

Stefano Tonellato

Bayesian nonparametric
clustering as a community

detection problem

ISSN: 1827-3580
No. 28/WP/2019

W o r k i n g P a p e r s
D e p a r t m e n t o f E c o n o m i c s

C a ’ F o s c a r i U n i v e r s i t y o f V e n i c e
N o . 2 0 / W P / 2 0 1 9

ISSN 1827-3580

The Working Paper Series
is available only on line

(http://www.unive.it/pag/16882/)
For editorial correspondence, please contact:

wp.dse@unive.it

 Department of Economics
Ca’ Foscari University of Venice
Cannaregio 873, Fondamenta San Giobbe
30121 Venice Italy
Fax: ++39 041 2349210

Bayesian nonparametric clustering as a community
detection problem

Stefano Tonellato

Ca’ Foscari University of Venice

Abstract
It is well known that a wide class of bayesian nonparametric priors lead to the representation
of the distribution of the observable variables as a mixture density with an infinite number of
components, and that such a representation induces a clustering structure in the observations.
However, cluster identification is not straightforward a posteriori and some post-processing is
usually required. In order to circumvent label switching, pairwise posterior similarity has been
introduced, and it has been used in order to either apply classical clustering algorithms or
estimate the underlying partition by minimising a suitable loss function. This paper proposes to
map observations on a weighted undirected graph, where each node represents a sample item
and edge weights are given by the posterior pairwise similarities. It will be shown how, after
building a particular random walk on such a graph, it is possible to apply a community
detection algorithm, known as map equation method, by optimising the description length of
the partition. A relevant feature of this method is that it allows for both the quantification of
the posterior uncertainty of the classification and the selection of variables to be used
for classification purposes.

Keywords
Dirichlet process priors, mixture models, community detection, entropy, variable selection

JEL Codes
C11, C38

 Address for correspondence:
Stefano Tonellato

Department of Economics
Ca’ Foscari University of Venice

Cannaregio 873, Fondamenta S.Giobbe
30121 Venezia - Italy

e-mail: stone@unive.it

This Working Paper is published under the auspices of the Department of Economics of the Ca’ Foscari University of Venice. Opinions
expressed herein are those of the authors and not those of the Department. The Working Paper series is designed to divulge preliminary or
incomplete work, circulated to favour discussion and comments. Citation of this paper should consider its provisional character.

Bayesian nonparametric clustering as a community
detection problem

Stefano Tonellato
Department of Economics

Università Ca’ Foscari Venezia

Abstract

It is well known that a wide class of bayesian nonparametric priors lead to the
representation of the distribution of the observable variables as a mixture density
with an infinite number of components, and that such a representation induces
a clustering structure in the observations. However, cluster identification is not
straightforward a posteriori and some post-processing is usually required. In order
to circumvent label switching, pairwise posterior similarity has been introduced,
and it has been used in order to either apply classical clustering algorithms or
estimate the underlying partition by minimising a suitable loss function. This
paper proposes to map observations on a weighted undirected graph, where each
node represents a sample item and edge weights are given by the posterior pairwise
similarities. It will be shown how, after building a particular random walk on
such a graph, it is possibile to apply a community detection algorithm, known as
map equation method, by optimising the description length of the partition. A
relevant feature of this method is that it allows for both the quantification of the
posterior uncertainty of the classification and the selection of variables to be used
for classification purposes.

Keywords
Dirichlet process priors, mixture models, community detection, entropy, variable
selection.

JEL Codes
C11, C38

1 Introduction

Cluster analysis, or unsupervised learning, aims to detecting homogeneous groups within
heterogeneus collections of items and it plays an important role in a wide range of scien-
tific disciplines. The earliest contributions on this topic date back to the third decade of
the past century (Zubin, 1938; Tyron, 1939). Partitional and hierarchical algorithms have
been proposed later on and thorough treatments can be found in Hartigan (1975); Kauf-
man and Rousseeuw (1990) and Gordon (1999). These classical clustering methods have
been widely used in exploratory data analysis, but due to their heuristic nature they are
not immediately suitable for inferential purposes. More recently, thanks to the increasing
availability of computing power, clustering methods based on statistical models have been
developed, with finite mixture distributions playing a central role (McLachlan and Peel,
2000; Frühwirth-Schnatter, 2006). Within the K-component mixture model based clus-
tering, a particularly popular classification method (Fraley and Raftery, 2002) is the one
that maximises the posterior probability of allocating each sample item to one of K clus-
ters, which are identified with the K mixture components. The number of components
and the specific parametrisation of the components are determined by minimising the
BIC criterion. In the paper, we shall refer to this method by using the acronymous MAP.
The possibility of implementing MCMC algorithms and the development of Bayesian
nonparametric methods have had a strong impact in model based clustering. Some of
the most popular Bayesian non parametric prior processes allow for the representation of
the likelihood as a mixture with an infinite number of components and random weights.
This is true for the Dirichlet process prior, for the Pitman-Yor process prior and for
a wide class of normalised random measures (Sethuraman, 1994; Ishwaran and James,
2001; Lijoi and Prünster, 2010). Such a property induces naturally a clustering structure
in the model and implies a prior probability distribution on sample partitions. Unfor-
tunately, the exchangeability assumption makes the mixture components unidentifiable,
and therefore the identification of clusters is not straightforward. The implementation
of MCMC algorithms, however, produces a sample from the posterior distribution of the
partitions which can be used in different ways for clustering purposes. Medvedovic and
Sivaganesan (2002) and Medvedovic and Guo (2004) estimate the posterior pairwise sim-
ilarity, i. e. the posterior probability, τij, that items i and j are generated by the same
mixture component through the proportion of simulated partitions allocating i and j to
the same cluster. They can then define the pairwise dissimilarity, 1 − τij, and apply
classical clustering algorithms. Under alternative approaches, the underlying partition is
seen as an unknown parameter and a posterior estimate is obtained by serching for the
posterior mode (Dahl, 2009), maximising a given criterion, like the expected adjusted
Rand index in Fritsch and Ickstadt (2009), or minimising a loss function (Lau and Green,
2007; Wade and Ghahramani, 2018). Wade and Ghahramani (2018) show that the vari-
ation of information (VI, Meilă (2007)) and Binder’s loss (Binder, 1978) are two metrics
in the space of partitions. Furthermore, they show that these two metrics are aligned
with the lattice structure of the space of partitions. These results allow them to estimate
the underlying partition by minimising either loss function and quantify the posterior
uncertainty by defining suitable posterior credible regions in the partition space, called
credible balls. As pointed out by Frühwirth-Schnatter et al. (2018), their methodology
can be utilised for both infinite and finite mixture models.

Graphs representing social, biological, technological and information networks are

2

usually characterised by a strong inhomogeneity in the distribution of edges among nodes:
high concetrations of edges within some particular groups of nodes and low concentrations
of edges between thes groups may coexist. Such a feature is called community structure or
clustering and community detection has attracted a lot of attention among the researchers
analysing network systems, and in particular statistical physicists (Fortunato, 2010). In
this paper we propose to look at the sample as a weighted undirected graph whose nodes
represent sample items and edge weights are given by the posterior pairwise similarities
induced by a Bayesian nonparametric model. Under this perspective, clustering can be
seen as a community detection problem. In particular, we shall consider the approach
based on the map equation (Rosvall and Bergstrom, 2008; Rosvall et al., 2009). The
optimal partition will be defined as that partition that minimises the expected description
length of a particular random walk defined on such a graph. In section 2 we shall review
some of the main features of the map equation method and of a wide class of Bayesian
nonparametric models. Section 3 will illustrate how the optimal clustering can be achieved
and posterior uncertainty can be evaluated. In section 4 we suggest an algorithm aimed to
selecting a subset of variables for clustering purposes in a multivariate context. Examples
on simulated and real data will also be given in sections 3 and 4.

2 Review

In this section we give a short description of the community detection based on the map
equation and recall some features of a wide class of Bayesian nonparametric models that
are particularly relevant for our purposes.

2.1 The map equation

Rosvall and Bergstrom (2008) and Rosvall et al. (2009) used maps in order to describe a
flow dynamics across the links and nodes in both directed and undirected weighted net-
works representing interactions among the sub-units of a system. In order to understand
the flow of information on the network, they propose to identify the modules, i.e. the
clusters of nodes, among which information flows quickly and easily by representing the
whole system through a map. Such a map divides the network in two levels of description:

a) unique names are retained for the clusters within the network;

b) names associated with fine-grain details, i.e. the nodes, may be reused in different
clusters.

