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Abstract 

We study the existence of group strategy-proof stable rules in many to-many 
matching markets. We show that when firms have acyclical preferences over 
workers the set of stable matchings is a singleton, and the worker-optimal 
stable mechanism is a stable and group strategy-proof rule for firms and 
workers. Furthermore, acyclicity is the minimal condition guaranteeing the 
existence of stable and strategy-proof mechanisms in many-to-many matching 
markets. 
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1 Introduction

Many relevant real-world markets are many-to-many. The canonical example of
a many-to-many market is the specialty training followed by junior doctors in the
UK (Roth, 1991). Other examples of many-to-many markets are markets where
workers are allowed to work part-time and the non-exclusive dealings between
down-stream firms and up-stream providers. Many-to-many markets are also
useful to model multi-unit assignment problems such as course allocations (see
Budish 2011, Sönmez and Ünver, 2010, Kojima, 2013) or the assignment of
landing slots (see Schummer and Abizada, 2017, Schummer and Vohra, 2013).

In many-to-many matching markets, no stable and strategy-proof mecha-
nism exists, even for agents on one side of the market (see Roth and Sotomayor,
1990). Furthermore, even in one-to-one markets, there is no mechanism that is
stable and strategy-proof for the agents on both sides of the market. Due to
these negative results, the literature has concentrated on mechanisms guaran-
teeing strategy-proofness on one side of the market, thus overlooking preference
manipulation from agents on the other side of the market (but see Romero-
Medina and Triossi, 2013a for capacity manipulation). However, manipulation
by agents on both sides of the market is a concern, for example, in different
student assignment problems (see Abdulkadiroğlu et al., 2005 and Figueroa et
al, 2017).

In this paper, we explore the possibility of designing revelation mechanisms
that are stable, strategy-proof and group strategy-proof for agents on both
sides of the market. Indeed, stability and strategy-proofness are central con-
cerns in market design. Theoretical and empirical findings suggest that markets
that achieve stable outcomes are more successful than markets that do not
achieve stable outcomes (see Roth and Sotomayor, 1990; Abdulkadiroğlu and
Sönmez, 2013).1 Additionally, strategy-proofness prevents agents from needing
to strategize. This is relevant in markets where agents have little information or
differ in their sophistication. Finally, group strategy-proofness implies strategy-
proofness and prevents welfare losses resulting from collusion among agents.

We show that if the firms have acyclical preferences, the worker-optimal
stable mechanism is group strategy-proof. A cycle in the preferences of the
firms occurs when there is an alternating list of firms and workers “on a circle”
such that every firm prefers the worker on its clockwise side to the worker on its
counterclockwise side and finds both acceptable. We say that preferences are
acyclical if there are no cycles.

First, we show that if the preferences of the firms are acyclical, the set of
stable matchings is a singleton, and the unique stable matching can be imple-
mented through a procedure that we call Adjusted Serial Dictatorship. In this
procedure, each worker, at her turn, selects her favorite firms among those she

1Moreover, in the school assignment model and the course allocation problem, stability
embodies a notion of fairness because it eliminates justified envy, that is, situations in which
an agent prefers to receive another assignment over one of her assignments and has a higher
priority at the preferred assignment (see Balinski and Sönmez, 1999; Sönmez, and Abdulka-
diroğlu, 2003).
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is acceptable to and that still have vacant positions. We employ this result to
show that under acyclicity, any stable mechanism is group strategy-proof both
for firms and workers. We conclude by showing that acyclicity is also the min-
imal condition guaranteeing the existence of a mechanism that is stable and
strategy-proof for agents on both sides of a many-to-many matching market.
More precisely, we show that if the preferences of the firms have a cycle, there
exists a profile of preferences for the workers such that no stable mechanism is
strategy-proof. Our results imply that strategy-proofness and group strategy-
proofness are equivalent requirements when imposed on a stable mechanism. In
general, group strategy-proofness is more demanding than strategy-proofness.
In particular, in the school assignment model, the student-optimal stable mech-
anism always provides a stable and strategy-proof assignment. However, effi-
ciency and group strategy-proofness require priorities to satisfy an acyclicity
condition (see Ergin, 2002). Our characterization contributes in explaining the
restrictiveness of imposing strategy-proofness on stable mechanisms in many-
to-many matching markets.

Finally, we apply our results to the course allocation problem. In this case,
only one side of the market is strategic, and acyclicity is a sufficient condition
for the existence of a strategy-proof mechanism. We show that acyclicity is also
necessary if the designer cannot condition the mechanism on the capacities of
the courses.

