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SUMMARY

This paper presents a novel class of preconditioners for the iterative solution of the sequence of symmetric
positive-definite linear systems arising from the numerical discretization of transient parabolic and self-
adjoint partial differential equations. The preconditioners are obtained by nesting appropriate projections of
reduced-order models into the classical iteration of the preconditioned conjugate gradient (PCG). The main
idea is to employ the reduced-order solver to project the residual associated with the conjugate gradient
iterations onto the space spanned by the reduced bases. This approach is particularly appealing for transient
systems where the full-model solution has to be computed at each time step. In these cases, the natural
reduced space is the one generated by full-model solutions at previous time steps. When increasing the
size of the projection space, the proposed methodology highly reduces the system conditioning number
and the number of PCG iterations at every time step. The cost of the application of the preconditioner
linearly increases with the size of the projection basis, and a trade-off must be found to effectively reduce
the PCG computational cost. The quality and efficiency of the proposed approach is finally tested in the
solution of groundwater flow models. © 2016 The Authors. International Journal for Numerical Methods
in Engineering Published by John Wiley & Sons Ltd.
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1. INTRODUCTION

The numerical solution of three-dimensional (3D) parabolic partial differential equations (PDEs)
is a common task in several advanced engineering applications. Numerical discretization is typi-
cally performed via the method of lines combining finite element or finite difference techniques in
space with a time marching scheme. For self-adjoint problems this approach produces a sequence
of large size, sparse and symmetric positive definite (SPD) linear systems whose solution generally
constitutes the most time- and memory-demanding task in a transient simulation. The Precondi-
tioned Conjugate Gradient (PCG) scheme is typically the method of choice for the solution of such
systems, with several different general-purpose preconditioners already available to accelerate the
convergence [1]. Among the most traditional preconditioners employed for the solutions of SPD
systems, we mention here the Jacobi preconditioner and the Incomplete Cholesky factorization with
zero fill-in (IC0) [2–4]. These algebraic approaches can be easily implemented as a black box in the
discrete solver of the transient equation, because they are directly computed from the system matrix
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and do not depend upon the particular physics of the problem. However, general-purpose algebraic
preconditioners are not always the optimal choice for the specific case at hand, especially when
approximate solutions can be obtained at a relatively low computational cost. For example, several
authors [5–8] have explored the possibility of computing suitable preconditioners starting from a
simplification of the spatial differential operators governing the physical equations. In this paper,
we present a variation of this approach based on the use of model order reduction techniques.

Model order reduction methods, such as Proper Orthogonal Decomposition (POD), are
approaches designed to yield low-cost approximations to the solution of linear PDEs [9–13]. The
main underlying idea is the Galerkin projection of the PDE onto the space generated by a few
spatially distributed and linearly independent basis vectors (forward step). The resulting system of
linear ordinary differential equations has a low dimension, and its analytical or numerical solution
is available at a negligible computational cost. The backward projection of this low-dimensional
solution onto the high-dimensional full-model space (backward step) results in an approximation
of the solution of the original linear PDE. The expensive computation of the basis vectors typically
occurs offline, starting from a limited number of snapshots, that is, solutions of the full model at
given times. The accuracy and the efficiency of the reduced-model procedure depend on the num-
ber and quality of the basis vectors employed in the reduction. The addition of basis vectors reduces
the approximation errors, but increases the computational cost of the offline forward and backward
steps. Model order reduction techniques are frequently applied to obtain a fast solution to compu-
tationally complex and parameter-dependent problems such as model calibration [14, 15], Monte
Carlo simulations [16–18] and experimental design [19].

One of the main issues arising when applying model order reduction to transient problems is the
need of updating the basis functions during the transient simulation. In fact, the distance between
the space generated by the basis functions and the system solution might increase along the model
simulation, thus causing a deterioration in the quality of the reduced model. For this reason, model
order reduction techniques have been recently applied to improve the convergence of iterative meth-
ods. Markovinović et al. [20] employ the reduced-order model solution as initial guess for the
iterative method obtaining an acceleration of the convergence. Astrid et al. [21] show the benefits of
replacing the algebraic multigrid method with a two-stage iterative method based on a Constrained
Pressure Residual solver in combination with POD for the solution of a two-phase reservoir model.
Jiang [22] introduces a reduced-order model preconditioner in the stationary Richardson iteration.