The analogy with maps where city names are unique, but street names may be reused
from one city to another is straightforward. Such coding problem can be seen as the
description of a random walker spending long periods of time within certain clusters.
Defining an efficient code is equivalent to identifying a module (i.e. cluster) partition
that allows for the minimisation of the description length. Let M represent a partition
of n nodes in K groups. Using a binary code in order to label nodes and clusters, the
average description length of a step of the random walker is

L(M) = qyH(Q) +
K∑
k=1

pk�H(Pk), (1)

3

where the first term represents the entropy of the movement between two modules, and
the second the entropy of movements within modules. More precisely:

qy = probability of leaving a cluster;

H(Q) = average length of the code used to specify cluster names;

H(Pk) = average length of codewords in cluster k;

pk� = probability of staying in or leaving cluster k.

All these probabilities can be easily computed once the transition probability of the
random walk, i.e. the probability of moving from node i to node j, i, j = 1, . . . , n,
is properly defined. In Rosvall and Bergstrom (2008) such transition probabilities are
proportional to the weights of the edges connecting i to its neighbours. Rosvall and
Bergstrom (2008) call equation (1) the map equation. A more detailed description of the
quantities appearing in (1) will be given in section 3.

The optimal partitionM∗ minimising (1) provides the minimum expected description
length of the random walk on the network. The algorithm proposed by Rosvall et al.
(2009) in order to minimise (1) is based on a slight modification of the one introduced in
Blondel et al. (2008), which they call the core algorithm. The core algorithm works as
follows.

Stage 1 Neighboring nodes are joined into modules, which subsequently are joined into
supermodules and so on. First, each node is assigned to its own module. Then, in
random sequential order, each node is moved to the neighboring module that results
in the largest decrease of the map equation. If no move results in a decrease of the
map equation, the node stays in its original module. This procedure is repeated,
each time in a new random sequential order, until no move generates a decrease of
the map equation.

Stage 2 At this stage the network is rebuilt, with the modules of the last level forming
the nodes at this level. And exactly as at the previous level, the nodes are joined
into modules. This hierarchical rebuilding of the network is repeated until the map
equation cannot be reduced further. Except for the random sequence order, this is
the algorithm described in Blondel et al. (2008).

The core algorithm reminds an agglomerative clustering. In fact, when two modules
are merged in a single one at stage 2, they can never be separated in this algorithm.
Therefore Rosvall et al. (2009) propose to improve its accuracy by introducing two further
movements after stage 2 is completed:

Submodule movements. First, each cluster is treated as a network on its own and
the main algorithm is applied to this network. This procedure generates one or
more submodules for each module. Then all submodules are moved back to their
respective modules of the previous step. At this stage, with the same partition as
in the previous step but with each submodule being freely movable between the
modules, the main algorithm is re-applied.

Single node movements. First, each node is re-assigned to be the sole member of its
own module, in order to allow for single-node movements. Then all nodes are moved
back to their respective modules of the previous step. At this stage, with the same
partition as in the previous step but with each single node being freely movable
between the modules, the main algorithm is re-applied.

4

These movements are repeated sequentially until no improvement in the expected de-
scription length are achieved, or when the improvement does not exeed a fixed tolerance.

As an example, consider a graph with adjacency matrix

W =

0.00 0.00 0.90 0.00 0.00
0.00 0.00 0.50 0.01 0.00
0.90 0.50 0.00 0.00 0.01
0.00 0.01 0.00 0.00 0.90
0.00 0.00 0.01 0.90 0.00

 , (2)

where the element si,j represents the similarity between nodes i and j, i, j = 1, . . . , 5.
The optimal clustering is quite obviously given by the partition M∗ = {{1, 2, 3}, {4, 5}}
with L(M∗) = 1.784. Figure 1 shows the corresponding graph and the clusters composing
M∗. Both computations and graphical representation are based on the R package igraph
(Csardi and Nepusz, 2006).

2.2 Dirichlet process mixture model and some generalisations

A prominent class of models in Bayesian nonparametrics is based on the Dirichlet process
prior (Ferguson, 1973) and is known as Dirichlet process mixture (Antoniak, 1974). In this
model, the observable random variables, Yi, i = 1, . . . , n, are assumed to be exchangeable
and generated by the following hierarchical model:

Yi|θi
ind∼ p(·|θi), θi ∈ Θ

θi|G
iid∼ G

G ∼ DP (α,G0),

where DP (α,G0) denotes a Dirichlet process (DP) with base measure G0 and concentra-
tion parameter α > 0. Since the DP generates almost surely discrete random measures
on the parameter space Θ, ties among the parameter values have positive probability,
leading to a batch of clusters of the parameter vector θ = [θ1, . . . , θn]T . Exploiting the
Pólya urn representation of the DP (Blackwell and MacQueen, 1973), the model can be
rewritten as

Yi|zi, θ∗zi
ind∼ p(·|θ∗zi), θ

∗
zi
∈ Θ (3)

θ∗zi
iid∼ G0 (4)

z1 = 1

p(zi = j|z<i) =

{
α

α+i−1 j = max (z<i) + 1
nj

α+i−1 j ∈ {max (z<i)},
i > 1 (5)

zi ⊥ θ∗j ∀i, j, (6)

where z<i = {z1, . . . , zi−1}, and nj is the number of θi’s equal to θ∗j , j ∈ {k}. In this
model representation, the parameter θ can be expressed as (z, θ∗), with z = {z1, . . . , zn},
θ∗ = [θ∗1, . . . , θ

∗
k]
T , k = max(z) ≤ n with θ∗j

iid∼ G0, and θi = θ∗zi . The labels in z identify
a partition of {1, . . . , n} in k clusters, M = {C1, . . . , Ck} with prior probability (Dahl,
2009)

p(M) ∝ αk
k∏
j=1

Γ(|Cj|).

5

The model can be represented in the following, equivalent way:

p(y|P) =

∫
K(y|θ)dG(θ),

G(θ) =
∞∑
j=0

ωjδθj ,

θj
iid∼ G0,

where the ωj and θj are independently distributed (Sethuraman, 1994). This represen-
tation holds for a class of Bayesian nonparametric priors more general than the Dirich-
let process, including the Pitman-Yor process and normalised random measures (Lijoi
and Prünster, 2010). Wade and Ghahramani (2018) provide a nice review of Bayesian
nonparametric clustering. Here we want to highlight a common feature of the MCMC
algorithms that have been defined in the literature: each one of them produces a sample
of partitions from their posterior distribution that can be used to estimate the pairwise
posterior similarity that will be discussed in the next section.

In the examples given in the following sections, we shall consider only models for con-
tinuous variables, with Dirichlet process priors with Gaussian base measure G0. Nonethe-
less, the clustering method we are going to suggest can be straightforwardly extended to
the more general class of Bayesian nonparametric models mentioned above as well as to
finite mixtures.

3 The clustering method

3.1 Posterior similarity

We can state that two individuals, i and j, are similar if yi and yj are generated by the
same mixture component, i.e. if zi = zj. Label switching prevents us from identifying
mixture components, but not from assessing similarities among individuals. In fact, any of
the MCMC algorithms currently available (see, for instance: Neal (2000); Walker (2007);
Jain and Neal (2007); Papaspiliopoulos and Roberts (2008); Griffin and Walker (2011)),
allows us to estimate the pairwise posterior similarity τij. The posterior probability that
xi and xj are generated by the same component, i.e. the posterior probability of the event
{zi = zj}, can be estimated as

τ̂ij =
1

R

R∑
r=1

I
(
z
(r)
i , z

(r)
j

)
, (7)

where z
(r)
i is the component label associated to the i-th sample item at the r-th run of

the MCMC algorithm, r = 1, . . . , R, I(x, y) = 1 if x = y and I(x, y) = 0 otherwise. We
can then define a similarity matrix S with ij-th element sij = τ̂ij.

3.2 The map equation based on posterior similarity

The matrix S can be used to build the weighted undirected graph G = (V,E), where
each node in the set V represents a sample item, i. e. V = {1, . . . , n}, and the set E,

6

E ⊆ V × V , contains all the edges in G. Furthermore, the weight of the generic edge
(i, j) is given by wij = sij if i 6= j, and wij = 0 otherwise (the reason of this constraint
will be explained below). The weight matrix will be denoted by W = S− In.

We can then define a random walk X on G, with state space V . Let di represent the
degree of vertex i, i.e.

di =
n∑
j=1

wij, i = 1, . . . , n

and D = diag(d1, . . . , dn), the n-dimensional diagonal matrix with the vertex degrees on
the main diagonal. We define the transition matrix of X as

P = D−1W,

hence the probability of moving from i to j is given by,

pij =
wij
di
. (8)

It follows that pii = 0 due to the constraint wii = 0: no self-loops are allowed under this
assumption.