1.1 Related literature

Acyclical preferences have been extensively studied in matching markets. The
concept of acyclicity that we use coincides with that introduced in Romero-
Medina and Triossi (2013b) for one-to-one matching markets. Ergin (2002) in-
troduces a weaker notion of acyclicity and shows that the worker-optimal stable
mechanism is efficient and group strategy-proof if and only if the preferences of
the firms are acyclical. Kesten (2012) and Romero-Medina and Triossi (2013a)
find that two different forms of acyclicity are necessary and sufficient conditions
for worker-optimal stable matching to be immune from capacity manipulation.

Our results complement those in Jiao and Tian (2017) and Kojima (2013).
The first paper proves that the worker-optimal stable mechanism is group strategy-
proof for workers if preferences satisfy the extended max-min criterion and a
quota saturability condition. The preference domain in Jiao and Tian (2017)
reflects a high degree of ambiguity aversion in agents. Instead, we assume the
preferences of the firms to be responsive.2 In a multi-unit assignment problem,
Kojima (2013) proves that the worker-optimal stable matching is strategy-proof
for workers if and only if any cycle involves only the top-ranked workers, a con-
dition that he calls essential homogeneity, which is weaker than the concept
of acyclicity that we employ in this paper. Romero-Medina and Triossi (2017)
show that the equivalence between strategy-proof and group strategy-proof also
holds in the multi-unit assignment problem. In contrast to the previously men-

2The two domains are unrelated.
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tioned papers, we focus on preventing manipulation and collusion by the agents
on both sides of the markets.

The structure of this paper is as follows. Section 2 introduces the model.
Section 3 presents the results. Section 4 concludes.

2 The model

In our model, there are two disjoint and finite sets of agents, the set of workers
W and the set of firms F . A generic worker will be denoted by w, a generic firm
by f and a generic agent by v ∈ V = F ∪W. Each worker can work for more
than one firm, and firms can hire more than one worker. Let PF = (Pf )f∈F be a
list of firms’ preferences over subsets of workers, where for every f ∈ F , Pf is a
strict order defined on 2W . For all w,w′ ∈W , wPfw

′, wPf∅ and ∅Pfw denote
{w}Pf {w′}, {w}Pf∅ and ∅Pf {w}, respectively. Let PW = (Pw)w∈W be a list
of workers’ preferences over subsets of firms, where for every w ∈ W , Pw is a
strict order defined on 2F . For each v ∈ V , we denote by Rv the corresponding
weak preferences. A profile P = (Pv)v∈V is a list of preference orderings. Given
a profile P = (Pv)v∈V and V ′ ⊆ V, we denote by PV ′ the vector (Pv)v∈V ′ . The
triple (F,W,P ) is called a matching market. The favorite group of workers
for firm f among those belonging to W ′ is called the choice set from W ′.
We denote the choice set from W ′ by Chf (W ′, Pf ) or by Chf (W ′) when no
ambiguity is possible. Formally, Chf (W ′, Pf ) = maxPf

{W ′′ : W ′′ ⊂W ′}. If
∅PfW ′ firm f prefers not to employ any worker rather than jointly employing
the workers in W ′, then W ′ is called unacceptable to f . Otherwise W ′ is
acceptable to f . We denote the set of workers who are individually acceptable
to f by A (f, Pf ) or A (f) when no ambiguity is possible. The maximum number
of workers that firm f is willing to hire is f ’s capacity, which we denote by qf ;
formally, qf = max {|W ′| : W ′Pf∅}.3 For every w ∈ W and for every F ′ ⊆ F ,
we define Chw(F ′, Pw), Chw(F ′), A (w), and qw similarly.

Matchings assign workers to firms. A matching on (F,W,P ) is a function
µ : V → 2V such that, for every (f, w) ∈ F ×W : (i) µ(f) ∈ 2W , (ii) µ(w) ∈ 2F

and (iii) f ∈ µ(w) ⇔ w ∈ µ(f). We denote by M the set of matchings on
(F,W,P ). A matching µ is individually rational in (F,W,P ) , if Chv(µ(v)) =
µ(v) for all v ∈ V . Individual rationality captures the idea that hiring and
joining a firm are voluntary. A matching µ is blocked by the pair (f, w) ∈
F ×W , f /∈ µ (w), if (i) f ∈ Chhµ(w) ∪ {f} and (ii) w ∈ Chf (µ(f) ∪ {w}). A
firm-worker pair (f, w) blocks a matching µ if worker w is not employed at f ,
but she would like to join f eventually after leaving some of her current jobs,
and f would like to hire w eventually after firing some of its current employees.
A matching µ is stable in (F,W,P ) if it is individually rational and if no pair
blocks it. Otherwise, µ is unstable. Γ(F,W,P ) denotes the set of matchings
that are stable in (F,W,P ).

