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Inferenza Bayesiana esatta per processi di diffusione
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Abstract Inference for discretely observed real-valued diffusion processes is com-
monly based on approximations. The only methods available for exact inference
profit from a retrospective rejection sampler for exact simulation of diffusion paths
which provides Maximum Likelihood estimates of the model parameters. In the
context of Bayesian analysis, however, the current approach resorts to MCMC es-
timation for which the complexity of the algorithm grows linearly with the size
of the data set. We propose a reinterpretation of the exact simulation algorithm, in
terms of a set of latent variables which transform the Bayesian parametric diffusion
model into a Bayesian non or semi parametric model. We then propose an esti-
mation method, involving trans-dimensional MCMC methods, which allows exact
inference for a specific family of diffusions.

Abstract L’inferenza per processi di diffusione, a valori reali discretamente osser-
vati, é comunemente basata su criteri di approssimazione. Gli unici metodi disponi-
bili per fare inferenza esatta sfruttano un algoritmo di accettazione/riuto retrospet-
tivo al fine di generare uno stimatore di massima verosimiglianza basato sulla sim-
ulazione esatta della traiettoria. Nel contesto Bayesiano, comunque, il presente ap-
proccio richiama una stima MCMC in cui la complessitd cresce linearmente con
la numerositd dei dati. La nostra proposta é la reinterpretazione dellalgoritmo di
simulazione esatta in termini di variabili latenti che trasformano il modello di dif-
fusione parametrico in un modello non o semi parametrico. Si propone, dunque, un
metodo di stima che coinvolge metodi MCMC trans-dimensionali che permettono di
fare inferenza esatta per una famiglia specica di diffusioni.
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1 Introduction

Diffusion processes have been widely studied in the context of probability theory
and in many other areas, ranging from the natural sciences like biology or genetics
to the realms of economics and finance. One of the main features of this family
of stochastic processes, the continuity of their paths, makes them attractive models
for several phenomena. Unfortunately, it also makes statistical inference a highly
challenging task, due to the intractability of the transition densities involved in the
likelihood function of a discretely observed path.

Consider a sample of n observations y., = (¢, - .,)s, ), for fixed, known times
0 <1t <...<ty < oo, corresponding to a discretely observed path from a diffusion
process Y = {Y, : t > 0}, defined as the unique solution to an SDE,

dY; = o (¥;)dr +dW;; Yo = yo, (D

where W = {W, : t > 0} denotes a standard scalar Brownian Motion. For simplicity,
we consider a unitary diffusion coefficient, but the results can be extended under
adequate conditions. Assume that the parametric form of the drift coefficient g is
known and the process is well defined for every value of 8 in some parameter space
0. The likelihood for the sample, given by

FO1al0) = [ /2 0ilyi-1,0),  Ai=ti—ti1, 2
i

depends on the transition densities for the process, f; which, under some standard
assumptions, can be proved to exist. In most cases, however, such transitions do not
have an analytic form, thus resulting in an intractable likelihood.

Inference for the unknown parameter 6, both in the frequentist and Bayesian set-
ups, is usually based on some form of approximation or interpolation technique,
such as approximate simulation, analytic approximations of the transition density or
the complete likelihood functions or direct approximation of the maximum likeli-
hood estimator. For a review of these methods see Sorensen (2004).

An important breakthrough was brought about by the definition of an exact sim-
ulation algorithm for diffusion paths at arbitrary time points within a closed time
interval [0,7], with no approximation error (see Beskos and Roberts, 2005; Beskos
et al., 2006). It is a retrospective rejection sampler which exploits the factorization
of the diffusion path in terms of a finite set of points, known as the skeleton, con-
nected by independent Brownian bridges. Beskos et al. (2009) propose a method
for Monte Carlo Maximum Likelihood estimation based on this algorithm. In the
context of Bayesian analysis, however, the application of such method requires in-
dependent exact simulation of the skeleton between each pair of consecutive data
points, so that the number of simulation steps involved in each Markov Chain iter-
ation grows linearly with n. We propose an alternative Markov chain method based
on a reinterpretation of the representation involved in the exact simulation algo-
rithm, in terms of a latent model, which allows for both simulation and Bayesian
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inference. Since the model is the same and no approximation is used, apart from the
usual Monte Carlo error, the results obtained in this manner are equivalent to those
obtained via the original exact simulation method. Our algorithm, however, is not
based on the simultaneous acceptance or rejection of complete sample paths and is
therefore equally applicable, regardless of the length of the time interval [0,7] under
consideration.

2 Retrospective Rejection Sampler

Following Beskos et al. (2006), we assume that the drift coefficient of the SDE (1)
is such that, for every 8 € @ we can write

1(8) < igﬂg{ [ch(u) + aé(u)} /2}; r(6) > sup { [(xs(u) + aé(u)]/Z— 1(6)},
u ucR

for some /: @ — R and r: ® — (0,). It is to be noted that the results of Beskos

et al. (2006) and Beskos et al. (2009) work under less restrictive assumptions, which

cover most of the diffusion process commonly used for statistical modelling. In

the present work, however, we focus on the simplest version of the algorithm as it

suffices for illustrative purposes.
The exact simulation algorithm is based on the observation that, under the above
conditions, the transition density of the diffusion (with respect to Lebesgue measure)

can be written as
1
ew{-r(0) [ patsas [

where N(-|u,62) denotes the normal density function,

2 (u o (u
Ag(u) = '/oce(u)du; @o(u) = r(le) <M 71(9)> ,

Ji(e]0,8) = N(ve|yo,1) exp{Ag (y:) — Ao (y0) —1(6) } Eyo

and the expectation is taken with respect to the Weiner measure of a Brownian mo-

tion started ad yg. Such expectation is intractable but, given y;, it coincides with the
expected value of an indicator variable which takes the value one when a realiza-
tion of a homogeneous Poisson process on [0,7] x [0, 1] with intensity r(6) has no
points below the graph s — @(;; 0), where @; is a Brownian bridge path started at
@ = yo and ended at @ = y,.