If G is connected, then X and its invariant distribution is π = [π1, . . . , πn]T , with

πi =
di∑
i,j wij

, i = 1, . . . , n (9)

(Lovász, 1996). The random walk we have just defined represents an artificial stochastic
flow such that the probability of moving from i to j is proportional to wij, i.e. to the
similarity between i and j. Such a dynamics induces some high density subsets of V ,
i.e. subsets where the random walker spends a long time before moving to other clusters,
separated by low weight edges. In such a context, we can utilise the community detection
algorithms discussed in section 2.1. In order to do that, we shall now describe in detail
how the quantities appearing in (1) can be computed. Let M represent an arbitrary
partition of V in K clusters, M = {C1, . . . , CK}. The probability of leaving Ck is given
by,

qky =
∑
i∈Ck

πi
∑
j /∈Ck

pij, k = 1, . . . , K. (10)

It follows that the probability of leaving one of the K clusters is given by

qy =
K∑
k=1

qky.

The average length of the code used to specify cluster names is then equal to

H(Q) = −
K∑
k=1

qky
qy

log

(
qky
qy

)
.

The labels of the nodes in Ck are used at a rate

pk� =
∑
i∈Ck

πi + qky,

7

i.e. pk� is given by the fraction of time spent in Ck plus the probability of leaving Ck.
Hence, the entropy for the k-th cluster codebook is

H(Pk) = − qky
qky +

∑
i∈Ck

πi
log

(
qky

qky +
∑

i∈Ck
πi

)

−
∑
i∈Ck

πi
qky +

∑
j∈Ck

πj
log

(
πi

qky +
∑

j∈Ck
πj

)
.

Then (1) can be written as

L(M) =

(
K∑
k=1

qky

)
log

(
K∑
k=1

qky

)
− 2

K∑
k=1

qky log(qky)

−
n∑
i=1

πi log(πi) +
K∑
k=1

(
qky +

∑
i∈Ck

πi

)
log

(
qky +

∑
i∈Ck

πi

)
. (11)

It is straightforward to verify that once the posterior similarity is computed using (7),
all these quantities can be easily determined. Following (8) and (10), we can write, as in
Rosvall and Bergstrom (2008):

qky =
∑
i∈Ck

∑
j /∈Ck

wij∑
s,hwsh

and all the terms in (11) can be rewritten as appropriate transformations of the weights
in W.

3.3 Quantifying uncertainty

Once a similarity matrix, S, is defined, we can compute the entropy, L(M), associated to
any arbitrary partition. We can then define the equivalence relation between partitions,
≡, such that for any pair of partitions, M1 and M2,

M1 ≡M2 ⇔ L(M1) = L(M2) (12)

A priori, the model specified by equations (3)-(6), assumes that any pair, (yi,yj), of
observations are generated by the same mixture component with a constant probability,
p(α), independent of i and j. Henceforth, the prior similarity matrix S̃ has elements
sij = p(α) for i 6= j and sii = 1. From the construction of the random walk on the
graph G we illustrated in the previous subsection, it is straightforward to verify that
the probability of moving from node i to node j is 1

n−1 , for i 6= j, and 0 otherwise,
independently of i, j and α.

Proposition 1. If W, the transition matrix of the random walk X on the graph G, is
such that wij = 1

n−1 for i 6= j and wij = 0 otherwise, the partition minimising (11)
contains the unique cluster {1, . . . , n}.

Proof. Under the stated assumption, it is easy to verify that, from (3.2),

qky =
nk(n− nk)
n(n− 1)

, k = 1, . . . , K

8

and, from (9), πi = 1
n
, i = 1, . . . , n. Hence, (11) can be rewritten as

L(M) =

(
K∑
k=1

nk(n− nk)
n(n− 1)

)
log

(
K∑
k=1

nk(n− nk)
n(n− 1)

)
− 2

K∑
k=1

nk(n− nk)
n(n− 1)

log

(
nk(n− nk)
n(n− 1)

)
(13)

−
n∑
i=1

1

n
log

(
1

n

)
−

K∑
k=1

(
nk(n− nk)
n(n− 1)

+
nk
n

)
log

(
nk(n− nk)
n(n− 1)

+
nk
n

)
.

Putting 0 log 0 = 0, and defining M∗ as the partition given by the unique cluster
{1, . . . , n}, we can notice that in the computation of L(M∗), the first, second and fourth
terms on the r.h.s. of (13) are equal to zero. It follows that

L(M∗) = −
n∑
i=1

1

n
log

(
1

n

)
.

We can also notice that for any partition composed by K clusters, with K > 1, the first,
second and fourth terms on the r.h.s. of (13) are positive. Hence,M∗ minimises (13).

It follows that, a priori, the optimal clustering allocates all individuals to a unique
group, {1, . . . , n}, independently of the value taken by α. Furthermore, two sample par-
titions will be equivalent whenever they are composed by the same number of clusters,
provided that the clusters in the two partitions have the same cardinality. Notice that
this does not mean that the probability distribution of the random variable L(M) is
independent of α. In fact, under the Dirichlet process prior, for small values of α, par-
titions with a small number of clusters have high probabilty, whereas high values of α
determine high prior probabilities of partitions with a high number of clusters (Antoniak,
1974). It follows that, for any fixed sample size n, our prior optimal clustering will be
M∗ = {1, . . . , n}, as a consequence of the exchangeability assumption, independently
of our state of uncertainty about the number of clusters, which is related to α. Such
uncertainty will be represented by the behaviour of L(M). For small values of α the
probability mass of L(M) will be concentrated on the values corresponding to partitions
with a small number of clusters; for high values of α, it will be concentrated on the values
taken on the partitions with high number of clusters which is anyway bounded above
by the sample size, n. Both these circumstances are characterised by a relatively low
uncertainty about the number of clusters for any fixed n. Intermediate values of α de-
termine an increase in the dispersion of the probability mass of L(M), which represents
a higher uncertainty about the number of clusters. Using equation (5) we can generate
independent partitions and compute the value taken by L(M) on each of them. Figure
2 provides an example of how the prior uncertainty about L(M) (and hence about the
number of clusters) depends on the value taken by α. We can notice that, for a fixed
sample size (n = 200), the values taken by L(M) are increasingly concentrated around
the minimum (maximum) as alpha decreases (increases).

Once the posterior similarity has been estimated, it is also possible to sample from
the posterior distribution of L(M). When MCMC algorithms are used to estimate a
Bayesian nonparametric model, at each iteration a new, random, sample partition is
generated and the corresponding value of L(M) can be computed. It is then possible to

9

relate the optimal partitionM∗ computed by the algorithm described in section 2.1 and
its expected code length L(M∗) with the posterior distribution of L(M). It is worth to
notice that quite often MCMC algorithms visit only a few of the many possible partitions
and that each of them is visited only once or twice in many cases. It follows that, if we
denote the partition generated by the MCMC algorithm that provides the minimum
code length by M(1), we often shall find that L(M∗) < L(M(1)). However, due to the
euristic nature of the optimising algorithm, in some rare occasion we might find that
L(M(1)) < L(M∗). We can then define our best approximation of the optimal partition
as

M̃ = argmin
{M∗,M(1)}

L(M). (14)

3.4 Two examples

Galaxy data. The Galaxy data (Roeder, 1990), shown in Figure 3a, consists of n = 82
measured velocities (in 103 km/s), relative to our own galaxy, of galaxies from six well
separated conic sections in the Corona Borealis region. Roeder (1990) estimates a number
of clusters between 3 and 7, identifying clusters with mixture components. This dataset
hase been widely studied and quite different conclusions have been drawn by different
researchers, as well documented by Aitkin (2011), who provides evidence for a number of
three clusters under an objective Bayesian perspective. We might then expect that our
method should warn us about a high level of uncertainty in the clustering. We elicited
the following prior distribution:

Yi|µi, σ2
i ∼ N(µi, σ

2
i),

µi, σ
2
i ∼ DP (αG0),

α ∼ Gamma(1, 1),

G0 = NIG(µ0, κ0, a, b),

with µ0 = ȳ, κ0 = 0.1, a = 2 and b = 0.5s2, where ȳ and s2 denote the sample mean
and variance respectively. After 10000 burnin iterations, 10000 iterations of the Gibbs
sampler have been run using algorithm 8 of Neal (2000), as implemented by the R package
DPpackage (Jara, 2007; Jara et al., 2011).