The set of stable matchings may be empty. For this reason, we focus on re-
sponsive preferences that guarantee that the set of stable matchings is nonempty.

3For every set S, the symbol |S| denotes the cardinality of S.
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We say that the preferences of a firm, Pf , are responsive if, for allW ′ ⊂W such
that |W ′| ≤ qf − 1 and for all w,w′ ∈W : (i) W ′ ∪ {w}PfW ′ ∪ {w′} ⇔ wPfw

′

and (ii) W ′∪{w}PfW ′ ⇐⇒ w ∈ A (f). In words, f has responsive preferences if
for any two assignments that differ in one worker only, it prefers the assignment
containing the most preferred worker. We denote by P the set of responsive
preferences. Responsive preferences for workers are defined similarly. The set
of responsive preferences is denoted by P. If firms and workers have responsive
preferences, the set of stable matchings forms a nonempty lattice (see Alkan,
1999). Furthermore, there exists a stable matching that is Pareto superior for
workers to all other stable matchings, the worker-optimal stable matching,
which we denote by µW (P ).

A cycle (of length T + 1) in PF is given by distinct workers w0, w1, ..., wT ∈
W and distinct firms f0, f1, ..., fT ∈ F such that

1. wTPfTwT−1PfT−1
, ..., Pf2w1Pf1w0Pf0wT ;

2. for every t, 0 ≤ t ≤ T , wt ∈ A (ft+1) ∩A (ft, ), where wT+1 = w0.

A responsive preference profile on individual workers PF is acyclical if it has
no cycles.
Let us assume that a cycle exists. If every worker wt−1 is initially assigned to
firm ft, every firm is willing to exchange its assigned worker with its successor
wt.
A mechanism ϕ is a function that associates a matching to every preference
profile within a given domain D ⊆ P |V |: ϕ : D →M. A mechanism ϕ is stable
if ϕ (P ) is stable for all P ∈ D. The worker-optimal stable mechanism defined by
ϕ (P ) = µW (P ) is an example of stable mechanism. A mechanism ϕ is Pareto
optimal if for every P ∈ D, there exists no individually rational matching µ,
such that µ (v)Rvϕ (P ) (v) for every v ∈ V and µ (v)Pvϕ (P, q) (v) for at least
one v. A mechanism is Pareto optimal if it implements matchings for which there
is no alternative individually rational matching that is weakly preferred by all
agents and strongly preferred by at least one agent. A mechanism ϕ is strategy-
proof if for every v ∈ V , ϕ(P ) (v)Rvϕ(P ′v, P−v) (v) for every P ∈ D, P ′v ∈ P.
A mechanism is strategy-proof if reporting her true preference relation is a
(weakly) dominant strategy for every agent. A mechanism ϕ is group strategy-
proof if there does not exist P ∈ D, a nonempty set of agents, V ′ ⊂ V , P ,

P ′V ′ = (P ′v)v∈V ′ ∈ P|
V ′| such that ϕ(P ′V ′ , PV \V ′) (v)Rvϕ(P ) (v) for every v ∈ V ′

and ϕ(P ′V ′ , PV \V ′) (v′)Pv’ϕ(P ) (v′) for some v′ ∈ V ′. The mechanism ϕ is group
strategy-proof if no subset of agents can benefit by jointly misrepresenting their
preferences. Since capacity, in our model, is endogenous to the preference profile,
a strategy-proof mechanism prevents capacity manipulation (see Sönmez, 1997).

The concept of group strategy-proofness that we employ is stronger than
group incentive compatibility, which is also referred to as weak group strategy-
proofness. The latter requires that no coalition of agents can misrepresent their
preferences in a way that makes each member of the coalition strictly better
off (see Roth and Sotomayor, 1990; Hatfield and Kojima, 2009; Barberá et
al., 2016). The concept of group strategy-proofness in Jiao and Tian (2017)
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coincides with group incentive compatibility and restricts its attention to group
deviations by the agents on one side of the market only.

3 Group strategy-proofness and uniqueness

In many-to-many matching markets, if the preferences of both workers and
firms are responsive, no stable mechanism is strategy-proof or Pareto optimal for
workers. In this section, we prove that the assumption of acyclical preferences is
a necessary and sufficient condition to overcome the incompatibility of strategy-
proofness, stability and Pareto optimality.

