R, we apply the following result

Ew+w−(X + c) = Ew+w−(X)+ c+
∫ c

0
[w−(P(−X > s))−w+(P(−X > s))]ds ,

where w is the dual probability weighting function. See Kaluszka and Krzeszowiec (2012) for the
proof and discussion of further properties of the generalized Choquet integral.

11We have u(0) = 0, u′ > 0, u′(0) = b/a, u′′ < 0. Heilpern (2003) considers the normalized case
a = b.

12



condition (10) is equal to

V (u(W +P−X)) =
∫ +∞

0
u(W +P− x)ψ(FX(x)) fX(x)dx

=
∫ +∞

0

1
a

(
1− e−b(W+P−x)

)
ψ(FX(x)) fX(x)dx

=
1
a

(
1− e−b(W+P)

∫ +∞

0
ebx ψ(FX(x)) fX(x)dx

)
=

1
a

(
1− e−b(W+P)Ew

(
ebX
))

.

Given the definition and properties of the Choquet integral, one obtains the same
result:

Ew(u(W +P−X)) = Ew

(
1− e−b(W+P−X)

a

)
=

1
a

(
1− e−b(W+P)Ew

(
ebX
))

,

where Ew
(
ebX
)
=
∫ +∞

0 ebx ψ(FX(x)) fX(x)dx.
By imposing the condition u(W ) =Ew(u(W +P−X)) and after some algebraic

manipulation12, we obtain the following exponential premium principle under rank
dependent utility theory:

P =
1
b

lnEw

(
ebX
)
. (17)

Using analogous arguments, one can derive an exponential premium principle
adopting the utility function13 u(x) = (ebx − 1)/a, with a > 0 and b > 0. With
W ≥ 0, we have u(W ) = (ebW −1)/a. When w+ = w− = w, the right-hand side of
condition (10) is equal to

V (u(W +P−X)) =
∫ +∞

0
u(W +P− x)ψ(FX(x)) fX(x)dx

=
∫ +∞

0

1
a

(
eb(W+P−x)−1

)
ψ(FX(x)) fX(x)dx

=
1
a

(
−1+ eb(W+P)

∫ +∞

0
e−bx ψ(FX(x)) fX(x)dx

)
=

1
a

(
−1+ eb(W+P)Ew

(
e−bX

))
,

Equivalently we have

Ew

(
1
a

(
eb(W+P−X)−1

))
=

1
a

eb(W+P)Ew

(
e−bX

)
− 1

a
,

12The same result arises also when a = b and with W = 0.
13We have u(0) = 0, u′ > 0, u′(0) = b/a, and u′′ > 0, which may be useful to model the value

function in the domain of losses.
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where Ew
(
e−bX

)
=
∫ +∞

0 e−bx ψ(FX(x)) fX(x)dx. Condition (10) yields

P =−1
b

ln
(
Ew

(
e−bX

))
, (18)

an alternative exponential premium principle under rank dependent utility theory.
2

Example 3 Exponential premium principle under continuous cumulative prospect
theory
Assume a utility function u(x) = (1− e−bx)/a, with a > 0 and b > 0. With W ≥ 0,
we have u(W ) = (1− e−bW )/a. When w+ ̸= w−, the right-hand side of condition
(10) is equal to

V (u(W +P−X)) =
1
a

∫ W+P

0
(1− e−b(W+P−x))ψ+(FX(x)) fX(x)dx+

+
1
a

∫ +∞

W+P

(
1− e−b(W+P−x)

)
ψ−(1−FX(x)) fX(x)dx

=
1
a
Ew−

(
1− e−b(W+P−X)

)
+

+
1
a

∫ W+P

0
(1− e−b(W+P−x)) [ψ+(FX(x))−ψ−(1−FX(x))] fX(x)dx

=
1
a
− 1

a
e−b(W+P)Ew−

(
ebX
)
+

+
1
a

∫ W+P

0
(1− e−b(W+P−x)) [ψ+(FX(x))−ψ−(1−FX(x))] fX(x)dx .

Using the same result as in the first example, it is possible to show that

Ew+w−

(
1− e−b(W+P−X)

)
= 1−Ew−

(
e−b(W+P−X)

)
+

+
∫ 1

0
[w−(1−FY (y))−w+(1−FY (y))]dy ,

where Y = e−b(W+P−X), and

Ew−

(
e−b(W+P−X)

)
=

∫ +∞

0
e−b(W+P−x)ψ−(1−FX(x)) fX(x)dx .