Figure 3b shows the posterior density estimate and the optimal partition, obtained by
optimising (11). Figure 4 shows the heat map representation of the posterior similarity
matrix and the graph representing the optimal partition which, accordingly with the
estimates given by Roeder (1990) and Aitkin (2011) about the most likely clustering, is
composed by three clusters. It is worth to notice that the optimal partition, obtrained by
minimising (11), coincides with the unique partition, among the ones generated by the
MCMC algorithm, which gives the minimum value of the code length. In order to quantify
the uncertainty about the clustering, we examine the posterior estimate of the cumulative
distribution function of the code length associated to an arbitrary partition of the sample
items. Such an estimate is given by the empirical distribution function of the code lengths
computed on the partitions generated by the MCMC and it is shown in Figure 5b. Figure
5a show how many times the equivalence classes of partitions correponding to distinct
expected code lengths have been visited by the Gibbs sampler. In the same figure the
posterior percentiles of L(M of order 5, 10, 25, 50, 75 and 95 are represented as red

10

segments on the abscissae. From Table 1 we can notice that the number of clusters in
partitions belonging to different equivalence classes does not decrease with respect to the
expected code length. We can also observe that the number of clusters in partitions of
decreasing quality (i.e. increasing code length) may keep locally constant. This means
that our posterior uncertainty concerns both the number of clusters and each cluster
composition. We can quantify our uncertainty about the clustering, in the sense that
we can state what is the posterior probability that a clustering generated by our model
gives an expected code length not greater than a given threshold. In our example, we can
state that, a posteriori, the probability of partitions with code length not greater than
6.29 is 0.25. We can compare partitions corresponding to different expected code length
posterior quantiles, as shown in Figure 6, which shows the representative elements of the
equivalence classes corresponding to the posterior precentiles shown in Table 1. Each
partition shown in that figure is compared with the optimal partition in terms of the
Adjusted Rand Index (ARI). The ARI (Hubert and Arabie, 1985) measures the agreement
between two partitions: the closer the index is to 1, the stronger the agreement between
the two partitions, a value equal to 1 indicating perfect agreement. In this applicaton,
we can then state that the posterior probability of partitions with expected code length
ranging between 6.14 and 6.29 is 0.25, that the agreement of each such partition with the
optimal one is negatively associated with the expected code length, and for partitions
corresponding to the posterior percentiles of L(M) of order ranging between 5 and 95
such agreement, measured by the ARI, decreases from 1 to 0.197.

Simulated data. We now present, via simulation, an example of unsupervised classi-
fication characterised by a very low posterior uncertainty. We generated a sample of size
n = 200 from the following bivariate Gaussian mixture:

f(y) =
4∑
j=1

1

4
N(µj,Σ), (15)

with µj =
[
2(−1)b(j−1)/2c, 2(−1)(j−1)

]T
and Σ = 0.04I2. The data are shown in Figure

7a. The fitted model is

Yi ∼ N(µi,Σi),

(µi,Σi) ∼ DP (αG0),

G0 ∼ NIW (µ0, κ0, ν,Ψ),

α ∼ Ga(2, 1),

with µ0 = ȳ, κ0 = 0.1, ν = 6 and Ψ = 1
n−1(y − ȳ)T (y − ȳ). We ran 10000 iterations

of the Gibbs sampler after discarding the first 10000 iterations. The data are shown
in Figure 7, with the contour levels of the posterior estimate of the joint probability
density function superimposed. Figure 7 shows also the heat map representation of the
posterior pairwise similarities, the graph representation of M̃, which coincides with the
partition determined by the labelling of the mixture components of (15), and the empirical
distribution function of the expected code lengths associated to the partitions visited by
the Gibbs sampler. From Figure 7d we can notice that they range between 6.4 and 6.64,
about 80% of them attaining the minimum, which corresponds to L(M̃). Figure 8 shows

11

the partition corresponding to the 95th posterior percentile of L(M), taking the value
6.45. It is composed by 6 clusters, two of which are the singletons represented by the
black square and dark green diamond on the top right region of the scatterplot. The ARI
index measuring the agreement between this partition and the partition induced by the
mixture components of (15) takes value 0.987. This behaviour is an example of a general
property of this clustering method: when the posterior uncertainty about clustering is
low, the posterior distribution of L(M) tends to be strongly concentrated around the
lower bound of its support, and the agreement between partitions associated to different
posterior quantiles tends to be strong.

4 Multivariate data and variable selection

When dealing with multivariate data, we often need to decide wether using the whole
dataset or only a subset of variables better suited for clustering purposes. Two particu-
larly interesting recent contributions are Raftery and Dean (2006) and Yau and Holmes
(2011). The former attempts to identify the variables that best contribute to clustering
the dataset by modelling jointly the variables, say Y = [Y1, . . . , Yp]

T , and the membership
labels, say z = [z1, . . . , zn]T . This is done by separating the subset of variables that de-
pend on the cluster labels, say Yc, from the subset of variables that, conditionally on Yc,
are independent of z through the factorisation of the joint probability density function:

f(Y) = f(Ync|Yc)f(Yc|z). (16)

Alternative models are estimated through maximum likelihood and compared via the
BIC. Estimation and model comparison are carried out through an iterative algorithm.
The subset of variables best suited for classification purposes is the Yc corresponding to
the joint model that minimises the BIC. Yau and Holmes (2011) propose an interesting
hierarchical Bayesian nonparametric model based on infinite Gaussian mixture. The
advantage of their proposal is that the relevance of each variable can be evaluated by a
parameter that represents the variance of the normalised differences between the centers
of mixture components. One limitation of their proposal is that it requires clusters to be
identified by component means only, whereas variances do not play a crutial role.

Here we shall propose an algorithm similar, under some respects, to the one of Raftery
and Dean (2006). The key idea is that dealing with a dataset containing measurements
on p variables, we look for a subset of p∗ (p∗ < p) variables providing a clustering with the
lowest expected code length among the ones provided by any other subset of variables,
using the method illustrated in the previous section. Unfortunately, applying a selection
method based on this principle, we found that often the clustering obtained in this way
was characterised by the presence of a high number of very small clusters and that this
inconvenience occurs more often when the number of variable increases. Therefore, we
deemed useful to consider a criterion linked to the expected code length, with a correction
term penalising for the presence of small clusters. Before cosidering such a criterion, we
recall the concept of silhouette width and average silhouette width.

4.1 Penalised code length

Rousseeuw (1987) introduced the silhouette widths with the purpose of evaluating clus-

12

tering validity and, possibly, determining the number of clusters. For any partition M,
let us define A as the cluster to which item i has been assigned, C any other cluster
different from A, and d(i, C) the average dissimilarity of i to all the elements of C. We
can define the following quantities:

ai = average dissimilarity of i to all other objects of A,

bi = min
C 6=A

d(i, C),

si =
bi − ai

max{ai, bi}
.

The quantity si is the silhouette width of i. From the definition, it follows straightfor-
wardly that −1 ≤ si ≤ 1. When si is close to 1, i is very similar to the elements in A and
well separeted form the cluster containing the items less dissimilar to i but not included
in A (ai � bi). When si is close to -1, i is much more similar to the items in a cluster
C than to the elements in A (ai � bi), hence it is badly classified. When si = 0, i is not
well classified, in the sense that it is equally separated from the elements in A and the
elements in the closest cluster different form A (ai = bi). The average silhouette width,
s̄ = 1

n

∑n
i=1 si, −1 ≤ s̄ ≤ 1, can then be used to give an overall evaluation of a partition

M: the closer s̄ is to one, the better the partition M. The average silhouette width is
often used in order to determine the number G of clusters. In order to avoid the number
of clusters increasing significantly, it is customary to set s(i) = 0 whenever A = {i}.

Let Y(p) = [Y1, . . . , Yp]
T be a p-variate random vector, and assume a model like the

one described in equations (3)-(6) has been fitted to the data. We can then define the
posterior dissimilarity matrix as

D
(
Y(p)

)
= 1n − S

(
Y(p)

)
, (17)

where 1n denots the n-dimensional square matrix with elements identically equal to 1 and
S
(
Y(p)

)
is the posterior similarity matrix introduced in subsection 3.1. Let M̃

(
Y(p)

)
represent the optimal partition obtained as in (14), A ∈ M̃

(
Y(p)

)
be the cluster to which

item i has been allocated and C ∈ M̃
(
Y(p)

)
any other cluster. We can then define

ai
(
Y(p)

)
=

1

|A| − 1

∑
j∈A

Dij

(
Y(p)

)
bi
(
Y(p)

)
= min

C∈M̃(Y(p)),C 6=A

1

|C|
∑
j∈C

Dij

(
Y(p)

)
si
(
Y(p)

)
=

bi
(
Y(p)

)
− ai

(
Y(p)

)
max{ai (Y(p)) , bi (Y(p))}

,

with si
(
Y(p)

)
representing the posterior shilouette width of i, conditionally on Y(p). It

follows straightforwardly the we can define the posterior average width as

s̄
(
Y(p)

)
=

1

n

n∑
i=1

si
(
Y(p)

)
.

We can finally define a new criterion, the penalised expected code length, given by

L
(
Y(p)

)
= L

(
M̃
(
Y(p)

))
− s̄

(
Y(p)

)
. (18)

13

Clearly, when looking for a subset of p∗ variables among the p available ones, under the
perspective we have illustrated so far, we should choose that Y(p∗) minimising (18).

4.2 The algorithm

The greedy search algorithm we propose works as follows.

Step 1 Produce a clustering from each variable, as in the previous section, and select
the variable that provides the lowest code length partition. Name L∗ the minimum
penalised code length you found and Y (1) the selected variable.

