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Abstract—Data Distribution Service (DDS) is a realtime peer-
to-peer protocol that serves as a scalable middleware between
distributed networked systems found in many Industrial IoT do-
mains such as automotive, medical, energy, and defense. Since the
initial ratification of the standard, specifications have introduced
a Security Model and Service Plugin Interface (SPI) architecture,
facilitating authenticated encryption and data centric access
control while preserving interoperable data exchange. However,
as Secure DDS v1.1, the default plugin specifications presently
exchanges digitally signed capability lists of both participants in
the clear during the crypto handshake for permission attestation;
this breaches confidentiality of the context of the connection.
In this work, we present an attacker model that makes use
of network reconnaissance afforded by this leaked context in
conjunction with formal verification and model checking to
arbitrarily reason about the underlying topology and reachability
of information flow, enabling targeted attacks such as selective
denial of service, adversarial partitioning of the data bus, or
vulnerability excavation of vendor implementations.

Index Terms—Data Distribution Service, Protocols, Security,
Network Reconnaissance, Formal Verification

I. INTRODUCTION

The ubiquity of connected and autonomous devices defined
as Internet of Things (IoT) and Industrial IoT (IIoT), has
uncovered how the limited resources and the weak security
design choices that have been made in the past represent
a source of concerns in terms of safety and security in
deployment. To address those problems we can distinguish
between two lines of research, either studying the security
and hardening solutions for the devices or focusing on the
communication infrastructures.

This work regards the latter; in particular we discuss Data
Distribution Service (DDS) [1] from the Object Management
Group (OMG), a widely used1 real-time middleware com-
munication mechanism based on a publish-subscribe model.
This standard, used in several industries including Automo-
tive, Transportation, Healthcare, Energy systems, Aerospace,
Defense, etc., permits one to build large scaled distributed
network without relying on a centralized server. However,
such applications require a rigid security mechanism since
any potential vulnerability can possibly lead to millions in
economic losses or damages. In order to cope with requests,
this design for Secure DDS Plugins [2] has been developed.
This enhanced version of the original DDS protocol adds
Authentication, Access Control, Domain protection and Cryp-
tographic support to the standard.

In further detail, the security model adopted is meant to pro-
vide: Confidentiality of the data samples, data and messages

1https://www.omgwiki.org/dds/who-is-using-dds-2/
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Fig. 1: An example scenario where a external observer wishes
to internally analyze either a closed off device or an exter-
nal restricted network by monitoring traffic between know
connected systems. Such an adversary may be hunting for
vulnerabilities to later exploit or to attempt to recover a hidden
state or purpose of the system.

Integrity, Authentication and Authorization of DDS writers
and readers, message-origin and data-origin Authentication,
and optionally non-repudiation. By enforcing those properties,
threats such as unauthorized subscriber and publisher creation,
tampering and replay messages, and unauthorized access to
data, are blocked. Nevertheless, the proposed threat model
doesn’t cover permission confidentiality 2. In fact, by ana-
lyzing the plugin, we can see how the nodes’ handshakes
are performed by exchanging a plain text permission file.
Although digitally signed to preserve Integrity and block an
unauthorized node from accessing resources via forged per-
missions, its transmission plain text voids its Confidentiality.
Permission files define a node’s capability to read and or write
data in a certain domain on the databus. By leaking such
information, an attacker can infer the application layer topol-
ogy by comparing the capabilities of each node and deducing
possible connections without having to decrypt ciphered data
messages. A case example, where the topic names themselves
may remain sensitive, could include when the topics offer
some clue as to the private number of resources, e.g. the
number of safety sensors or alarms armed in a network. If
such topics are indexed sequentially, then an attacker may
use a classical statistical theory of estimation, similar to that
applied during WW2 to solve the ’German tank problem’.

Unlike traditional network reconnaissance methods like us-

2https://issues.omg.org/issues/DDSSEC12-13



ing traceroute in which an attacker needs to query the network
repeatedly to obtain information about the topology [3], that
may trigger alarms to network administrators, the methods
we present allow an attacker to construct the topology of the
underlying data bus merely by passively sniffing the packets
inside the network. As per the traditional case, administrators
can employ techniques that obscure the network itself [4] to
impede an attacker from reconstructing the true network topol-
ogy, or that trigger intrusion detection countermeasures before
an actual attack is executed. In a passive attack scenario, it
becomes substantially harder to identify an attacker before any
malicious operation is performed. Therefore, we investigate
how revealing the data flow semantics for each node and its
functional role in the network renders DDS networks more
vulnerable when facing malicious adversaries.