We first show that when the firms have acyclical preferences over individual
workers, there exists an underlying order w1,w2,...,w|W | on the set of workers
that is able to sustain a stable matching through an adjusted serial dictatorship.

Let us assume that PF is acyclical and define the following order on W .
Let w1 ∈ W be a worker who is never ranked below first place by any firm to
which she is acceptable. Formally, let w1 be such that there exist no f ∈ F ,
w ∈ W with wPfw1 and w1Pf∅. Such a w1 exists because PF is acyclical.
For 0 ≤ t ≤ |W | − 1, let wt+1 be a worker who is never ranked below workers
other than w1, w2, ..., wt by any firm to which she is acceptable. Formally, let
wt+1 ∈W be such that there exist no f ∈ F , w ∈W \{w1, w2, ..., wt} such that
wPfwt+1 and wt+1Pf∅. Such a wt+1 exists because PF is acyclical.

Next, we define an Adjusted Serial Dictatorship by letting each worker
choose among the firms that she is acceptable to and that still have vacant
positions according to w1,w2,...,w|W |.

Let A1 (P ) = {f : w1 ∈ A (f)}, be the set of firms to which worker w1 is
acceptable. Define µ (P ) (w1) = Cw1

(A1 (P )). For all t, 1 ≤ t ≤ |W | − 1,

let At+1 (P ) =
{
f : wt+1 ∈ A (f) ,

⋃
s≤t,f∈µ(P )(ws)

{ws} < qf

}
, be the set of

firms worker wt+1 is acceptable to and that have vacant positions. Define
µ (P ) (wt+1) = Cwt+1

(At+1 (P )). For every f ∈ F , let µ (f) =
⋃
f∈µ(w) {w}.4

First, we prove that matching µ (P ), the outcome of the Adjusted Serial Dicta-
torship, is the unique stable matching of market (F,W,P, q).

Proposition 1 Let M = (F,W,P, q) be a matching market and let PF be acycli-
cal. Matching µ (P ) is the unique stable matching of market (F,W,P ).

The result holds without any assumption on the preferences of the workers
and implies the existence of a stable matching whenever the preferences of the
firms are responsive and acyclical, regardless of the preferences of the workers.

Next, we assume that the preferences of the workers are responsive and prove
our main result: no coalition of agents can benefit from preference manipulation

4Notice that the selection of wt is not unique, for every t, 1 ≤ t ≤ |W | − 1 and thus,
the procedure defines a family of orders on W . In particular, the notation µ (P ) could be
be ambiguous. Proposition 1 implies that all such orders generate the same stable matching;
thus, they are equivalent.
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if the worker-optimal stable mechanism µW (P ) is used.5

Theorem 1 Let M = (F,W,P ) be a matching market, let PW be responsive,
and let PF be acyclical. Then, the worker-optimal stable mechanism, µW (P ) is
group strategy-proof.

The proof of Theorem 1 is based on the characterization of the worker-
optimal stable matching provided in Proposition 1 and the observation that the
outcome of any deviation can be reached through a deviation that preserves the
acyclicity of the preferences of the firms.

Ergin’s acyclicity (see Ergin, 2002) prevents the coalitional deviation of work-
ers in many-to-one matching markets. Essential homogeneity (see Kojima, 2013)
prevents individual manipulation of the workers. Acyclicity simultaneously pre-
vents individual and coalitional deviations of both firms and workers.

From Theorem 1, easily follows the Pareto optimality of the worker-optimal
stable mechanism.

Corollary 1 Let M = (F,W,P ) be a matching market, let PW be responsive,
and let PF be acyclical. Then, the worker-optimal stable mechanism µW (P ) is
Pareto optimal, Pareto optimal for workers and Pareto optimal for firms.

Next, we study whether it is possible to weaken the acyclicity requirement
and find a mechanism that is stable and strategy-proof for all agents. First
we show that without acyclicity, the worker-optimal stable mechanism is not
strategy-proof for firms.

Lemma 1 Assume that PF has a cycle. Then, there exists a profile of respon-
sive preferences for workers PW such that the worker-optimal stable mechanism
is not strategy-proof for firms.

The intuition behind Lemma 1 is that if the preferences of the firms are not
acyclic, there exists a profile of preferences for workers such that the resulting
market has two stable matchings. In this case, any firm f preferring the firm-
optimal stable matching to the worker-optimal stable matching can successfully
manipulate the worker-optimal stable mechanism.