Therefore the exact simulation algorithm performs rejection sampling by means
of an auxiliary marked Poisson process. There is no need to simulate the complete
proposed path @. All the information required to calculate the acceptance indicator
is contained in a finite number k of points, given by the marked Poisson Process
and necessary instances of the proposed Brownian Bridge can be obtained retro-
spectively given k. The set Sy = {(71,ys,),---, (T, ) )} of accepted points is called
the Skeleton of the path and for any s € (0,¢), y,; can be simulated exactly using
Brownian Bridge interpolation between consecutive skeleton points.
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3 MCMUC exact simulation and Bayesian inference

The diffusion model, together with the Brownian bridge factorization of the ob-
served path on the complete time interval [0,¢], for ¢ > #, can be reinterpreted as a
latent model in the following way.

The likelihood function for the complete sample can be expressed as,

F(0n|8) =exp {Ag (i) —Aa(yo) —[1(8) +7(6)] }

ﬁN(yli|yl[—l’Ai)]EWytil {exp{r(@)/ti [I(Pe(ys)]ds}

i1

yt,*:| .

We then observe that the retrospective rejection criterion described in the above
section is equivalent to the introduction of an appropriate set of latent variables ob-
tained through a series expansion of the exponential function inside the expectation
(for details, see Antoniano-Villalobos, 2012). This results in the latent expression,

N(Xi,z |Xig—1,Tig— Ti,lfl) [1 — o (xi,l)] ;

f(yl:mklsnask|6) :g(.VI:ny B)H
i=1

where Sy is the set of skeleton points for the complete path on [0,7], that is (x;;, T ;)
fori=1,...,nand [ =1,...,k;; and we denote x; o = y;. It can be checked that, by
integrating over the latent variables k.,, Sy, the original likelihood is recovered.

Notice that the latent likelihood can be interpreted in terms of a Bayesian non-
parametric (or semi-parametric) model, that is, the joint distribution of the obser-
vations and an infinite-dimensional parameter (S, k). The likelihood for such model
is the product of the densities of independent brownian bridges between k consec-
utive skeleton points. From the Bayesian perspective, the joint prior over (k,S) is
induced by the choice of the functional form of the diffusion coefficient and should
be complemented with a prior 7(0) over the parameter space ©.

An MCMC algorithm may be used to simulate both from the posterior distribu-
tions of (k,S) and 6, enabling Bayesian inference. Rather than accepting or rejecting
a complete skeleton over the whole interval [0,¢], or splitting the interval between
observation times, our algorithm treats each skeleton point over the complete time
interval, individually, leaving the decision of the adequate k to the MCMC scheme.
The implementation of the full Gibbs Sampler applies a Metropolis-Hastings ver-
sion of a reversible jump step, proposed by Godsill (2001), in order to simulate
from the full conditional distribution for k. The choice of ¢ > #, makes prediction
possible, since any unobserved point can be sampled from fully defined Brownian
bridges, given the posterior sample of skeleton points.
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4 Illustration

As an illustration, we consider the diffusion process defined by the SDE
dY; = sin(Y; — 0)dt +dW;; 0 €0 =[0,27) 3)

Using the retrospective rejection sampler of (EA1 in Beskos et al., 2006), we
generate a single skeleton for the sine diffusion in the time interval [0, 100] and use
Brownian bridge interpolation to simulate 10,000 equally spaced data points, i.e.
100 observations per time unit (see Figure 1).
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Fig. 1: 10,000 data points from the sine diffusion in the time interval [0, 100], with
parameter 6 = 2 and initial point yy = 0.

We define a uniform prior on @ and use the MCMC algorithm to produce a
sample from the posterior distribution 7" (6), for increasing sample sizes of high
frequency data. Specifically, we consider the data set consisting of the first n = 2
thousand data points, in the time interval [0,20] and produce a posterior sample of
size N = 10,000 from the MCMC algorithm, with a burning period of 10,000 iter-
ations and a thinning of 1 every 10 iterations for the sample. We repeat the analysis
for n = 4,6,8, 10 thousand. The estimated posterior densities for the parameter are
shown on the left hand side of Figure 2. We can see that the posterior mass seems to
accumulate around the true value 6y = 2 as the sample size increases.

The right panel of Figure 2 shows the estimated predictive densities for the pro-
cess Y; at time t = 101, for each of the sample sizes. The sine diffusion does not
have a stationary density, therefore we don’t expect to recover a fixed marginal be-
haviour. However, as the interval of observations approaches the time of prediction,
we can observe the evolution of the predictive distribution. As expected from a reg-
ular diffusion process, the variance decreases towards the end, as the point yjq; is
highly correlated to yjqo, the last data point.
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Fig. 2: Estimated posterior density for the parameter of the sine diffusion (left) and
predictive density for the observation at time ¢ = 101 (right).
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