The rest of the paper is divided as follows: Section II
provides an overview and technical description of the secure
DDS protocol and related components incorporated into our
approach; Section III details our threat and attack model
assumptions; Section IV details our approach in partially
reconstructing data bus topology and inferencing reachability
through the network at scale; Section V documents our exper-
imental setup and testing infrastructure; Section VI demon-
strates how an attacker may isolate information flow from a
single node by identifying critical targets or verify reachablity
from a selected source to target destination; Section VII
discusses related work in relation to network reconnaissance,
DDS networking and information flow control; Section VIII
summarizes our main contributions and discusses potential
mitigations and their caveats, as well as future work addressing
remaining issues in remote access control attestation.

II. BACKGROUND

A. Data Distribution Service

The Data Distribution Service (DDS) [1] is a standardized
network middleware protocol that aims to provide reliable
and scalable service based on a publish-subscribe model, i.e.
a data centric model based on a conceptual Global Data
Space. The decoupled nature of publisher-subscriber compared
to an ordinary request-response model renders the protocol
more suitable for real-time systems and IoT applications.
Applications can choose to have publishers and/or subscribers,
where the data model underlying the Global Data Space, or
a DDS Domain, is a set of data objects. A Publisher is an
object responsible for data distribution and may publish data
of different data types. Similarly, a Subscriber is an object
responsible for receiving published data and making it avail-
able for the receiving application. Topic objects conceptually
fit between publications and subscriptions. These DomainPar-
ticipants can respectively write or read in a Domain, which
denotes the set of all applications that can communicate with
each other. Topic objects conceptually fit between publications
and subscriptions, and uniquely identify the name, data type
and corresponding Quality of Service (QoS) associated with
the data on both the publisher and the subscriber sides.

B. Authentication
Each DomainParticipant needs to go through an authenti-

cation before it can communicate inside a domain. On start,
a DomainParticipant authenticates its local identity to others
in the network using its own public certificate. This Identity
Certificate is signed by the Identity Certificate Authority (CA)
[2]. Each DomainParticipant will then verify the authentication
of a discovered remote peer through a mutual handshake
request and reply messages. Among other tokens inside the
handshake request, the Identity Certificate and the Domain
Participant Permissions (detailed in next section) of a remote
peer will also be included; this becomes the major security
vulnerability we exploit in this work.

C. Access Control Service
In order to ensure authorization of DDS publishers and

subscribers, DDS defines an Access Control Plugin. The Do-
mainParticipant must be provisioned access to given domains,
publish access to topics for data it produces, and subscribe
access to topics for data it consumes. In addition, there are
more capability permissions that further segment data access,
such as DDS partitions, data tags, and domain tags, that are
omitted from our discussion for brevity but are accounted for
in our approach. Three configuration documents are associated
with the Access Control Service: a Permissions CA Certificate,
a Domain Governance signed by Permission CA, and a Do-
main Participant Permission signed by the Permission CA. The
Permissions CA Certificate contains a public key from the CA
that signs the other two documents. The Domain Governance
is a XML document specifying the protection policy inside
this domain, including whether or not to enforce encryption,
whether to set specific limitations on certain topics, etc. The
Domain Participant Permission is a XML document containing
the permissions of a DomainParticipant. Essentially, it is a set
of grants that denotes the rules to either reject or allow the
DomainParticipant to write or access certain topics, inside cer-
tain partitions of a domain, with certain data tags associated
with the DomainParticipant. It also includes the domain the
DomainParticipant allowed is to communicate in, and the time
period that the DomainParticipant can communicate [2].

D. Imandra
Imandra3 is a formal verification tool, originally purposed

for model checking financial market software and exchange
protocols [5]. It is highly adaptable and performs the nonlinear
arithmetic, automated induction, etc. that we need to infer the
proofs or counterexamples to resolve out SAT formulation of
permission intersections. Formal verification techniques can
reason about a large state space without exhaustive search.
Still, when surveying DDS networks at scale, solving such
SAT queries would remain a bottleneck, and thus should be
optimized for by reducing the number of queries required
when inferring about the network. With Imandra’s public APIs,
we can simplify the development process of our attack model
and completely automate the vulnerability excavation pipeline.