The present paper describes how a POD model obtained from a few snapshots can be employed as
a preconditioner for the PCG algorithm in the solution of a transient diffusion PDE. The idea is based
on the fact that the POD solution resembles the full-model numerical solution. Hence, the applica-
tion of the POD operator can be regarded as an approximation of the application of the inverse of the
full-model matrix but in a smaller vector space. From this starting point, we derive a purely algebraic
approach by suitably projecting a small number of appropriate snapshots. The overall algorithmic
framework resembles from the classical two-grid procedure used in Algebraic Multigrid (AMG)
methods [23–25] where the system error arising from the application of a smoothing matrix is pro-
jected back and forth on a coarser level. In our procedure, the restriction and prolongation AMG
steps are replaced by the forward and backward POD operators at each PCG iteration. The resulting
algorithm is compared with standard general-purpose preconditioners in the solution of large-size
3D diffusion problems. Such an approach can be easily generalized to other applications governed
by similar PDEs.

2. PROBLEM EQUATIONS

The solution of a transient diffusion problem defined on a 3D domain � is governed in space and
time by the parabolic PDE

Ss.x/
@s.t; x/
@t

� r � ŒD.x/rs.t; x/� D f .t; x/; t 2 Œ0; T �; x 2 � � R3; (1)

where s 2 R is the unknown solution, Ss 2 R is a storage coefficient, D 2 R3�3 is the diffusion
tensor, and f 2 R represents the source/sink term. With no loss of generality, the initial solution
is s.0; x/ D 0 for any x 2 � with homogeneous boundary conditions, that is, s.t; x/ D 0 for x in
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the Dirichlet boundary �D and D.x/rs.t; x/ � n.x/ D 0 for x in the Neumann boundary �N , where
n 2 R3 is the outward unit normal.

We use the method of lines to solve Equation (1). Spatial discretization is obtained by Galerkin
finite elements with piecewise linear basis functions using a grid formed by n nodes and r tetrahedral
elements to discretize the domain �. Other discretization methods can be used, such as higher
order or mixed FEM, finite volumes/differences, or pseudo-spectral methods, without changing the
purpose and results of the present study. All these approaches entail solving a system of first order
differential equations that can be written as follows:

H sCM
d s
dt
C q D 0 (2)

whereH 2 Rn�n is the SPD stiffness matrix,M 2 Rn�n is the (possibly lumped) mass matrix with
strictly positive elements, s 2 Rn is the vector of unknowns, and q 2 Rn represents the discretized
forcing term. Using a backward Euler time marching scheme, the vector sjC1 at the .j C 1/-th time
step is obtained by solving the linear system:�

H C
M

�tjC1

�
sjC1 D

M

�tjC1
sj � q (3)

where �tjC1 D tjC1 � tj is the variable integration step in time.
The solution sjC1 can be also obtained as sjC1 D sj C yjC1, where yjC1 is the correction with

respect to the previous step. From (3), yjC1 is the solution of the system:�
H C

M

�tjC1

�
yjC1 D �H sj � q: (4)

At any time step the system (4) can be rewritten as

Au D f (5)

where the system matrix A reads

A D

�
H C

M

�tjC1

�
; (6)

and the solution and right-hand side vectors are u D yjC1 and f D �H sj � q, respectively.
The matrix A 2 Rn�n is SPD, sparse, and typically with a large size, so that the use of the

PCG method is virtually mandatory. The choice of the preconditioner is a decisive factor for the
efficiency and the convergence rate of PCG. Here, we propose a preconditioner based on a model
order reduction of system (4).

3. PROJECTION-BASED REDUCED ORDER MODELS

In model order reduction methods the solution vector sjC1 is approximated by the vector QsjC1 2 Rn

obtained as a linear combination of a small set of accurately chosen basis vectors p1; : : : ;pm 2 Rn

with m << n, plus a reference solution s� (e.g., Vermeulen et al. [26]):

sjC1 � QsjC1 D s� C
mX
iD1

pia
jC1
i D s� C P ajC1 (7)

where P 2 Rn�m is the matrix P D Œp1; : : : ;pm� and ajC1 2 Rm is the coefficient vector at time

step j C 1, ajC1 D
h
a
jC1
1 ; : : : ; a

jC1
m

iT
. Hence, given P , the m coefficients a1; : : : ; am are the

only unknowns to be determined at every time step, while the basis vectors can be computed in an
offline stage. Note that the full spatial variability of the solution is described by the basis vectors
p1; : : : ;pm. The computation of the coefficient vector ajC1 is performed using a Galerkin projection
onto the space P D span¹p1; : : : ; pmº. To this aim, the solution sjC1 in (3) is replaced with the
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approximation QsjC1 given in (7) and the resulting residual QrjC1 is orthogonalized with respect to
the basis vectors pi . In other words, the following Galerkin problem is solved:

Find QsjC1 2 s� C P; such that QrjC1 ? P

We set the reference solution equal to the solution at the previous time step, s� D sj , that is,

yjC1 � QyjC1 D P ajC1 (8)

so that the innovation vector QyjC1 D QsjC1 � sj 2 P . The resulting reduced (m �m) linear system
becomes

QAQa D Qf; (9)

where

QA D

�
P THP C

P TMP

�tjC1

�
; Qa D ajC1; Qf D P THP aj � P T q;

with matrix QA being SPD because both H and M are so. If m � n, the solution of (9) by a direct
method is computationally inexpensive. Equation (9) is addressed as the Reduced Order Model
(ROM). In contrast, we denote as Full System Model (FSM) system (4) in the full-dimensional
space.

The construction of the orthogonal basis vectors pi is the most important and computationally
expensive task of the model order reduction procedure. The basis vectors are typically computed
from a set of full-model system solutions, called snapshots. Let Y 2 Rn�´ be the matrix of ´
snapshots, Y D Œyr1 ; : : : ; yr´ �, where ri , i D 1; : : : ; ´ are the time steps at which the solutions are
collected. In the POD approach, the basis vectors are the m eigenvectors corresponding to the m
largest eigenvalues of the matrix Y Y T [13, 26]. This procedure resembles the Principal Component
Analysis and for this reason the basis vectors are also called principal components. Alternatively, the
Reduced Basis approach [14, 27] proposes a different set of basis vectors. Given a ROM of size l <
m, the Reduced Basis method increments the space P by a Gram–Schmidt orthogonalization of the
snapshot that maximizes the error between FSM and ROM, following a standard greedy algorithm.
The error between FSM and ROM is typically evaluated using a posteriori error estimations. In both
cases, the ROM quality and computational efficiency depends upon the number of basis vectors used
in the reduction. The employment of a small number of basis vectors may jeopardize the accuracy
of the reduced-model solution and a compromise between cost and accuracy must be achieved. In
this work, we restrict ourselves to the POD method for its simplicity and computational efficiency
when applied to parabolic problems.

4. ROM-BASED PRECONDITIONER

The objective of preconditioning an SPD linear system by K�1 is to reduce the condition number
� associated to the system matrix A, that is, �.K�1A/ << �.A/. This accelerates, or in finite
precision even allows for, the convergence of the PCG method with the aim of reducing the overall
computational cost. To comply with this task, the preconditioning matrix K�1 should be such that
K�1A is spectrally close to I , although preserving a large sparsity to render its application to a
vector computationally efficient.

With the ROM approach the solution of system (5) is approximated by (7), that is,

u � Qu D P QA�1Qf � P QA�1P T f: (10)

This means that P QA�1P T can be regarded as a low-rank approximation of A�1. However, simply
settingK�1 D P QA�1P T is not viable as this matrix has rankm < n and thus prevents the expansion
of the Krylov subspace beyond dimension m. To avoid this problem, the following approach can
be used. Any PCG iteration requires one application of the preconditioning matrix for computing
e D K�1r, r being the current residual of system (5). This can be regarded as an approximation of
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the error associated to the current solution u. Our idea is to apply the reduced-order model for the
computation of e. From an algebraic point of view, the ROM approach can be regarded as restricting
the space Rn to a subspace of sizem, finding the exact solution in Rm and prolongating the reduced
solution back to Rn. This is very similar to a two-grid correction using an AMG approach. To find
an approximate solution of the linear system Av D w, the classical algorithm for a two-grid AMG
step runs as follows.

