

PHYTOTOXICITY OF GREEN STABILISED MICRO-IRON USED FOR GROUNDWATER REMEDIATION

Costa Devoti A.¹, Libralato G.², Picone M.¹, Volpi Ghirardini A.¹

¹ Dipartimento di Scienze Ambientali, Informatica e Statistica, Università Ca' Foscari Venezia

² Dipartimento di Biologia, Università degli Studi di Napoli Federico II

Treatment with granular, micro- (mFe), and nano-sized (nFe) iron showed to remove several inorganic and organic pollutants. Recently, there has been a turnaround from nFe to mFe: mFe is cheaper than nFe (i.e. 10 \notin kg for mFe compared to 100 \notin kg) forming less agglomerates. We reported about the potential environmental impacts of mFe considering phytotoxicity effects on four types of iron powders: A (? 600 µm particle size (ps)), B and C (? 250 µm ps) and D (? 50 µm ps). Three macrophytes (*Lepidium sativum*, *Sinapis alba* and *Sorghum saccharatum*) were investigated (OECD, 2006) (seed germination, seedling elongation, germination index and biomass inhibition) exposing organisms to 20 g/L of each mFe stabilised in 2 g/L of Guar gum (GG) in deionized water (GGmFe), spiked with Cd (CdCl2) (1-100 mg/L). Considering real concentrations, preliminary results indicated: i) no adverse effects on *L. sativum* and *S. saccharatrum* versus all GGmFe; *S. alba* showed toxicity versus C and D GGmFe; ii) biostimulation was observed in *S. saccharatum* versus all GGmFe and *L. sativum* only versus C GGmFe; iv) mFe seemed to reduce Cd effects in all sample, but with a different efficiency: C > D > A = B; v) the presence of GG seemed to increase bioavailability of Cd.