3https://www.imandra.ai



III. THREAT

A. Threat Model

Considering the permission leakage in the network, the
threat model proposed in this work includes the following:

• Attacker has access to victim’s network traffic en-route.
• Attacker does not know network semantics completely.
• Attacker does not own a valid permission file from CA.
• Attacker could choose to actively control network traffic

by selectively dropping network traffic, poisoning the
routing, or physically disrupting a participant device.

B. Attack Model

The minimum requirement in our model to execute an attack
on DDS is to have access to the network. As discussed, having
network access grants the ability to sniff the communications
and acquire the packets exchanged by all participating nodes,
including handshake packets, which contain the permission
tokens. In detail, we can break the attack into two phases
based on whether the attacker has the ability to control the
network. If the attacker can only record the network then it
can perform passive attacks; on the other hand, it has some
degree of influence on the network, active realtime attacks
become feasible.

Starting from the passive attack prospective, by just relying
on the permission files captured by sniffing traffic, or received
as a response by actively sending handshakes to the unknown
node, it constructs a topology graph. In this way, the attacker
is able to understand the semantics of the network, and learn
how devices interact with each other on what specific topics.
On the other hand, with some level of control of the network,
an active attacker can do much more than learning sensitive
information from it. For example, if some node of the network
is well protected, an active attacker can leverage our approach
to query a minimal set of nodes to take it over. In this way, it
would be possible to cut the information flow from the network
to the specific node, effectively killing the node by rendering
it useless. Even if an attacker does not have the capability
to control the traffic, in a wireless scenario, an attacker can
trace the signal, locate the node’s physical location and kill
the node physically. In addition to the disruptive attacks, a
more subtle technique is to tinker with the QoS in the network
and introduce delays, thus degrade the performance and force
realtime devices to fall back on backup solutions.

One example would be a highly connected peer-to-peer
network such as the Cooperative Intelligent Transport Systems
(C-ITS)4 under development of the European Commission,
whose goal is to build a smart-city scaled network to exchange
realtime data among vehicles and other road infrastructural
facilities to optimize traffic management and take full ad-
vantage of highly automated vehicles (level 4/5) [6]. Due
to the safety oriented behaviours imposed to autonomous
robotic systems by the regulator, those attacks can tamper the
entire infrastructure and make it potentially unusable. In the
discussed example, if an level 5 autonomous vehicle (fully

4https://ec.europa.eu/transport/themes/its en
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Fig. 2: Captured permission tokens are used to infer the data
flow between participants as well as potential loopholes and
administrator-defined policies that may violate the intended
purpose of deployment.

automated) is abruptly excluded from the network, or it detect
a delay on the communications, the only solution is to rely on
the on-board sensors and securely pull over. However, a well
coordinated attack would be unnoticed and the delays could
potentially lead to accidents.

IV. APPROACH

Under the assumptions discussed in the previous section,
we know that once an attacker acquire the handshake packets
it can construct the semantic network topology by interpreting
the permission files. The sample snippets with Fig 9 in the
appendix depict the example permission files that we will
use to illustrate this process. After obtaining the network
topology, we also explore how an attacker may formulate
queries regarding the network’s connectivity.

Example queries include: 1) Given the set of nodes A
and B in the cyclic graph G, what minimal set nodes in
G, exclusive of A and B, would need to be disrupted to
discontinue information flow from A to B; 2) Given a source
A, what are the nodes that we need to offline in order to isolate
all information flow from set A; 3) Given a destination set B,
what set of nodes would need to be compromised to prevent
B from only receiving information from the rest of G. With
this information, an attacker may then selectively partition any
node from the rest of the network with minimal invested effort
or detectable network disturbance.

A. Network Topology

We depict the network topology as a directed graph with
vertices representing nodes in the network, and edges indicat-
ing that there exists at least one topic match between the two
connected vertices. The primary reason for a directed graph
is that we need to distinguish publish and subscribe actions,
which can naturally be described using directional edges, with
edges pointing from a publisher to a subscriber. Additionally,
to account for a third ‘relay’ permission type, we decompose
all relay actions to a combination of subscribe and publish
capabilities on the topic. This reduction not only decreases
the complexity of inferring information flow but also eases
the graph visualization and introspection.