(1) Perform �1 applications of a smoother, S , to the native system Av D w:

vkC1 D .I � SA/vk C Sw; k D 1; : : : ; �1:

The smoother S is typically an operator that applies a stationary iteration, for example, Jacobi
or symmetric Gauss–Seidel for SPD problems.

(2) Compute the residual r after �1 iterations of the smoother, r D w � Av�1 .
(3) Apply the restriction operator P T to project r into the reduced space of dimension m, Qr D

P T r.
(4) Compute the error in the reduced space, Qe D QA�1 Qr.
(5) Apply the prolongation operator P to extend Qe to the larger space, e D P Qe.
(6) Update the solution obtained after the smoothing iterations (point 1.) with e.
(7) Perform �2 applications of S starting from the last corrected solution. If �1 D �2, the overall

preconditioner is symmetric.

This procedure is summarized in Algorithm 1. A first preconditioner can be derived from this
algorithm by setting �1 D �2 D 1 and v0 D 0. In this case, we have

v D .2I � SA/SwC .I � SA/P QA�1P T .I � SA/T w (11)

and the matrix

G�1m D 2S � SAS C .I � SA/P
QA�1P T .I � SA/T (12)

is an approximation ofA�1 that can be used as a preconditioner in the PCG algorithm. The subindex
m indicates the dependence of the preconditioner on the selected number of basis vectorsm. If both
A and S are SPD, so is G�1m . Moreover, consistency is ensured as in the limit of m ! n we have
that P QA�1P T ! A�1 and

lim
m!n

G�1m D 2S � SAS C A
�1 � 2S C SAS D A�1:

The application of this preconditioner, however, can be quite expensive, depending on the choice
of the matrix S . A way to reduce the computational cost can be turning off the post-smoothing
step in Algorithm 1, that is, setting �2 D 0 to reduce the number of matrix-vector products. If

Algorithm 1 Two-grid AMG algorithm for the solution of Av D w
1: Set �1, �2, v0, S , and P
2: for k D 0; 1; : : : ; �1 � 1 do
3: vkC1 D .I � SA/vk C Sw
4: end for
5: r D w � Av�1
6: Qr D P T r
7: Qe D

�
P TAP

��1
Qr

8: e D P Qr
9: v�1  v�1 C e

10: for k D �1; : : : ; �1 C �2 � 1 do
11: vkC1 D .I � SA/vk C Sw
12: end for
13: v D v�1C�2
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smoothing is unbalanced, it is well known that the preconditioner becomes non-symmetric, and the
standard convergence theory of PCG is no longer valid. However, nonsymmetric preconditioning
of the PCG algorithm does not always prevent convergence [28–31]. In particular, Bouwmeester
et al. [32] have recently proved that turning off post-smoothing in a V-cycle AMG preconditioner
causes the loss of the PCG global optimality property, but convergence is still ensured because
the method is locally optimal, that is, the residual norm keeps decreasing during the iterations not
slower than the Preconditioned Steepest Descent method. From a computational point of view, this
approach can be advantageous if the PCG convergence is preserved with a cheaper cost for the
preconditioner application.

If we set �1 D 1, �2 D 0, and v0 D 0, Algorithm 1 now reads

v D SwC P QA�1P T .w � ASw/; (13)

so that matrix

K�1m D S C P
QA�1P T .I � AS/ (14)

is another approximation of A�1 that can be used as a preconditioner. We denote K�1m in (14)
as the ROM preconditioner, and matrix S is called support matrix for the ROM preconditioner.
As support matrix, we elect to use either the diagonal Jacobi matrix or the incomplete Cholesky
factorization with IC0, although other choices are obviously possible. Consistency of K�1m in (14)
is trivially still ensured. Although K�1m is non-symmetric, the convergence of PCG is guaranteed
under non-restrictive assumptions with a number of iterations bounded by the number of iterations
of S -preconditioner PCG. To see this, we write the ROM-preconditioned matrix as follows:

K�1m A D SAC P QA�1P TA � P QA�1P TASA D SACR .I � SA/ D I �ESEP (15)

where R D P QA�1P TA and

ES D I � SA (16)

EP D I �R (17)

Matrices ES and EP can be regarded as error matrices measuring the quality of S and P QA�1P T

as approximations of A�1. The eigenvalues of the preconditioned matrix are therefore