Thus, a singleton core is necessary for the existence of a stable and strategy-
proof mechanism. However, having a unique stable matching is not sufficient for
the existence of a stable and strategy-proof mechanism. In the next example,
we provide a market with a singleton core where an agent can successfully
manipulate the unique stable matching because there is a cycle in the preferences
of the firms.

Example 1 Let us assume F = {f1, f2, f3} and W = {w1, w2, w3}. Set Pw1
:

{f1, f2} , {f2} , {f1}, Pw2
: {f3} , {f2} and Pw3

: {f1} , {f3}. Let w1Pf1w3Pf3w2Pf2w1,

5Without making any assumption on workers preferences, if the preferences of the firms
are acyclical, the worker-optimal stable mechanism is group strategy-proof for workers. The
easy proof is available upon request.
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A (f1) = {w1, w3}, A (f2) = {w1, w2}, A (f3) = {w2, w3}, and let qf = 1 for all
f ∈ F .
There exists a unique stable matching µ where µ (fi) = {wi} for i = 1, 2, 3.
If any stable mechanism is employed and worker w1 reports preferences P ′w1

=
{f2}, she obtains a position at f2, which she strictly prefers to f1.

The intuition provided by Example 1 and Lemma 1 leads us to prove that
acyclicity is the minimal condition guaranteeing the existence of a stable group
strategy-proof mechanism.

Proposition 2 Assume that PF has a cycle. Then, there exist a profile of
responsive preferences for workers PW such that no stable mechanism is strategy-
proof.

In conclusion, we can integrate the main findings of the Section in the fol-
lowing theorem.

Theorem 2 The following statements are equivalent:

1. There exists a stable and strategy-proof mechanism.

2. There exists a stable and group strategy-proof mechanism.

3. PF is acyclical.

3.1 Course allocation

Next, we apply our results to the case where firms are objects to be consumed.
Thus, their preferences are to be intended as priorities. This problem is usually
called the course allocation problem. It is a one-sided multi-unit assignment
problem under priorities, in which only workers are strategic. Formally, a course
allocation problem can be identified with a matching market (F,W,PF , PW ),
where F , or the set of firms, is identified with the set of courses to be distributed
among the workers W , who now play the role of students. The preferences of
the firms are to be interpreted as priorities. For every f ∈ F , let �f be the
restriction of Pf to individual students. Formally, for every w,w′ ∈ W ∪ {∅},
let w �f w′ if and only if wPfw

′. The set of stable matchings depends only on
the preferences of the workers, on the preferences of the firms over individual
workers, and on the capacities of the firms. We denote a course allocation
problem as by (F,W,�F , PW , q), where �F= (�f )f∈F and qF = (qf )f∈F . We

call (�F , q) a priority structure.
The priority structure (�F , q) satisfies essential homogeneity6 if there are

no f0, f1, ..., fT ∈ F, w0, w1, ..., wT ∈W and W0, ...,WT ⊆W \ {w0, w1, ..., wT }:

1. wT �fT wT−1 �fT−1
... �f2 w1 �f1 w0 �f0 wT ;

6This definition adapts that proposed in Kojima (2013), accounting for situations where
courses have different eligibility requirements.
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2. for every t, 0 ≤ t ≤ T , wt ∈ A (ft+1) ∩A (ft, ) ,where fT+1 = f0.

3. for every t, 0 ≤ t ≤ T , |Wt+1| = qt+1 − 1 and w �ft+1 wt for each w ∈Wi

where fT+1 = f0.

From the proof of Theorem 1 in Kojima (2013), it follows that essential homo-
geneity is equivalent to the existence of a stable mechanism that is strategy-proof
for students.7 Essential homogeneity is weaker than acyclicity but it does not
guarantee that the set of stable matchings is a singleton (see Romero-Medina
and Triossi, 2013b), nor the existence of a mechanism that is stable and strategy-
proof for the agents on the two sides of the market.

Acyclicity is a more than necessary condition for the existence of a stable
mechanism that is strategy-proof for workers when capacities are given. How-
ever, in several practical course allocation problems, capacities are decided year
by year depending on infrastructure and expected demand. In such situations,
only �F can be assumed as given, and the objective of the designer is to devise
a strategy-proof mechanism that works for any capacity vector q = (qf )f∈F .
We next prove that this is possible only if �F is acyclical.

Lemma 2 Assume that �F has a cycle. Then, there exists a profile of respon-
sive preferences for firms PF and a vector of capacities q such that no stable
mechanism is strategy-proof for workers.