CN=talker

foo/bar/pudding foo/bar/test foo/bar/*

CN=listener

foo/baz/test
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Fig. 4: Connected Graph Obtained by Connecting Topics

B. Heuristic Graph and Lazy Evaluation

In real world applications, a network may consist of hun-
dreds or even thousands of nodes. Such tremendous scales
inevitably make any graph construction or influencing a re-
source an intensive task. A naive approach to constructing a
network topology requires the consideration of all permission
files when computing for the potential intersect in respective
permission grants. However, this is impractical given an ex-
haustive O(n(n−1)/2) would be done using our formal veri-
fication of grant intersections; this is among the most compu-
tationally intensive steps in our attacker pipeline. Instead, our
approach reduces query time latency via admissible heuristics
and lazy evaluation. By first generating a heuristic graph to
approximate the information flow, we substantially curtail the
number of expensive inferences on grant intersections. Thus,
while the initial model may exaggerate apparent connectivity,
we can remain assured that resulting reachability queries via
formal verification remain complete.

Generating a heuristic graph mostly relies on the fast and
admissible approximation as to whether or not to connect
two vertices. We decompose this approximation process into
three phases: 1) First, a simple directed graph is created by
indexing each grant in the permission files, adding respective
vertices for both nodes as well as topics to the graph without
duplicates, and then connecting nodes and topics according to
the direction of information flow. This results in a directed
bipartite graph such that vertex set U consists of all nodes in
the network and vertex set V includes all topics involved in the
network. Figure 3 shows a sample graph on a simple network

CN=talker

foo/bar/*, foo/bar/pudding, foo/bar/test
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foo/baz/test

(a) Contracted G

CN=talker

CN=listener

(b) Heuristic G

Fig. 5: Contracted Graph is obtained by collapsing related
topics into single node, while the Heuristic Graph then is
obtained by collapsing topic vertices.

with a talker and a listener. In this simple network, vertex set
U consists of nodes talker and listener, whereas vertex set V
is comprised of four topics.

This graph is quick to generate as nodes as well as topics
can be iteratively appended on the fly, rather than holistically
batching the entire graph all at once and performing inter-
section checks between any two nodes’ publish and subscribe
topic expression.

2) The second phase focuses on combining related topics
to form connected components of topics and then collapses
the topics into a single vertex. By combining related topics,
we mean drawing bidirectional edges between any two topics
that match at least once using two way ‘fnmatch’: the POSIX
string matching function chosen in the Secure DDS standard.
An example of this is in Figure 4, where we have one
such connected component formed by three topics including
foo/bar/pudding, foo/bar/*, and foo/bar/test. The transition
from Figure 4 to Figure 5a illustrates the process of collapsing
the connected components into a single vertex. Although this
process is simple, it may potentially increase the total number
of paths between different nodes in the network. The extra
paths we get do not exist in the real network topology, hence
a heuristic graph instead of an exact model.

3) During the last phase, we further reduce the bipartite
graph to a regular network topology by eliminating topics
vertex set and connect nodes that might have the capabilities
to communicate on some topic. In our simple example, we
get Figure 5b as a heuristic graph after completing this step,
which serves as a foundation to answer the connectivity query.

Given the retrieving of a heuristic graph, naive queries
on reachability using the simple edge traversal would be
inaccurate; our approach resolves this via lazy evaluation.
First, using the naive path computed on the heuristic graph, i.e.
using Dijkstra Algorithm or A*, the resulting edge sequence or
node pairs are iteratively verified for directional connectivity
using a satisfaction constraint solver. We describe the reach-
ability verification process in detail under section IV-C. By
pruning paths and edges sequences at query time, we avoid
unnecessarily checking unfeasible flows derived from topic
permission mismatches.



C. Reachability Verification

During the handshake phase, two DDS DomainParticipants
will each verify that the other has the permission to access the
resource in question. For the subject node that is advertising
its access, we will abstract this into a subject representation;
containing the information about the name of the subject, the
action it is requesting, the topics that it advertises to publish
or subscribe, and other subject criteria regulated by access
control. Algorithm 1 in the index details how each node will
validate the provided subject representation with the subject’s
respective permission file, and return a qualifier: ALLOW or
DENY of the request.

The access control algorithm checks the grant in the permis-
sions file that matches the supplied subject and is valid at the
time it is evaluated. For this grant, it sequentially enumerates
through all the rules in order, and returns immediately if there
is a match between the rule and the subject. The matching is
conditioned upon many criterias including topics, partitions
and data tags. If no rule is matched, the returned qualifier
falls through to the grant’s default behavior.