Step 2 If the number of selected variables is p′ = 1, form p−p′ pairs of variables by cou-
pling each of the unselected variables with Y (1), and for each pair compute the cor-
responding optimal clustering and its associated code length. Name L̃ the minimum
penalised expected code length you found, Y (2) the variable that, correspondingly,
you coupled with Y (1).

If L̃ < L∗, select Y(2) = [Y (1), Y (2)]T , set L∗ = L̃ and go to Step 3.

Else, return Y (1), L∗, p∗ = 1 and stop.

Step 3 Let the number of selected variables be p′, 1 < p′ < p. Form p−p′ subsets of size
(p′+1) by joining each unselected variable to Y(p′), and for each such subset compute
the corresponding optimal clustering and its associated penalised code length. Name
L̃ the minimum penalised expected code length you found and Y (p′+1) the variable
that, correspondingly, you joined to Y(p′).

If L̃ < L∗, select the subset Y(p′+1) =
[
Y(p′)T , Y (p′+1)

]T
and set L∗ = L̃. and go to

Step 4.

Else, go to step 4.

Step 4 Let the number of selected variables be p′+1. For j = 1, . . . , p′ remove Y (j) from
Y(p′+1). Name L̃ the minimum penalised code length you found and Y(p′) the new
subset of variables.

If L̃ ≤ L∗ and p′ ≤ p−2 set Y(p′) as the new subset of selected variables and L∗ = L̃,
then go to Step 3.

Else if L̃ > L∗ and p′ ≤ p− 2 go to step Step 3.

Else if L̃ ≤ L∗ and p′ + 1 = p, return Y(p′+1), L∗, p∗ = p and stop.

Step 5 Iterate steps 3 and 4 until no improvements are achieved in L∗, in which case
return p∗, Y∗ and L∗.

The algorithm we have just illustrated allows us to find a subset of p∗ ≤ p variables
that best suite for clustering purposes; we can also rank these varables in the order they
have been selected, which corresponds to a decreasing clustering capability. Differently
from Yau and Holmes (2011), the clustering does not necessarely depend on the location
only. On the other hand, our selection method requires that at each step a model is
fitted to each one of the subsets of variables that are considered, in order to estimate a
distinct posterior pairwise similarity. Parallel computing can be implemented, but still
the algorithm is quite expensive, An advantage with respect to a selection method like
the one by Raftery and Dean (2006) is that at each iteration we need only to model
the marginal distribution of some subsets of variables, but we can omit the estimation

14

of a term like f(Ync|Yc) in (16 with a relevant gain in computational efficiency. It is
important to emphasise that this advatage can be achieved only if each of the submodels,
for 1 ≤ p′ < p represents a marginalisation of the model built for the whole set of p
variables after that p − p′ of them have been discarded, otherwise the submodels would
be incoherent.

4.3 A simulation study

We applied the algorithm to 100 independent samples of size n = 200 from the six-variate
random vector Y such that

Y1 ∼N(0, 25)

(Y2, Y3) ∼
4∑
j=1

1

4
N(µj ,Σj)

(Y4, Y5|Σ) ∼N(0,Σ)

Y6|Y1, Y2, Y3, Y4, Y5 ∼N(1 + 3Y2, 0.64)

where µj =
[
2(−1)b

j−1
2
c, 2(−1)(j−1)

]T
, Σ1 = Σ3 = I2, Σ2 = 0.5I2, Σ4 = 1.5I2, Σ ∼

IW(6, 12I2) and Y1, [Y2, Y3]
T and [Y4, Y5]

T are independent. Figure 9 shows one of these
independent samples. Obviously, the variables that carry the whole information about
the clustering are either Y2 and Y3, which are generated by a 4-component Gaussian
mixture, or Y3 and Y6; the triple [Y2, Y3, Y6]

T would carry the same information, but one
variable would be redundant, Y2 and Y6 being strongly correlated.

For any subset Y(p) of variables, 1 ≤ p ≤ 6, we defined the following model:

Y
(p)
i |µ

(p)
i ,Σ

(p)
i

ind∼ N(µ
(p)
i ,Σ

(p)
i),(

µ
(p)
i ,Σ

(p)
i

)
|G iid∼ G

G ∼ DP (α,G
(p)
0),

G
(p)
0 = NIW (ȳ(p), κ0, ν0,S

(p)),

where ¯y(p) and S(p) denote the sample mean and variance-covariance matrix respectively,
k0 = 0.5 and ν0 = 10. It is worth to notice that, for 1 ≤ p ≤ 5, G

(p)
0 represents

the marginal distribution of G6) after the exclusion of 6 − p variables, and this implies
that all the submodels difined for different values of p are coherent. For each simulated
dataset we implemented the algorithm illustrated above after estimating the model using
the Gibbs sampler (Neal, 2000) with 10000 iterations after a burn in period of 10000
iterations.

Table 2 shows that only in 4 cases 4 variables have been selected,whereas in 84 and 12
samples, 2 and 3 variables were selected respectively. From Table 3, we can notice that
in 78 samples Y2 and Y3 were the first two selected variables and in 22 cases the first two
variables in the ranking were Y3 and Y6, meaning that the ferst two selected variables
have always been chosen among the ones that actually provide information about the
underlying clustering. Table 4 shows the frequency distribution of the number of clusters

15

identified by our method: in 87 out of 100 independent simulations the number of clusters
is correctly estimated, in eleven cases it is overestimated (five clusters) and only in two
cases it is underestimated (three clusters). Figure 10 reports the boxplots of the ARI
computed over all the partitions produced by our method and sharing the same number
of clusters. We compared partitions produced by our method and the one given by the
allocation of the simulated data to the mixture components. As we can notice from the
figure, when 4 clusters are identified, the ARI ranges between about 0.7 and 0.95 whereas
when 5 clusters are identified the ARI ranges between 0.8 and 0.95, whereas a sensibly
lower agreement is observed on the two clusterings that underestimate the number of
groups.

4.4 Examples

In the following we shall present two applications of the algorithm we illustrated in section
4.2 on real data. For each subset of variables we define the following model:

Y
(p)
i |µi,Σi

ind∼ N(µ
(p)
i ,Σ

(p)
i),(

µ
(p)
i ,Σ

(p)
i

)
|G iid∼ G

G ∼ DP (α,G
(p)
0),

G0 = NIW (ȳ(p), κ0, ν0,S
(p)),

where ȳ(p) and S(p) denote the sample mean and variance-covariance matrix respectively,
k0 = 0.5 in both examples, whereas ν0 = 17 in the first examlple and ν0 = 10 in the
second one.

Wine data. The Wine dataset is available in the package pdfCluster of R (Azzalini
and Menardi, 2014). It consists of 178 measurements on 14 variables. The first variable
is a categorical one, and it identifies three types of wine: Barolo, Grignolino and Barbera.
The remaining variables measure the quantities of 13 constituents: Alcohol, Malic acid,
Ash, Alcalinity, Magnesium, Phenols, Flavanoids, Nonflavanoids, Proanthocyanins, Color
intensity, Hue, OD280.OD315Dilution, Proline. The latter variables are continuous and
we used them in order to assess wether the method we propose is able to identify the
different types of wine. Six covariates were selected, in the following order: Malic, Proline,
Color, Flavanoids and Alcalinity. The optimal partition, M̃, is obtained through (14)
and it is composed by four clusters. The top block of Table 5 is the confusion matrix
that compares M̃ with the true item labelling. Barolo and Barbera are quite clearly
identified, beeing the items of these classes allocated for the most part to clusters 2 and
4; the items labelled as Grignolino, instead, are allocated over the four clusters, mostly
to cluster 1 and, in a lesser extent to cluster 4 (which comprises also 8 items labelled as
Barolo). The ARI measuring the agreement between M and the true labelling is equal
to 0.65. We considered also the partitions obtained by applying the VI method of Wade
and Ghahramani (2018) and by minimising Binder’s loss function (Binder, 1978), using
the same subset of variables. The confusion matrices comparing these partitions with
the true labelling are reported in the second and third blocks of Table 5 respectively. We
notice that the ARI index computed on the optimal partition produced by the VI is equal
to 0.66. The same value is recorded for the clustering obtained by the minimisation of

16

Binder’s loss, but in this case the number of clusters increases to seven. For completness,
we implemented also the variable selection method of Raftery and Dean (2006) using
the R package clustvarsel (Scrucca and Raftery, 2018), ending up by chosing a subset
variables that coincides only partially with the one chosen by our method. The variables
selected now are: Malic, Proline, Flavanoids, Color, Dilution and Hue. Coherently with
the selection method, we fitted on this set of variables a finite Gaussian mixture via
maximum likelihood estimation. A clustering MMAP has been obtained by the MAP
method as in Fraley and Raftery (2002), using the R package mclust. The confusion
matrix comparing this clustering with the true labelling of sample items is reported in
the last block of Table 5. We still get a partition in four clusters, and again Barolo
and Bardolino are satisfactorily identified, whereas Grignolino is splitted over different
clusters (mainly over clusters 2 and 3). The ARI takes value 0.720, which represents a
slight improvement with respect to M̃. Table 6 reports the confusion matrix between M̃
and MMAP , which shows how similar the two partitions are (ARI = 0.85).