�.K�1m A/ D 1 � �.ESEP / (18)

and their distance from the unity is bounded by
ˇ̌
�.K�1m A/ � 1

ˇ̌
D j�.ESEP /j 6 kESk kEP k (19)

As already observed, matrix P QA�1P T is the prolongation in Rn�n of the ROM matrix QA�1 2
Rm�m. Thus, matrix R 2 Rn�n is of rank m and the eigenvalues of EP can be written as follows:

j�.EP /j D

²
1 with multiplicity n �m
	i i D 1; : : : ; m

(20)

If the reduced-order model is a good approximation of the full-system model, we expect the non-
zero eigenvalues of R to be close to 1, so that 	i � 0. Assuming that this is true, then kEP k D 1

and inequality(19) reads
ˇ̌
�.K�1m A/ � 1

ˇ̌
6 kESk (21)

which shows that, under the earlier assumption, the spectral properties of K�1m A are not worse
than SA.
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Algorithm 2 Application of the ROM preconditioner: v D K�1m w
1: Set S and P
2: Q D AP
3: QA D P TQ
4: v D Sw
5: Qr D P TwCQT v
6: Qe D QA�1 Qr
7: e D P Qe
8: v vC e

4.1. Computational cost of the preconditioner application

In this section, we analyze the computational cost associated with the application and construction
of the ROM preconditioner. For the computation of the reduced-order matrix, it is useful to define
the projected matrix Q D AP D QH CQM=�tkC1, Q 2 Rn�m, where QH D HP 2 Rn�m and
QM D MP 2 Rn�m. Given that QH and QM do not depend on the time step, they are computed
at the beginning of the simulation. The preconditioning matrix (14) can be also written as follows:

K�1m D S C P
QA�1

�
P T �QTS

�
(22)

The application of (22) to a vector w consists of the following operations (Algorithm 2).

(1) Application of the support matrix S

v D Sw: (23)

The cost of this operation depends on the choice of S . For example, if S is the Jacobi precon-
ditioner, the cost is one scalar product of Rn. Instead, using IC0 as support matrix, the cost
of (23) is 
 scalar products, where 
 is the average number of non-zero entries in each row
of A, that is, a measure of its sparsity.

(2) Application of matrices P T and QT

Qr D P TwCQT v: (24)

The cost is equal to 2m scalar products.
(3) Computation of the error in the low-dimensional space

Qe D QA�1 Qr (25)

As the size m is much smaller than n, it does not effect the overall computational cost of the
preconditioner application. The cost for computing Equation (25) is O.m3/ and negligible.

(4) Prolongation to the large dimension m

e D P Qe: (26)

The cost is equal to m scalar products.
(5) Final computation of v by a vector update

v vC e: (27)

The additional cost incurred by the application of the ROM preconditioner with respect to the
application of the support matrix S alone is equal to 3m scalar products. Recalling that each PCG
iteration involves 7 scalar products and one matrix-vector product, which costs 
 scalar products,
the total computational cost of each ROM-preconditioned PCG iteration is .8 C 
 C 3m/ scalar
products if S=diag.A/�1, or .7C2
C3m/ scalar products if S=IC0. For example, withm D 7 and

 D 14 each iteration performs twice the number of scalar products of the standard PCG with IC0.
With smaller values of m, say 1 or 2, the additional cost due to the use of the ROM preconditioner
is almost negligible.

© 2016 The Authors. International Journal for Numerical
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As already observed, the ROM preconditioner of Equation (14) is not symmetric. To restore the
symmetry and the global PCG optimality at a smaller cost than using Equation (12), the following
variant of the ROM preconditioner can be used:

K�1S;m D S C P
QA�1P T �

P QA�1QTS C STQ QA�1P T

2

D S C P QA�1
�
P T �

1

2
QTS

�
�
1

2
STQ QA�1P T :

(28)

Notice that K�1S;m arises from a purely algebraic symmetrization of K�1m and does not restore
the symmetry of the underlying two-grid cycle. We name K�1S;m the Symmetric ROM (SROM) pre-
conditioner. To avoid the double application of S at every iteration, it is useful to compute the
matrix STQ 2 Rn�m, at the beginning of every time step. The computational cost of the SROM
preconditioner (28) increases by m scalar products with respect to the ROM preconditioner of
Equation (14).