To check for permissive exchanges between grants and de-
termine whether data flow between given nodes is possible, we
must formally verify the intersection of the two permissions
files; i.e. either assert or refute the existence of a pair of
matching subjects that satisfy all pairwise constraints. More
precisely, given two nodes A and B, and their corresponding
permission files PermA and PermB, find two subjects SubA
and SubB such that all the following hold:

Evaluate(PermA,SubA) = ALLOW (1)
Evaluate(PermB,SubB) = ALLOW (2)
Match(SubA, SubB) or Match(SubB, SubA) (3)

The constraints above dictate that both subject instances
must conform to the respective permissions, while the QoS
attributes of both subjects such as topic, partition, and data
tags must also correspond. The following section details the
construction and consumption of such constraints.

V. IMPLEMENTATION

To validate our approach, we construct an experimental
setup with a reproducible test harness as a pipeline for the
entire attacker model. Docker is used to containerize three
main processes, as well as vitalize a target Secure DDS
deployment, as shown in Fig 2.

We first programmatically synthesize a DDS application
with minimal spanning permissions, valid PKI and CA trust
anchors, where the digitally signed governance enforces au-
thenticated encryption for all transport. This experimental
configuration is then provided to an isolated simulation control
that launches each participant in separate containers within a
controlled software defined network. The first few seconds of
network traffic is consecutively recorded to capture initial Real
Time Publish Subscribe (RTPS) protocol discovery data, see
Fig 7, and then given to the attacker.
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Fig. 6: Visual of experimental setup and test harness. Network
discovery traffic between Secure DDS participants is captured
and used in concert with the SAT solver to infer application
typology from intersecting permissions. The attacker then uses
this feedback to precisely influence the information flow.
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Fig. 7: Simple Discovery Protocol, shown in the network lad-
der diagram, takes place when participants exchange identities
and permission tokens. An RTPS packet containing clear text
permission tokens bytes is highlighted in Wireshark capture.

The attacker process strips all permission tokens for the
raw packet capture and constructs a graph based database of
permission tokens and respective origin/destination IP address.
This database is then shared with the SAT solver to call
queries’ agents.

For formal verification, we utilize Imandra as our selected
SAT solver by replicating the access control evaluation logic as
defined by the DDS specification in OCaml, a strongly typed
functional programming language supported with Imandra.
This allows us to quickly prototype and experiment with
alternate security plugin designers with minimal modification.
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Fig. 8: Left to right. Query 1: given source and destination, prove data dependency. Query 2: given source, determine minimum
set of nodes to isolate incoming data. Query 3: given target, determine the minimum set of nodes to cut off outgoing data.

As recounted in section VIII, this becomes invaluable in
discovering vendor implementation bugs and deviation from
the default security plugin specification.

The model of the access control logic and accompanying
token database is used by the Imandra service to solve for
incremental reachability inquiries from the inquisitive attacker.
The attacker uses the proved or refuted subject instances
as feedback to prune the heuristic graph until the overall
reachability inquiry is determined.

Armed with the associative model of DDS objects to physi-
cal network address, the attacker may finally sabotage the tar-
get application by selectively deteriorating DDS connections
by commanding the simulation controller to drop specified
containers from the software defined network.

To observe this disturbance, our simulated DDS network is
simply composed of broadcast nodes that periodically publish
a KeepAllive diagnostic message to all topics they can publish.
Each node also serves as repeater, relaying any subscribed
KeepAllive messages to all topics it can publish after append-
ing its own id to avoid cyclic packets. By sampling the packet
lineage from different points in the distributed application, unit
tests for bisecting information flow can be verified. In the
following section an illustrative example of this is presented.

VI. RESULTS

In this section, we showcase some example queries to
elucidate our work and demonstrate the correctness of our
implementation on a more complex network; a 2D grid of
consisting of 36 nodes is used to maintain readability.

A. Source and Target

If both source node and target node are specified, our model
outputs a list of nodes as the path from source to target. For
example, in the first subfigure of Figure 8a, if the source node
is (5, 0), and the target node is (0, 3), then the model outputs
a list of nodes containing all the green nodes.

B. Source Only

Given only a source node, our model displays a minimal set
of nodes that an attacker needs to take down to prevent the
source from passing data to all its subscribers. As shown in
the second subfigure of Figure 8b, the source node is colored

in blue, and the possible target nodes are colored in green.
If the input is the blue node, then the model outputs a set
including the three green nodes.