Bank note data. This data set (Flury and Riedwyl, 1988) consists of the measure-
ment of six variables made on 100 genuine and 100 counterfeit old Swiss bank notes. The
variables are: bank note length near the top, diagonal length, top margin width, bot-
tom margin width, left edge width and right edge width (all measurements are taken in
millimeters). The data are available in the R package mclust. Minimising the penalised
expected code length, we excluded the left and right edge width. The optimal partition
consists of three clusters: the former one, with 99 elements, coincides substantially with
the subset of genuine bank notes, whereas the subset of counterfeit bank notes is splitted
between the second (with 85 elements) and the third cluster (with 15 items). Using the
same variables, we computed the optimal partitions via the VI method and the minimi-
sation of Binder’s loss. The former coincides with the partition we have just described,
whereas the latter differs only for the presence of an additional cluster containing one
item. As in the previous example, we considered Raftery and Dean’s selection method,
obtaining a partition in four clusters which could not clearly identify the two subsets. All
these results are reported in Table 7.

5 Discussion

In this paper we have proposed a Bayesian nonparametric clustering based on the repre-
sentation of sample items as nodes of a weighted graph where edge weights are given by
the posterior pairwise similarities and on the minimisation of the expected description
length of a sutably defined random walk on such a graph. Exploiting the MCMC output,
we have shown that it is possible to quantify our state of uncertainty about the clustering.
Furthermore, we have defined a greedy search algorithm which, in a multivariate setting,
allows us to select a subset of variables which is better suited to cluster the sample items.
The results obtained on simulated and real data suggest that our proposal is competitive
with other recently introduced model based clustering methods.

In the examples we gave, we always considered continuous variables on which we
fitted Gaussian models with Dirichlet process priors. The base measure has always been
defined as a normal inverse Wishart distribution, with some hyperparameters estimated
by sample moments, under an empirical Bayes perspective. We made these choises just

17

to simplify the presentation, but here we stress that none of these restrictions is required
in order to implement our clustering method.

One last feature of our proposal is its applicability to Bayesian finite mixture models.

References

Aitkin, M. (2011). How many components in a finite mixture? In K. Mengersen,
C. Robert, and M. Titterington (Eds.), Mixtures: estimation and applications, pp.
123–144. John Wiley & Sons Inc, Chichester.

Antoniak, C. (1974). Mixtures of Dirichlet processes with applications to Bayesian non
parametric problems. Annals of Statistics. 2, 1152–1174.

Azzalini, A. and G. Menardi (2014). Clustering via Nonparametric Density Estimation:
The R Package pdfCluster. Journal of Statistical Software 57 (11), 1–26.

Binder, D. A. (1978). Bayesian cluster analysis. Biometrika 65 (1), 31–38.

Blackwell, D. and J. B. MacQueen (1973, 03). Ferguson Distributions Via Pólya Urn
Schemes. Ann. Statist. 1 (2), 353–355.

Blondel, V., J. Guillaume, R. Lambiotte, and E. Lefebvre (2008). Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Experi-
ment 2008, P10008,.

Csardi, G. and T. Nepusz (2006). The igraph software package for complex network
research. InterJournal Complex Systems, 1695.

Dahl, D. B. (2009). Modal Clustering in a Class of Product Partition Models. Bayesian
Analysis 4, 243–264.

Ferguson, T. S. (1973). A Bayesian analysis of some nonparametric problems. The annals
of statistics 1 (2), 209–230.

Flury, B. and H. Riedwyl (1988). Multivariate Statistics: A practical approach. London:
Chapman & Hall.

Fortunato, S. (2010). Community detection in graphs. Physics Reports 486 (3), 75 – 174.

Fraley, C. and A. Raftery (2002). Model-Based Clustering, Discriminant Analysis, and
Density Estimation. Journal of the American Statistical Association 97, 611–631.

Fritsch, A. and K. Ickstadt (2009, 06). Improved criteria for clustering based on the
posterior similarity matrix. Bayesian Anal. 4 (2), 367–391.

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models. Berlin:
Springer.

Frühwirth-Schnatter, S., B. Grün, , and G. Malsiner-Walli (2018). Comment on the paper
by Wade and Ghahramani. Bayesian Analysis 13 (2), 601–603.

18

Gordon, A. (1999). Classification (2nd ed.). Chapman & Hall/CRC Monographs on
Statistics & Applied Probability. CRC Press.

Griffin, J. E. and S. G. Walker (2011). Posterior Simulation of Normalized Random
Measure Mixtures. Journal of Computational and Graphical Statistics 20 (1), 241–259.

Hartigan, J. A. (1975). Clustering Algorithms. New York, NY, USA: John Wiley & Sons,
Inc.

Hubert, L. and P. Arabie (1985). Comparing partitions. Journal of Classification 2 (1),
193–218.

Ishwaran, H. and L. F. James (2001). Gibbs Sampling Methods for Stick Breaking Priors.
Journal of the American Statistical Association 96, 161–173.

Jain, S. and R. M. Neal (2007, 09). Splitting and merging components of a nonconjugate
Dirichlet process mixture model. Bayesian Anal. 2 (3), 445–472.

Jara, A. (2007). Applied Bayesian Non- and Semi-parametric Inference Using DPpackage.
R News 7 (3), 17–26.

Jara, A., T. Hanson, F. Quintana, P. Müller, and G. Rosner (2011). DPpackage: Bayesian
Semi- and Nonparametric Modeling in R. Journal of Statistical Software 40 (5), 1–30.

Kaufman, L. and P. Rousseeuw (1990). Finding Groups in Data: An Introduction to
Cluster Analysis. Wiley, New York.

Lau, J. W. and P. J. Green (2007). Bayesian Model-Based Clustering Procedures. Journal
of Computational and Graphical Statistics 16 (3), 526–558.

Lijoi, A. and I. Prünster (2010). Models beyond the Dirichlet process. In N. L. Hjort,
C. Holmes, P. Müller, and S. G. Walker (Eds.), Bayesian Nonparametrics, Cambridge
Series in Statistical and Probabilistic Mathematics, pp. 80–136. Cambridge University
Press.

Lovász, L. (1996). Random Walks on Graphs: A Survey. In D. Miklós, V. T. Sós,
and T. Szőnyi (Eds.), Combinatorics, Paul Erdős is Eighty, Volume 2, pp. 353–398.
Budapest: János Bolyai Mathematical Society.

McLachlan, G. and D. Peel (2000). Finite Mixture Models. New York: Wiley.

Medvedovic, M. and J. Guo (2004). Bayesian Model-Averaging in Unsupervised Learning
From Microarray Data. In BIOKDD, pp. 40–47.

Medvedovic, M. and S. Sivaganesan (2002). Bayesian infinite mixture model based clus-
tering of gene expression profiles. Bioinformatics 18, 1194–1206.

Meilă, M. (2007). Comparing clusterings — an information based distance. Journal of
Multivariate Analysis 98 (5), 873 – 895.

Neal, R. M. (2000). Markov Chain Sampling Methods for Dirichlet Process Mixture
Models. Journal of Computational and Graphical Statistics 9 (2), 249–265.

19

Papaspiliopoulos, O. and G. O. Roberts (2008). Retrospective Markov chain Monte Carlo
methods for Dirichlet process hierarchical models. Biometrika 95 (1), 169–186.

Raftery, A. E. and N. Dean (2006). Variable Selection for Model-Based Clustering.
Journal of the American Statistical Association 101 (473), 168–178.

Roeder, K. (1990). Density Estimation With Confidence Sets Exemplified by Superclus-
ters and Voids in the Galaxies. Journal of the American Statistical Association 85 (411),
617–624.

Rosvall, M., D. Axelsson, and C. Bergstrom (2009). The map equation. Eur. Phys. J.
Special Topics 178, 13–23.

Rosvall, M. and C. Bergstrom (2008). Maps of random walks on complex networks reveal
community structure. PNAS. 105, 1118–1123.

Rousseeuw, P. J. (1987). Silhouettes: A graphical aid to the interpretation and validation
of cluster analysis. Journal of Computational and Applied Mathematics 20, 53 – 65.

Scrucca, L., M. Fop, T. B. Murphy, and A. E. Raftery (2016). mclust 5: Clustering,
Classification and Censity Estimation Using Gaussian Finite Mixture Models. The R
Journal 8 (1), 205–233.