After substitution into (10)

1− e−bW = 1− e−b(W+P)Ew−

(
ebX
)
+
∫ 1

0
[w−(1−FY (y))−w+(1−FY (y))]dy

and a transformation of random variable,

e−b(W+P)Ew−

(
ebX
)
= e−bW+

+e−b(W+P)
∫ exp(b(W+P))

0
[w−(P(ebX > s))−w+(P(ebX > s))]ds ,
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we obtain

Ew−

(
ebX
)
= ebP +

∫ exp(b(W+P))

0
[w−(P(ebX > s))−w+(P(ebX > s))]ds .

When W = 0, we have

Ew−

(
ebX
)
= ebP +

∫ exp(bP)

0
[w−(P(ebX > s))−w+(P(ebX > s))]ds

= ebP +
∫ exp(bP)

0
ebx[ψ+(FX(x))−ψ−(1−FX(x))]dx .

Let us denote t = ebP, then the right-hand side is a function G(t) with G′ > 0, and
the premium is solution of

P =
1
b

ln
(

G−1
(
Ew−(ebX)

))
,

which generalizes the exponential premium principle (17) obtained in the case
w+ = w−.

As an alternative, if we consider the utility function u(x) = (ebx −1)/a, we can
derive a premium which is solution of

P =−1
b

ln
(

G−1
(
Ew+(e−bX)

))
,

where G(t) is a function of t = e−bP for which G−1 exists. 2

The value function under cumulative prospect theory should display a combi-
nation of risk aversion for gains and risk seeking for losses, and loss aversion. A
function with this features is (see also Davis and Satchell 2007)

v(x) =


v+(x) =

1− e−ax

a
x ≥ 0

λv−(x) = λ
ebx −1

b
x < 0,

(19)

where λ ≥ 1 is the loss aversion parameter; parameters a and b govern curvature.
When a > 0 and b > 0, the function v is convex for negative results, concave for
positive outcomes, steeper for losses depending on the value of the parameter λ
(λ > 1 implies loss aversion). This function could be used in the case discussed in
the previous example.

A usual choice for the value function, widely applied in the literature, is defined
by (1) presented above,

v(x) =
{

v+(x) = xa x ≥ 0
v−(x) =−λ (−x)b x < 0.

In the following examples, we adopt such a value function.
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Example 4 Let v be defined by (1); then equation (12) becomes

0 =
∫ P

0
(P− x)a ψ+[FX(x)] fX(x)dx−λ

∫ +∞

P
(x−P)b ψ−[1−FX(x)] fX(x)dx,

which requires numerical solution for P.
In the segregated model, equating at zero and solving for P, gives the explicit

formula

P =

(
λ
∫ +∞

0
xb ψ−[1−FX(x)] fX(x)dx

)1/a

,

which requires numerical approximation of the integral. The premium is increasing
with loss aversion λ , which appears not so obvious in the aggregated case; given
that 0 < a ≤ 1 and 0 < b ≤ 1. 2

Remember the property P ≤ supX (non-excessive loading) presented above.
Kaluszka and Okolewski (2008) analyze a premium principle when the utility func-
tion is linear and the function w+ and w− are neo-additive weighting functions,
w− = a+bp and w+ = c+d p (b, d > 0, a+b < 1, c+d < 1), and supX =W . In
the next example, we assume that the random variable X is bounded.

Example 5 If the set of possible outcomes for the claim X is [0,x], for some limit
value x > 0, then the premium in the aggregated model is defined by

0 =
∫ P

0
v+(P− x)ψ+[FX(x)] fX(x)dx+

∫ x

P
v−(P− x)ψ−[1−FX(x)] fX(x)dx,

and considering the value function (1) yields

0 =
∫ P

0
(P− x)a ψ+[FX(x)] fX(x)dx−

∫ x

P
λ (x−P)b ψ−[1−FX(x)] fX(x)dx.

In the segregated model (14) the premium is the solution of

0 = v+(P)+
∫ x

0
v−(−x)ψ−[1−FX(x)] fX(x)dx;

substituting (1), we have

P =

(
λ
∫ x

0
xb ψ−[1−FX(x)] fX(x)dx

)1/a

.