Thus acyclicity is a minimal condition on priorities that guarantees strategy-
proofness for any vector of capacity q. The result suggests that if a revelation
mechanism is to be used, the use of acyclical priorities is the only choice that
guarantees stability of the assignment and truthful behavior by students.

Proposition 3 The following statements are equivalent:

1. There exists a stable mechanism that is strategy-proof for workers for every
q = (qf )f∈F .

2. There exists a stable mechanism that is group strategy-proof for workers
for every q = (qf )f∈F .

3. �F is acyclical.

The proof easily follows directly from Theorem 1 and Lemma 2.

4 Conclusions

In this paper, we prove that the worker-optimal stable mechanism is group
strategy-proof and Pareto optimal in many-to-many matching markets if the
preferences of the firms are acyclical. In this case, the unique stable matching
can be obtained through an Adjusted Serial Dictatorship.

7Romero-Medina and Triossi (2017) prove that essential homogeneity is also equivalent to
the existence of a stable mechanism that is group strategy-proof for students.
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The restriction to acyclical priorities is particularly appropriate in situations
where preferences reflect an underlying merit-based ranking. In these cases, a
serial dictatorship is an appealing implementation mechanism (see also Ehlers
and Klaus, 2003).

Acyclicity is the minimal condition guaranteeing the existence of a strategy-
proof stable mechanism in many-to-many markets. This result can be inter-
preted as negative because acyclicity is a strong restriction. This interpretation
suggests that whenever the restriction of acyclical preferences or priorities is
not deemed reasonable or appropriate, the designer should explore alternative
options. A first alternative is weakening the equilibrium requirements by using
a non-revelation mechanism. A second possibility is to weaken the stability
requirement on the mechanism.

Appendix

Proof of Proposition 1. First, we show that any matching µ obtained from
an adjusted serial dictatorship is stable. The definition of µ implies that it is
individually rational. Next, we prove by contradiction that there is no pair
blocking µ. Assume that there exists a pair (f, w) ∈ F ×W blocking µ. Let
s ∈ {1, ..., |W |} such that w = ws. We have µ (ws) = Cws

(As (P )). First,
assume that |µ (f)| < qf . Then, f ∈ As, yielding a contradiction. Second,
consider the case in which |µ (f)| = qf . Because (f, ws) blocks µ, wsPfw

′ for
some w′ ∈ µ (f). From the definition of the sequence w1, w2, ..., w|W |, it follows
that w′ = wl for some l > s. Thus, f ∈ As (P ), yielding a contradiction.
Finally, we prove that there is exactly one stable matching. The proof of the
claim is by contradiction. Assume that ν 6= µ is a stable matching. Let s be
the minimal index such that µ (ws) 6= ν (ws). Since ν is individually rational,
then ν (ws) ⊆ As (P ). Let us assume that µ (ws)Pws

ν (ws) . Thus, there exists
either f ∈ µ (ws) \ ν (ws) or µ (ws) ⊂ ν (ws). In the first case, the minimality
of s implies that either |ν (f)| < qf or that there exists t > s with wt ∈ x (f).
Then (f, ws) blocks x yielding a contradiction.
In the case that µ (ws) ⊂ ν (ws), by assumption µ (ws)Pws

ν (ws). Additionally
|µ (ws)| < qws

, since ν is individually rational. Let f ∈ ν (ws)\µ (ws). The min-
imality of s implies f ∈ As (P ); thus, (f, ws) blocks µ yielding a contradiction.
�

Proof of Theorem 1. We prove the claim by contradiction. Let us assume
that there exists a nonempty set of agents V ′ ⊂ V , P and P ′V ′ = (P ′v)v∈V ′ such
that µW (P ′V ′ , PV \V ′) (v)Rvµ

W (P ) (v) for every v ∈ V ′ and µW (P ′V ′ , PV \V ′) (v′)Pv′µ
W (P ) (v′)

for some v′ ∈ V ′.
The strategy for the proof is as follows. First, we show that there exists a

profile of acyclical preferences that guarantees the same outcome as P ′V ′ to all
members of the coalition. Then, we use this result, to show that if the prefer-
ences of the firms are acyclical, no group of workers can profitably benefit from
a deviation from truth-telling. Then, we observe that there is no loss of gen-
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erality, assuming that only a coalition of firms is deviating. Finally, we prove
that in this case, the preferences of the firms have a cycle, which leads to a
contradiction.
Let P ′′V ′ = (P ′′v )v∈V ′ be such that for every v ∈ V ′, P ′′v is responsive and
coincides with Pv on the subsets of µW (P ′V ′ , PV \V ′) (v) and ranks all sub-
sets containing agents in V \ µW (P ′V ′ , PV \V ′) (v) as unacceptable. Formally,
for every f ∈ F ∩ V ′, for all W ′,W ′′ ⊆ µW (P ′V ′ , PV \V ′) (f), let W ′P ′′fW

′′

if and only if W ′PfW
′′; if W ′ ∩ W \ µW (P ′V ′ , PV \V ′) (f) 6= ∅, let ∅P ′′fW ′.