Scrucca, L. and A. E. Raftery (2018). clustvarsel: A Package Implementing Variable Selec-
tion for Gaussian Model-Based Clustering in R. Journal of Statistical Software 84 (1),
1–28.

Sethuraman, J. (1994). A constructive definition of Dirichlet priors. Statistica Sinica 4,
639–650.

Tyron, R. C. (1939). Cluster Analysis: Correlation Profile and Orthometric (factor)
Analysis for the Isolation of Unities in Mind and Personality. Edwards Brothers.

Wade, S. and Z. Ghahramani (2018). Bayesian Cluster Analysis: Point Estimation and
Credible Balls (with Discussion). Bayesian Analysis 13 (2), 559–626.

Walker, S. G. (2007). Sampling the Dirichlet Mixture Model with Slices. Communications
in Statistics - Simulation and Computation 36 (1), 45–54.

Yau, C. and C. Holmes (2011, 06). Hierarchical Bayesian nonparametric mixture models
for clustering with variable relevance determination. Bayesian Anal. 6 (2), 329–351.

Zubin, J. (1938). A technique for measuring like-mindedness. The Journal of Abnormal
and Social Psychology 33 (4), 508–516.

20

0.9
0.5

0.01
0.01

0.9

●
●●

●

●

1
23

4

5

Figure 1: Representation of the graph associated to the adjacency matrix in (2); M∗ is
given by the highlighted clusters.

21

α = 0.1

L(M)

7.5 8.0 8.5 9.0 9.5

0
2

4
6

8
10

(a)

α = 0.5

L(M)

7.5 8.0 8.5 9.0 9.5

0.
0

0.
5

1.
0

1.
5

(b)

α = 1

L(M)

7.5 8.0 8.5 9.0 9.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

1.
4

(c)

α = 10

L(M)

7.5 8.0 8.5 9.0 9.5

0
1

2
3

4
5

6

(d)

Figure 2: Histograms of the values taken by L(M) on 1000 random partitions of samples
of size n = 200 generated by a Dirichlet process for different values of the concentration
parameter α

22

●●●●●
●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●

●
●

●●

●

●

●

0 20 40 60 80

10
15

20
25

30
35

Index

ga
la

xy
 v

el
oc

iti
es

 (
10

00
 k

m
/s

ec
)

(a)

5 10 15 20 25 30 35

0.
00

0.
05

0.
10

0.
15

1000 km/sec
E

st
im

at
ed

 p
os

te
rio

r
de

ns
ity

(b)

Figure 3: (a) Galaxy data; (b) posterior estimate of the probability density function
with observations on the abscissae, different colours representing distinct clusters in the
optimal partition.

row

co
lu

m
n

20

40

60

80

20 40 60 80

0.0

0.2

0.4

0.6

0.8

1.0

(a)

●●●●
●
●●

●●

●●●
●●●●●

●●●●●●●
●●●●●●●●●●●●●

●●●●
●●●●

●●●
●●●●●●●

●●●●
●●●●●

●●●●●●
●●●●

●●
●

●●

●
●

●

1234
56

7

89

10111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576
77

7879

80
81

82

(b)

Figure 4: (a) Heat map representation of the posterior similarity matrix; (b) Graph
representation of the optimal partition.

23

●

●●●

●●●
●
●●

●●

●

●

●●●●●●●●●●●●●●●●●●

●●

●●●●●●●●●●●●
●
●●●
●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●●

●

●●
●
●●

●
●●● ●

6.5 7.0 7.5

0
10

0
20

0
30

0
40

0
50

0
60

0

L(M)

N
um

be
r

of
 v

is
its

 p
er

 p
ar

tit
io

n
cl

as
s

(a)

6.0 6.5 7.0 7.5

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L(M)

F
n(L

(M
))

(b)

Figure 5: (a) Number of visits of each equivalence class in the partition space. (b)
Posterior estimate of the cumulative distribution function of L(M). The red segments on
the abscissae represent the posterior percentiles of L(M) of order 5, 10, 25, 5, 75 and 95.

24

●●●●●
●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●

●
●

●●

●

●

●

0 20 40 60 80

10
15

20
25

30
35

L(M) posterior percentile of order 5 ARI = 1

Index

y

●●●●●
●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●

●
●

●●

●

●

●

0 20 40 60 80

10
15

20
25

30
35

L(M) posterior percentile of order 10 ARI = 0.938

Index

y

●●●●●
●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●

●
●

●●

●

●

●

0 20 40 60 80

10
15

20
25

30
35

L(M) posterior percentile of order 25 ARI = 0.783

Index

y

●●●●●
●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●

●
●

●●

●

●

●

0 20 40 60 80

10
15

20
25

30
35

L(M) posterior percentile of order 50 ARI = 0.522

Index

y

●●●●●
●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●

●
●

●●

●

●

●

0 20 40 60 80

10
15

20
25

30
35

L(M) posterior percentile of order 75 ARI = 0.288

Index

y

●●●●●
●●

●●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●●●

●●●●
●

●
●

●●

●

●

●

0 20 40 60 80

10
15

20
25

30
35

L(M) posterior percentile of order 95 ARI = 0.197

Index

y

Figure 6: Partitions corresponding to the 5th, 10th, 25th, 50th, 75th and 95th posterior
percentiles of L(M). Clusters are identified by different colours. For each partition the
ARI measures the agreement between the partition itself and M̃.

25

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

y1

y 2

 0.
02

 0.02

 0.02

 0
.0

2

 0.04

 0
.0

4

 0.04

 0
.0

4

 0.06

 0.06

 0
.0

6

 0.06
 0.08

 0.08

 0.08

 0.08

 0
.1

 0.1

 0.1

 0
.1

 0.12

 0
.1

2

 0.12

 0.12

 0.14

 0
.1

4

 0.16

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●
●

●

● ●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●
●

● ●
● ●

●

●

● ●
●●

● ●● ●

●

●

●

(a)

row

co
lu

m
n

50

100

150

50 100 150

0.0

0.2

0.4

0.6

0.8

1.0

(b)

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●●

●
1 2

3 4

5

67

8

9

10

11

12

13

14

15

16
17

18

19

2021

22

23

24

25

26

27

28

29

30

31

32
33

34
35

36

37

38

39

40

41

42

43

44

45
46

47

48
49

50
51

52

53

54

55

56

57

58
59

60

61

62 63

64

65

66 67

68

69

70

71

72

73

74

75

76
77

78

79

80

81

82

83

84

8586 87

88

89 90

91

92

93

94

95

96

97

98

99

100

101
102

103

104

105

106107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124
125

126

127

128

129

130

131

132

133
134

135

136

137

138139

140

141

142

143144

145
146

147

148

149

150

151

152

153

154

155

156

157158

159

160

161

162163

164

165

166

167

168169
170

171

172

173

174

175

176

177178

179

180

181

182

183

184

185

186

187
188

189

190

191 192

193

194

195

196

197

198199

200

(c)

6.40 6.45 6.50 6.55 6.60 6.65

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

L(M)

F
n(L

(M
))

● ●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●
●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●
●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●● ●●

●●●
●●
●●● ●●●

●●● ●● ●●●●●●● ●●●● ●● ● ● ●

(d)

Figure 7: (a) Simulated data discussed in Section 3.4 with posterior density estimate
contour levels superimposed. (b) Heat map representation of the pairwise posterior sim-
ilarity. (c) Graph representation of M̃. (d) Empirical cumulative distribution function
of the values of L(M) sampled from the posterior distribution via Gibbs sampling.

26

● ●

● ●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

−3 −2 −1 0 1 2 3

−
3

−
2

−
1

0
1

2
3

L(M) posterior percentile of order 95 ARI = 0.987

y1

y 2

Figure 8: Partition corresponding to the posterior 95th percentile of L(M) in the sim-
ulation discussed in Section 3.4. Clusters are identified by different colours, the black
square and the green diamond on the top right side represent two singleton clusters.