Also in this case, the higher the loss aversion of the insurer, the higher the premium.
2

Premium principles (12) and (14) can be adjusted in order to take into consid-
eration some policy conditions such as deductibles. The next two examples discuss
the cases of fixed-percentage and fixed-amount deductibles.
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Example 6 Fixed-percentage deductible
If we consider a fixed-percentage deductible, the part of the risk θX is retained
by the insured, while (1−θ)X is transferred to the insurer, for 0 ≤ θ ≤ 1. In the
aggregated model (12) the premium can be determined from the following equation

0 =
∫ P/(1−θ)

0
v+ (P− (1−θ)x) ψ+[FX(x)] fX(x)dx+

+
∫ +∞

P/(1−θ)
v− (P− (1−θ)x) ψ−[1−FX(x)] fX(x)dx,

solving numerically for P. Taking v as in (1) as a special case, we have

0 =
∫ P/(1−θ)

0
(P− (1−θ)x)a ψ+[FX(x)] fX(x)dx−

−λ
∫ +∞

P/(1−θ)
((1−θ)x−P)b ψ−[1−FX(x)] fX(x)dx.

In the segregated model (14), the premium is defined by

0 = v+(P)+
∫ +∞

0
v−(−(1−θ)x)ψ−[1−FX(x)] fX(x)dx;

in particular, we have the following result

P =

(
λ (1−θ)b

∫ +∞

0
xb ψ−[1−FX(x)] fX(x)dx

)1/a

.

It is interesting to observe that, in the last explicit formula, not only is the premium
increasing with loss aversion, modeled by the parameter λ , but also it is higher
the lower the retention θ is, which is also an intuitive result. In the aggregated
model, the resulting premium depends on the combined effect of risk-aversion and
risk-seeking behaviors, together with loss aversion, of the value function. 2

Example 7 Deductible of fixed amount
If a deductible of fixed amount d ≥ 0 is considered, any loss less than or equal
to d is entirely retained by the insured, min(X ,d), while losses higher than d are
transferred to the insurer for the amount exceeding the deductible, max(X −d,0).
In such a case, it can be shown that in the aggregated model (12) the premium can
be determined from the following equation14

0 = v+(P)w+ (FX(d))+
∫ d+P

d
v+ (P− (x−d)) ψ+ (FX(x)) fX(x)dx+

+
∫ +∞

d+P
v− (P− (x−d)) ψ− (1−FX(x)) fX(x)dx,

solving numerically for P.

14Observe that
∫ c

0 ψ(F(x)) f (x)dx = w(F(c)).
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In the segregated model (14) the premium is defined by

0 = v+(P)+
∫ +∞

d
v−(d − x)ψ−[1−FX(x)] fX(x)dx;

and, in particular, we have the following result

P =

(
λ
∫ +∞

d
(x−d)b ψ−[1−FX(x)] fX(x)dx

)1/a

.

Also in this case, the premium is decreasing with respect to the fixed deductible d
and increasing with loss aversion of the insurer. 2

All the results presented above depend on the choice of the weighting function.
So far, we have assumed that w+ and w− were increasing functions w : [0,1] →
[0,1], with w(0) = 0 and w(1) = 1. Weighting functions are a key element in
modeling decisions under risk and uncertainty when one try to capture behavioral
patterns which departure from expected utility theory. In the literature related to
prospect theory, in its original and cumulative versions, and rank dependent utility
theory, several functional forms of probability weighting functions have been pro-
posed and tested in many theoretical and empirical studies. Different functional
forms yield different models; in particular, when the weighting function has an
inverse-S shape, very low probability of extreme events are overweighted, with
possible implications for the resulting premium.

5 Conclusions

Prospect theory has begun to attract increasing interest in the insurance theory lit-
erature and, in its cumulative version, it seems a promising alternative to other
models (such as the ranked dependent expected utility theory, the dual theory and
risk measures based on distorted probabilities) for its potential to explain observed
behaviors. In this framework, we define a premium principle under cumulative
prospect theory based on the equivalent utility principle of Gerber (1979), extend-
ing behavioral premium principles presented in the literature. In particular, we
adopted the representation of the cumulative prospect theory for continuous dis-
tributions, which allows us to review and provide alternative proofs of previous
results and properties of the related premium principles.

We then assumed that framing of the alternatives matters: we apply the notion
of hedonic framing introduced by Thaler (1985) in order to define two different
models where the results are aggregated or segregated into separate mental ac-
counts. In the segregated model, we obtain explicit solutions for the premium. We
also introduce and discuss several applications, under specific assumptions on the
value function and the probability weighting function.

As future research, it will be interesting to study the decision problem also
from the viewpoint of the insured willing to buy protection, analyzing applications
to other form of insurance, with extensions to reinsurance and the choice of optimal
retention both in the proportional and non proportional case.
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