Table I summarizes the number of scalar products for each iteration of the PCG algorithm with
different combinations of the preconditioner. The cost of a ROM-preconditioned PCG iteration is
1 C 3m

7C2�
times more expensive than a PCG iteration in the case of S D IC0. Thus, the proposed

methodology is more convenient for computational grids with high values of 
 , because the relative
cost of the ROM-preconditioned PCG iterations decreases with 
 .

4.2. Basis vectors and preconditioner construction

The application of K�1m and K�1S;m requires the computation of the following:

(1) the m basis vectors (matrix P );
(2) the reduced model matrix, QA D P TAP ;
(3) the matrices QH and QM ;
(4) the support matrix S .

Once P is known, steps 2 and 3 are well defined. The construction of the support matrix S is a
standard operation in PCG. Thus, we focus next on two possible procedures for the computation of
the basis vectors.

4.2.1. Snapshot technique. Using the idea of POD [9], the reduced-order model is constructed
employing as basis vectors the principal components of a set of ´ snapshots, that is, the set obtained
collecting the full-model solutions at ´ time steps. We represent this set as Y D Œyr1 ; : : : ; yr´ �. The
basis vectors p1; : : : ; pm are the eigenvectors corresponding to the largest eigenvalues of the matrix
Y Y T 2 Rn�n. This eigenvalue analysis is performed in the reduced dimension computing the
eigenvalues/eigenvectors of the matrix Y T Y 2 R´�´. With this approach the matrix P is evaluated
offline. Also matrices QH D HP , QH D P TQH , QM D MP and QM D P TQM are computed
offline with a computational cost of 2m � .
 C 1/ scalar products. The reduced-order matrix QA is
then inexpensively computed for any time step as QA D QH C QM=�t . An example of the dominant
eigenvectors in a diffusion problem can be found in [33].

Table I. Number of scalar products per iteration
of the PCG using the ROM/SROM preconditioners

with either S D diag.A/�1 or S D IC0.

S D diag.A/�1 S D IC0

PCG 8C 
 7C 2

ROM PCG 8C 
 C 3m 7C 2
 C 3m
SROM PCG 8C 
 C 4m 7C 2
 C 4m

IC0, Incomplete Cholesky factorization; PCG, pre-
conditioned conjugate gradient; ROM, Reduced Order
Model; SROM, Symmetric Reduced Order Model.

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2017; 109:1159–1179
DOI: 10.1002/nme



A ROM-BASED PRECONDITIONER FOR TRANSIENT DIFFUSION PDES 1167

This procedure requires the solution of the full-system model at the times of the snapshots,
entailing a possibly large computational effort for the offline phase. To reduce this cost, in many
applications, the snapshots are collected only at the beginning of the temporal simulation, for
example, as in Vermeulen et al. [26], but this approach does not guarantee that the snapshots are
representative of the full-model solution for the rest of the simulation. Siade et al. [13] proposes an
optimal distribution of the snapshots times during the simulation, thus avoiding the computation of
the full-system model at each time step. In this work, POD is based on the set of all snapshots evalu-
ated by the full model during the transient simulation over the entire time interval. This approach is
obviously computationally expensive but produces an optimalm-th order reduced model that is used
as benchmark preconditioner. In fact, given the optimality of the POD basis [9], the ROM solution
obtained using POD on the full set of snapshots Y minimizes the error

P´
jD1 ky

j � Qyj k.

4.2.2. Updated basis vectors. The classical collection of the snapshots in the offline procedure
is useful when the final goal is to replace the full system model with the reduced-order model.
However, since in our case the reduced-order model is used for preconditioning purposes, the FSM
solution is available at every time step. This suggests that the space generated by the basis vectors,
P , may be augmented at every time step with the newly available FSM solution. At the time tj , the
new FSM solution yj is added to the previously computed basis vectors P j�1 D Œp1; : : : ;pj�1�
and orthogonalization is achieved through the modified Gram–Schmidt method. In this procedure,
the basis vectors are computed online, with a computational cost of j scalar products at every
time step tj . Since at every time step we only add a new basis vector, the reduced-order matrix
QH j D P j;THP j (or QM j D P j;TMP j ) is simply computed inserting the vector P j;THpj (or
P j;TMpj ) and its transpose as the j -th column and row, respectively, of the matrix QH j�1 (or
QM j�1).