C. Target Only

Similarly, if only a target node is given, we will obtain a
minimal set of nodes an attacker needs to attack to prevent the
target from acquiring any new information from the network.
This is illustrated in the third subfigure of Figure 8c, where the
target node is colored in green and its source node is colored
in blue.

VII. RELATED WORK

A. Network Reconnaissance

We have demonstrated that the permission files in clear
text leak application layer topology to anyone in the same
network. In fact, the encrypted packets can still leak topology
information to an attacker. Other techniques are needed for
us to fully defend against network reconnaissance. McClure
et al. [3] presented how tools like traceroute can be used to
construct the internet layer topology. An attacker may use the
topology information to find the weak links in the network
and DDoS attack the weakest link. To thwart reconnaissance
via traceroute, Meier et al. [4] proposed to limit the ICMP
traffic in the network or obfuscate the traceroute result. The
other problem is that IoT devices usually connect wirelessly,
which allows an insider attacker to eavesdrop on a large
chunk of the network. If the chunk is too large, an insider
attacker would be able to rebuild the application layer topology
by merely examining the flow of traffic. Hakiri et al. [7]
proposed to connect the IoT devices with wired software
defined networks using OpenFlow. Wired connection may
limit the scope of possible eavesdropping and also the dynamic
flexible internet layer topology nullifies the reconnaissance
attempts via traceroute.

B. Flow Control

Secure DDS uses topic and partition match to enforce
the flow control policy. The topic and partition expressions
support fnmatch, allowing developers to build a hierarchical
trust model. Secure DDS’s label scheme is similar to the
DStar labels [8] for single topic and partition but secure DDS



assumes every node has the privileges to downgrade data
it owns. The flow is possible as long as the subscribe set
and publish set have an intersection, instead of a publish set
needing to be a subset of the subscribe set. The policy opens
probability not only for bad configuration but also for covert
channels and allows an inside attacker to leak sensitive data.
Therefore, the current flow control model works only if nodes
that are granted a certificate by CA can be entirely trusted.

C. DDS

White et al. [9] present a framework that procedurally
provisions access control policies for distributed middleware.
Our work extends this by adding more reachability verification
on fnmatch expression to ensure that no covert channels exist
in candidate policies. Khaefi et al. [10] presented how using a
bloom filter in DDS node discovery phase could significantly
reduce the payload of handshake traffic at the expense of a
tiny chance of collision. Encoding topic discovery data into
a bloom filter indeed obscures the topic expressions while
providing some probabilistic integrity of the topic permissions.
However, given probabilistic data structures are subject to
collisions, e.g. false-positive set matches, it remains unsuitable
for access control policy enforcement.

D. Formal Verification for XACML

eXtensible Access Control Markup Language (XACML)
has become an attractive standard for the specification of Ac-
cess Control policies given the prevalence of existing XACML
tools, human and machine readable syntax, and rich set of con-
structs. However these same features can also make authoring
XAMCL policies prone to human error. Turkmen et al. [11]
present a formal analysis of XACML policies by encoding
them into Satisfiability Modulo Theories (SMT) formulas,
facilitating formal policy analysis while relieving authors of
the burden of manually proving soundness gradually. While
this work remains more general in comparison, our work
additionally affords soundness checks for the Policy Decision
Point (PDP) business logic implemented by DDS vendors, and
thus not limited to only policy definition files themselves.

VIII. CONCLUSION

In this work we introduced an approach for conducting
passive network reconnaissance on systems relying upon Se-
cure DDS, ascertaining a partial topological model of the
underlying data bus, and associative mapping between data
objects to network addressable participants. Using formal
verification and model checking, we can then inquire about
directed reachability through the distributed computation graph
to efficiently perform vulnerability excavation offline without
ever actively engaging with the targeted system. We then
demonstrate how such acquired system models may then be
used by an active attacker to prioritize targeted participants
based on the data objects they represent or the connectivity
they facilitate in the larger picture of the system, either by
selectively isolating data flow to or from a given data pro-
ducer/consumer without directly disturbing other participants.

Furthermore, our methods for formal verification have been
used to prove two notable exploits in existing Secure DDS
vendor implementations. Firstly, a policy decision point in the
handshake protocol statemachine omits checking the partition
criteria of remote participant connections, allowing data to be
declassified to erroneous DDS partitions for which the remote
participant was granted no privilege.