For every w ∈ W ∩ V ′, for all F ′, F ′′ ⊆ µW (P ′V ′ , PV \V ′) (w), let F ′P ′′wF
′′ if

and only if F ′PwF
′′; if F ′ ∩ W \ µW (P ′V ′ , PV \V ′) (w) 6= ∅, let ∅P ′′wF ′. The

profiles P ′′F =
(
P ′′V ′∩F , PF\V ′∩F

)
and P ′′W =

(
P ′′V ′∩W , PW\V ′∩W

)
are respon-

sive. We have µW (P ′′V ′ , PV \V ′) (v) = µW (P ′V ′ , PV \V ′) (v) for all v ∈ V ′. Let
w1, w2, ..., w|W | be an order used to generate µ (P ) = µW (P ) as an adjusted
serial dictatorship. For every f ∈ F , preferences P ′f and P ′′f coincide on the

set of mutually acceptable workers and A
(
f, P ′′f

)
⊆ A (f, Pf ). It follows that

P ′′F is acyclical and w1, w2, ..., w|W | can be used to generate an adjusted serial

dictatorship leading to µ
(
P ′′V ′ , PV \V ′

)
.

From now on, let µ = µ (P ) and let ν = µW (P ′′V ′ , PV \V ′).
First of all, we prove V ′∩F 6= ∅. The proof of this claim is by contradiction. As-
sume that V ′ ⊆W , and let s be the minimum integer such that ν (ws) 6= µ (ws).
Since all workers with an index lower than s are matched to the same firms un-
der µ and under ν and V ′ ⊆ F , we have As

(
P ′′V ′ , PV \V ′

)
= As (P ). If ws ∈ V ′

µ (ws)Pws
ν (ws), which yields a contradiction. Otherwise, µ (ws) = ν (ws),

which also yields a contradiction.
Next, we prove that there is no loss of generality in assuming that V ′ ⊆ F . More
precisely, we prove that µW

(
P ′′V ′∩F , PV \V ′∩F

)
(v)Rvµ

W (P ) (v), for each v ∈
V ′. Thus if coalition V ′ can manipulate µW , coalition V ′∩F can also manipulate
µW . Notice that the claim is true for all v′ ∈ F , since µW

(
P ′′V ′∩F , PV \V ′∩F

)
(f) =

ν (f) for each f ∈ V ′∩W . We complete the proof of the claim by contradiction.
Notice that if µW (P )Pwµ

W
(
P ′′V ′∩F , PV \V ′∩F

)
(w) for some w ∈ V ′ ∩W , then

µW
(
P ′′V ′ , PV \V ′

)
Pwµ

W
(
P ′′V ′∩F , PV \V ′∩F

)
(w) as well. Let s be the minimum

integer such that µW
(
P ′′V ′ , PV \V ′

)
(ws)Pws

µW
(
P ′′V ′∩F , PV \V ′∩F

)
(ws). Since

µW
(
P ′′V ′∩F , PV \V ′∩F

)
(f) = ν (f) for each f ∈ V ′ ∩W , ws ∈ W ∩ V ′. Since

all workers with an index lower than s are matched to the same firms under
µW

(
P ′′V ′∩F , PV \V ′∩F

)
(ws) and under µW

(
P ′′V ′ , PV \V ′

)
, As

(
P ′′V ′∩F , PV \V ′∩F

)
=

As
(
P ′′V ′ , PV \V ′

)
; thus, µW

(
P ′′V ′∩F , PV \V ′∩F

)
(ws)Rws

µW
(
P ′′V ′ , PV \V ′

)
, which

yields a contradiction.
Finally, assume V ′ ⊆ F . Since P ′′F and PF are acyclical, the matchings µ and
ν coincide with the firm optimal stable matchings in markets (F,W,P ) and(
F,W,P ′′V ′∩F , PV \V ′∩F