27

Y1

−
4

0
2

4

●

●●●

●

●

● ●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

● ● ●

● ●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●
●

●●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ● ●
●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

● ●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

● ●

●
●

●

●

● ●
●

●
●

●

●

●●

●

●● ●

●

● ●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

●●
●
● ●

●

●●
●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

−
4

0
2

4

●

●

●

●

●●

●

●
●

●

● ●●

●●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●
● ●

●

● ●
●

●

● ●
● ●●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

● ●●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●
●●

●
●
●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●●
●

●

●
●● ●

●

●

●
● ●

●●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

● ●● ●

●

●

●

●
●

●●

● ●

●

●
●

●

●
●

●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●●●
●

●●

●

●

●

●●

●
● ●●●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

● ●
● ●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

−15 −5 5

−
15

−
5

5
15

●

●●
●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ● ●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

● ●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

● ●
●

●
●
●

●●

●
●

●

●●
●

●

●

●

−4 0 2 4

●
●●

●

●
● ●

●
●

●
●

●

●

●

●●
●

● ●

●

●
● ●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●
● ●

●
●

●
●

●

●

●
● ●

●● ●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●●

●● ●

●

●

●

●
●

●

●

●

Y2

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

● ●
●

●
●

●

●

●●

●

●● ●

●

●●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

● ●
●

● ●

●

● ●
●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●● ●

● ●
●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●
●●

●

● ●
●

●

●●
●●●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●● ●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●●

●
●

●

●

●

● ●
●

●

●
●●●

●

●

●
●●
●●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●

●

●

●
●
● ●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

● ● ●
●

●●

●

●

●

●●

●
●●● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●
●

●

●

●
●

●

● ●

●

●

●

●

●

●●
●

●

●

●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

●●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●
●

●

●●

●
●

●

● ●
●

●

●

●

●
● ●

●

●
● ●

●
●

●
●

●

●

●

● ●
●

●●

●

●
●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

● ●

●

●
●

● ●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●
● ●

●
●

●
●
●

●

●
● ●

●● ●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●●
●

● ●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●●●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●
●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

● ●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●● ●
●

●
●

●●

●
●

●

●
●

●

●

●

●

Y3

●

●

●

●

●●

●

●
●

●

●● ●

●●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●
●●

●

●

●

●

●

●

●
●

●
●●

●

●●
●

●

●●
●●●

●
●●

●

●

●
●

●

●

●

● ●

●

●

●

●

●● ●
●●

●
●

●
●
●

●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●
●●

●
●

●

●

●

● ●
●

●

●
● ● ●
●

●

●
●●

●●

●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●●●●

●

●

●

●
●

●●

●●

●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●●

●

●

●

●●

●
●●● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●
●

●

●

●
●
●

● ●

●

●

●

●

−4 0 2 4

●

● ●
●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●●●

●
●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

● ●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●●
●
●

●
●

●●

●
●

●

● ●
●

●

●

●

−4 0 2 4

●
●●

●

●
● ●

●
●

●
●

●

●

●

●●
●

●●

●

●
●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

● ●

●

●
●

●●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●
●

●
●●

●
●

●
●

●

●

●
●●

● ●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●●●

●

●

●

●

●●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●
●

●

●
●

●●

●●●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

● ●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ● ●
●

●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●

● ●

●

●

●

●
●

●

●

●●

●
●

●

●

●●
●

●
●
●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●

●

●●
●

●●

●

● ●
●

● ●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

● ●
●

●

●
●

●

●

●

Y4

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●

●

●

●
●

● ●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ●●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

● ●●
●

● ●

●

●

●

●●

●
● ●●● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●
●

●●

●
●

●

●

●
●

●

● ●

●

●

●

●

●

●
●
●

●

● ●
●●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

●

●●
●

●

●

●
●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●● ●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

● ●

●

●
●

●

●

●

●

●●
●

●

●

●
●

●

●●

●●

●
●

●

●

●

●

●

●

●

●
● ●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●
●

●
●
●

●●

●
●

●

●●
●

●

●

●

●
●●

●

●
● ●

●
●

●
●

●

●

●

●●
●

●●

●

●
●●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●●

●

●
●

●●● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

● ●

●

●

●
●

●
●

●
● ●

●
●

●
●

●

●

●
●●
●●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

● ●●

●

●

●

●

●●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●
●●

●● ●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●

●
●

●●

●

●
●

●

●
●

●

● ●
●

●
●

●
●

●

●
●

●●

●
●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●● ●
●
●
●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

● ●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

● ●
●

●
●

●

●

●●

●

● ●●

●

● ●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

● ●
●

● ●

●

●●
●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●●

● ●
●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●
●●

●

● ●
●

●

●●
● ●●

●
● ●

●

●

●
●

●

●

●

● ●

●

●

●

●

●●●
● ●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●●

●
●
●

●

●

● ●
●

●

●
●●●

●

●

●
● ●

●●

●

●

●

Y5

−6 −2 2 6

●

●●
●

●

●

●
●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●● ●

●
●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●●

● ●
●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●●

●●

●
●
●

●

●

●

●

●

●

●
●●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●

●
●
●

●●

●
●

●

●●
●

●

●

●

−15 −5 5 15

−
15

−
5

5

●
●●

●

●
● ●

●
●
●

●

●

●

●

●●
●

● ●

●

●
● ●

●

●

●
●

●

●
●
● ●

●

●

●

●
●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●

●

●
●

●● ●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●

●

●

●
●

●●

●

●

●
●

●
●

●
● ●

●
●

●
●

●

●

●
● ●

●● ●

●
●

●

●

●
●
●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●
●

●

●● ●

●

●

●

●

●●
●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●● ●

●

●

●

●
●

●

●

●

●

●●●

●

●

●●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●
●

●●

●

●
●

●

●
●

●

●●
●

●
●

●
●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●
●
●

●
●

●●

●
●

●

●
●

●

●

●

●

−
4

0
2

4

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●
●

●
●

●
●

●

●
●

●

●●
●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●●

●
●

●

●

● ●
●

●
●

●

●

●●

●

●● ●

●

●●

●

●

●

●

●

●

●●

● ●
●

●

●

●

●

●

●

● ●
●

● ●

●

●●
●

● ●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●●●

●

●

●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●● ●

● ●
●

●

●
●

●

●
● ●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●

●

●

●

●

●

●
●

●
●●

●

● ●
●

●

●●
●●●

●
●●

●

●

●
●

●

●

●

●●

●

●

●

●

●● ●
●●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●
●●

●
●

●

●

●

● ●
●

●

●
● ●●

●

●

●
●●

●●

●

●

●

−
6

−
2

2
6

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●●

●

●

●

●
●
● ●

● ●

●

●
●

●

●
●

●

●

●

●

●

● ● ●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
● ●

●

●

●

●
●

●

●

●

●

●

●● ●
●

●●

●

●

●

●●

●
●●● ● ●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

● ● ●

●

●
●

●●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●●
●●

●

●

●

●

●●
●

●

●

●
●

●

●●

●

●

●

●

Y6

Figure 9: A simulated dataset

28

●

● ●

3 4 5

0.
6

0.
7

0.
8

0.
9

Number of clusters

A
R

I

Figure 10: Boxplot of the ARI conditioned on the number of identified clusters.

29

5 10 25 50 75 95
Code length percentile 6.14 6.17 6.29 6.65 7.02 7.27

Number of groups 3.00 3.00 5.00 5.00 8.00 12.00

Table 1: Number of groups corresponding to different code length percentiles.

Number of selected variables 2 3 4
Frequency 84 12 4

Table 2: Frequency of the number of selected variables in the simulation study of section
4.3.

Y2 Y3 Y6
Y2 0 45 0
Y3 33 0 5
Y6 0 17 0

Table 3: Frequency of pairs of variables appearing as first (rows) and second (columns)
selected ones in the simulation study of section 4.3.

Number of identified clusters 3 4 5
Frequency 2 87 11

Table 4: Frequency distribution of the number of identified clusters in the simulation
study of section 4.3.

Barolo Grignolino Barbera

M̃
ARI = 0.65

1 50 3 0
2 8 13 0
3 1 49 1
4 0 6 47

Wade and Ghahramani (2018)
ARI = 0.66

1 50 3 0
2 8 14 0
3 1 49 1
4 0 5 47

Binder (1978)
ARI = 0.66

1 50 3 0
2 1 13 0
3 7 0 0
4 1 48 1
5 0 5 47
6 0 1 0
7 0 1 0

Raftery and Dean (2006)
Scrucca et al. (2016)

ARI = 0.72

1 51 3 0
2 0 51 1
3 8 17 0
4 0 0 47

Table 5: Comparison of the clusterings produced by the different model based classifica-
tion methods applied on the wine data

30

MAP
1 2 3 4

M̃

1 52 1 0 0
2 0 2 19 0
3 2 48 1 0
4 0 1 5 47

Table 6: Comparison of the partitions obtained by our method (rows) and tha MAP
(columns).

Counterfeit Genuine

M̃
ARI = 0.648

1 0 99
2 85 0
3 15 1

Wade and Ghahramani (2018)
ARI = 0.648

1 0 99
2 15 1
3 85 0

Binder (1978)
ARI = 0.648

1 0 99
2 15 1
3 84 0

X4 1 0

Raftery and Dean (2006)
Scrucca et al. (2016)

ARI = 0.720

1 1 20
2 0 79
3 15 1
4 84 0

Table 7: Comparison

31

	Introduction
	Review
	The map equation
	Dirichlet process mixture model and some generalisations

	The clustering method
	Posterior similarity
	The map equation based on posterior similarity
	Quantifying uncertainty
	Two examples

	Multivariate data and variable selection
	Penalised code length
	The algorithm
	A simulation study
	Examples

	Discussion