Secondly, the same implementation was also found to
interpret topic expression match incorrectly. It naively swaps
the fnmatch expression with the query arguments both ways
to find the matching intersection. This allows any two ma-
licious nodes to establish a connection using self-made-up
expressions which are supersets of their permissions. Again
this was verified by replicating our OCaml model to reflect the
implementation and solve for the counterexample intersection
of two permissions understood to be correctly non overlapping.

Although the reconnaissance methods and vulnerability
excavation tooling developed over the course of our approach
may inevitably prove to be of use to malicious actors, they are
also immediately beneficial for general system validation and
penetration testing, as when auditing mission critical systems
for flaws in access control design or implementation. For ex-
ample, when certifying the interfaces between the multimedia
and drive-by-wire subsystem in an autonomous automotive,
manufacturers may be required to formally prove or refute the
set of all satisfiable data channels between the two that would
be admissible by the factory permission policy, and assure that
no satisfiable covert channels exist outside of the anticipated
set.

The approach presented predominantly makes use of the
current Secure DDS default plugin implementation, thus re-
solving this issue would largely serve to mitigate the practical-
ity of the attacks demonstrated. Specifically, exchanging per-
mission tokens in the clear during the initial crypto handshake,
thus breaching confidentiality of the context of the connection
is perhaps the focal issue at present. Revising the integration
between the crypto and access control plugins to alternatively
postponing permission token exchange through a secure chan-
nel after the crypto handshake has concluded is perhaps the
most straightforward improvement. This could subsequently
add another round trip delay to the overhead introduced in
securing connections; however, granted the crypto handshake
does not include the action request or response to begin with, it
stands to reason that the permission token could be appended
to the payload of the subsequent secured requests or responses.

Alternatively, one could seek to obscure the permissions
embedded in the token by using an HMAC with a known key,
either embedded in the token or distributing it out of band.
Each topic/partition/data-tag element in the XML permission
document could be replaced with say the base64 encoded
digest of the expression string it replaces. Thus, upon receiving
a action request from a remote participant, the local participant
merely applies the same HMAC to the action searches for
the matching digests in the remote permission criteria. This
has the benefit of obscuring permissions from those sniffing
handshake network traffic while making minimal changes to



existing vendor libraries and is implementable in less than
60 additional lines of OpenSSL in for Fast RTPS. However,
aside from simple string matching, additional changes would
be required to fully support fnmatch expression, perhaps by
having the remote participant provide the exact expression it
wishes to invoke in its own permission list.

However, both of these mitigations thus far, either post-
poning permission exchange or obfuscating the fields in the
permission token have their potential drawbacks or weak-
nesses. The mitigation using HMAC is particularly vulnerable
as message authentication codes only really afford integrity
and not confidentiality, i.e. once an attacker knows what they
are looking for, it can easily ascertain whether the permission
it seeks is present in the token. Given that systems that
build upon DDS, like ROS2, commonly use predictably or
standardized topic names, it could become trivial to brute force
obscured permissions from a limited corpus of options, or
correlate matching digests across tokens to infer connectivity.

In postponing permission exchange, we merely delay the
invocation of the Policy Decision Point, affording a secure
channel to remote participants whose privileges we have
not yet attested to. Only a single trusted identity need be
compromised to begin scraping the permission tokens of
others in the same secure distributed network. While DDS
discovery information could also be decrypted with the same
compromised participant identity, the permission tokens that
divulge what data a participant can access versus what they
currently advertise can still be advantageous to an attacker as
described previously.

IX. FUTURE WORK

A wider issue facing traditional attestation of remote privi-
leges using digitally signed tokens is that the entire token must
first be revealed in order to verify the trusted signature locally,
effectively divulging all of the remote agents’ capabilities,
be they applicable to the current session or not. Ideally, an
attestation method would allow a remote participant to prove
to the local recipient only that part of it adequate to privilege;
nothing more, nothing less.

An alternative approach could be to fracture the token into
multiple sub-tokens that are individually verifiable and only
encompass a single permission. As discussed by Caiazza el
al. [12], the remote agent could then pick and choose the
minimal required set of sub-tokens to be shared to gain access.
Potentially, this adds to the complexity of the CA provisioning
and expiration of permissions, as well as the coordination of
sharing sub-tokens during runtime.

This sub-token scheme would not however ultimately pre-
vent divulging the scope of privilege for a single permission, as
in the case when the permission is not just a string, but also
an expression, such as a matching prefix rule for all topics
starting with /foo/ revealing that the remote participant also
has access to /foo/bar.