)
, respectively. Consider the deferred acceptance algo-

rithm where firms propose to workers in market (F,W,P ) (see Alkan, 1999).
Since the stable set is a singleton, the algorithm yields µW (P ) as an outcome.
Notice that for all f ∈ F , µW

(
P ′′V ′ , PV \V ′

)
(f)Rfµ

W (P ) (f). There exists a
firm f ∈ F such that ν (f)Pfµ (f) and w ∈ W such that f ∈ ν (w) \ µ (w),
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wPfw
′ for some w′ ∈ µ (f) \ ν (f).8 Let f be the first of such firms to be defini-

tively matched to µ (f) in the deferred acceptance algorithm. In a previous step
of the algorithm leading to µ, f has been rejected by some w′0 ∈ ν (f) \ µ (f).
Worker w0 rejects f in favor of f ′1 ∈ F . Notice f ′1 6= f . Since in the deferred
acceptance algorithm leading to µW

(
P ′′V ′ , PV \V ′

)
, f ′1 had not applied to w0,

who is acceptable to it, it must be the case that in a previous stage, f ′1 had been
rejected by w1 such that w′1Pf ′1w

′
0 in favor of some f ′2 ∈ F that did not apply

to w′1 along the deferred acceptance algorithm yielding ν. Let k ≥ 2, using
the same argument, it can be shown that there exist f ′k /∈ ν (w′k) \ (µ (w′k)),
f ′k 6= f ′k−1 and w′k such that w′k rejects f ′k in favor of f ′k+1, where f ′k+1 6= f ′k
in the deferred acceptance algorithm, leading to µ and w′kPf ′kw

′
k−1. Let r

be the minimum integer such that w′r = w′r−j for some j ≤ r. Such an
integer exists because the set of agents is finite. Without loss of general-
ity assume j = r. Notice that, by construction, w′k 6= w′k+1, for all k =
1, 2, ..., r − 1. Let F ′ = {f ∈ F : ∃i, k, 0 ≤ i ≤ r, , 0 ≤ k ≤ r, i 6= k, f = f ′i = f ′k}.
For all f ∈ F ′ let i1 (f) = min {i : w = f ′i} and let i2 (f) = max {i : f = f ′i}.
Let I = {i : ∃f ∈ F ′, i1 (f) ≤ i < i2 (f)}. Notice that |I| ≥ 2. It follows that
{f ′i}i/∈I and {w′i}i/∈I form a cycle, which yields a contradiction. �

Proof of Lemma 1. Let f0, f1, ..., fT , w0, w1, ..., wT such that wiPfiwi−1
for i = 0, ..., T , where f−1 = fT . Set Pw0

: {f1} , {f0}, Pw1
: {f2} , {f1}, and

set Pwi
: {fi+1} , {fi} for i = 1, 2, ..., T − 1. For all w /∈ {w0, w1, ..., wT }, let

Pw such that A (w) = ∅. Let µW be the worker-optimal stable mechanism. We
have µW (P ) (wi) = {fi+1} for i = 0, 1, ..., T . Then, P ′f1 = {w1} is a profitable
deviation from the truth-telling strategy for f1. �

Proof of Proposition 2. Let PW in the proof of Proposition 1. By contra-
diction, assume that there exists a stable and group strategy-proof mechanism,
ϕ. There are exactly two stable matchings, µW (P ) and µF (P ), whereµW (P ) (wi) =
{fi+1} for i = 0, 1, ..., T and µF (P ) (wi) = {fi} for i = 0, 1, ...,T. From the proof
of Proposition 1, it follows that ϕ (P ) = µF (P ). In this case, P ′w0

= {f1} is a
profitable deviation from the truth-telling strategy for w0. �

Proof of Lemma 2. Let f0, f1, ..., fT , w0, w1, ..., wT such that wi �fi
wi−1 for i = 0, ..., T , where f−1 = fT . Set qf = 1 for all f ∈ F . Set
Pw0

: {f1, f0} , {f1} , {f0}, Pw1
: {f2} , {f1}, and set Pwi

: {fi+1} , {fi} for
i = 1, 2, ..., T − 1. For all w /∈ {w0, w1, ..., wT }, let Pw such that A (w) ⊆ F \
{f0, f1, ..., fT }. Let ϕ be a stable mechanism. We have ϕ (P, q) (fi) = {wi} for
i = 0, 1, ..., T . Let P ′w0

= {f1}. Then, {f1} = ϕ
(
P ′w0

, P−w0
, q
)

(w0)Pw0
{f0} =

ϕ (P ) (w0),which implies the claim. �
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