To address this, future work could investigate the application
of non-interactive zero-knowledge proofs to provide a mecha-
nism for remote attestation of privilege in an access controlled

protocol without divulging anything more than necessary.
Aside from the provisioning of proving and verification key
materials for PKI identities with periods of validity, particular
challenges in using frameworks such as zk-SNARK [13] (zero-
knowledge succinct non-interactive argument of knowledge)
with applications using DDS networks is maintaining real time
performance in terms of security overhead and scalability;
that is, limiting the upper bound of computation time for
verification, conserving bandwidth for sending larger proofs
over the wire, and limited input sizes when transforming
permission sets into a boolean circuit.
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X. APPENDIX

Algorithm 1 DDS Security v1.0 Default Access Control Logic

1: procedure EVALUATE(permissions, subject)
2: for grant in permissions do
3: match← grant.subject name.match(subject)
4: valid← grant.validity(current date time)
5: if match and valid then
6: qualifier ← CHECKRULES(rules, subject)
7: if qualifier is None then
8: return grant.default
9: else

10: return qualifier
11: end if
12: end if
13: end for
14: return ERROR
15: end procedure
16: function CHECKRULES(rules, subject)
17: for rule in rules do
18: domain← subject.domain in rule.domainSet
19: criteria← rule.get(subject.action.type)
20: . Action types: publish, subscribe, relay
21: match← CHECKCRITERIA(criteria, subject)
22: if domain and match then
23: return rules.qualifier
24: . Qualifier types: ALLOW,DENY
25: end if
26: end for
27: return None
28: end function
29: function CHECKCRITERIA(criteria, subject)
30: for criterion, i in criteria.criterions do
31: matches[i]← any (criterion.match(subject))
32: . Criterion types: topics, partitions, tags
33: end for
34: return all (matches)
35: end function
36: function MATCH(publisher, subscriber)
37: isMatched← publisher.action = PUBLISH and
38: subscriber.action = SUBSCRIBE and
39: publisher.topic = subscriber.topic and
40: publisher.partition = subscriber.partition and
41: publisher.datatag = subscriber.datatag
42: return isMatched
43: end function

<?xml version="1.0" encoding="UTF-8"?>
<dds>
  <permissions>
    <grant name="/talker">
      <subject_name>CN=/talker</subject_name>
      <validity>
        <not_before>2013-10-26T00:00:00</not_before>
        <not_after>2018-10-26T22:45:30</not_after>
      </validity>
      <allow_rule> <!-- multi and/or <deny_rule> -->
        <domains>
          <id_range> <!-- multi and/or <id> -->
            <min>10</min>
            <max>42</max>
          </id_range>
        </domains>
        <publish> <!-- multi and/or pub/sub -->
          <partitions> <!-- multi and/or <tags> -->
            <partition>food</partition>

          </partitions>
          <topics>
            <topic>foo/bar/pudding</topic>
            <topic>foo/bar/test</topic>
            <topic>foo/bar/*</topic>
          </topics>
        </publish>
      </allow_rule>
      <default>DENY</default> <!-- or >ALLOW< -->
    </grant>
  </permissions>
</dds> (a) Talker Permissions

<?xml version="1.0" encoding="UTF-8"?>
<dds>
  <permissions>
    <grant name="/listener">
      <subject_name>CN=/listener</subject_name>
      <validity>
        <not_before>2014-10-26T00:00:00</not_before>
        <not_after>2019-10-26T22:45:30</not_after>
      </validity>
      <allow_rule> <!-- multi and/or <deny_rule> -->
        <domains>
          <id_range> <!-- multi and/or <id> -->
            <min>20</min>
            <max>50</max>
          </id_range>
        </domains>
        <subscribe> <!-- multi and/or pub/sub -->
          <partitions> <!-- multi and/or <tags> -->
            <partition>food</partition>
            <partition>spam/*</partition>
          </partitions>
          <topics>
            <topic>foo/bar/pudding</topic>
            <topic>foo/baz/test</topic>

          </topics>
        </subscribe>
      </allow_rule>
      <default>DENY</default> <!-- or >ALLOW< -->
    </grant>
  </permissions>
</dds> (b) Listener Permissions

Fig. 9: Highlighted diff between two Secure DDS permis-
sion.xml files depicting degrees of overlapping capabilities.
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