To control the maximum number of basis vectors employed in the reduction, m, when j > m the
orthonormalization procedure is applied only to the m basis vectors pj�mC1; : : : ;pj . The reduced-
order matrix QH j (or QM j ) is obtained discarding the first row and column of matrix QH j�1 (or QM j�1)
and then inserting P j;THpj (or P j;TMpj ) and its transpose as the m � th column and row. The
computation of Qj

H D HP
j and Qj

M DMP
j proceeds in the same way.

Algorithm 3 Updated basis vectors
1. Set m and S
2. P 0 D Œ �, QH 0 D Œ �, QM 0 D Œ �
for j D 1; : : : ; m do

3. Compute yj with PCG
4. pj D yj and orthonormalize with respect to P j�1

5. P j D ŒP j�1;pj �
6. QH j

1Wj�1;1Wj�1 D
QH j�1 ; QH

j
W;j D P

j;THpj ; QH
j
j;W D

QH
j;T
W;j

7. QM j
1Wj�1;1Wj�1 D

QM j�1 ; QM
j
W;j D P

j;TMpj ; QM
j
j;W D

QM
j;T
W;j

end for
for j D mC 1; : : : do

8. Compute yj with PCG
9. pj D yj and orthonormalize with respect to Œpj�mC1; : : : ; pj�1�
10. P j D Œpj�m; : : : ;pj �
11. QH j

1Wm�1;1Wm�1 D
QH
j�1
2Wm;2Wm ; QH

j
W;m D P

j;THpj ; QH
j
m;W D QH

j;T
W;m

12. QM j
1Wm�1;1Wm�1 D

QM
j�1
2Wm;2Wm ; QM

j
W;m D P

j;TMpj ; QM
j
m;W D QM

j;T
W;m

end for

Algorithm 3 summarizes the main operations necessary to compute the updated principal com-
ponents. The reduced-order model constructed with this update procedure is based only on the m
full-model solutions computed at the previous time steps. It is expected that these basis functions
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are better suited to extrapolate the solution at tj with respect to the global basis vectors computed
with the principal components evaluated on the whole set of snapshots.

In what follows, we use a fixed maximum number m of basis vectors so as to assess its influence
on the solver efficiency. In real applications, however,mmay be adaptively changed in time accord-
ing to the transient solution. Markoninović et al. [20] use a similar algorithm for updating the basis
vectors of the reduced-order model, which is then used to evaluate the initial guess for PCG.

5. NUMERICAL RESULTS AND DISCUSSION

As a test problem, we consider the transient diffusion taking place in a 3D domain with horizontal
dimension 100�100 m2 and 20 m depth. The synthetic domain is characterized by the two materials
M1 and M2 shown in Figure 1a. Material M1 is located at the top (from 0 to 5 m depth) and
at the bottom (from 15 to 20 m depth) of the domain. The diffusion coefficients in material M1
are Dx D Dy D 5:0 m/d, D´ D 10�4 m/d. Material M2 constitutes the central layer of the
domain (from 5 to 15 m depth) and has the following properties: Dx D 10�7 m/d, Dy D 103 m/d,
D´ D 1:0 m/d. The domain is characterized by a homogeneous storage coefficient (Ss D 0:1 m�1).
The extreme values of the anisotropy are used to yield a severe ill-conditioning in the linear systems
that will be used to test the behavior of the proposed preconditioner.

A homogeneous Dirichlet condition is prescribed at the boundaries x D 0 m and x D 100 m.
No-flux condition is assumed on the other four boundaries. A sink is located at the center of the
domain (x D y D 50 m, ´ D �10 m) with a withdrawal rate of 500 m3/d. With these conditions,
the system reaches the steady state in about 104 days.

To explore the performance of the ROM preconditioner with respect to the system size, we con-
sider four test cases (TC1–TC4) with different spatial discretizations of the domain. The mesh of
TC1 has n D 1880 nodes and r D 8520 tetrahedral elements (Figure 1a). The associated system
matrix has 13,149 non-zero elements with an average 
 D 12:98 non-zero entries per row. TC2–
TC4 are obtained by regularly refining the grid used in TC1, with the total number of nodes that
increases up to 755,073 in TC4.

A final test case (TC5) considers the same spatial discretization as TC4 and a fully-heterogeneous
distribution of the diffusion coefficientD (Figure 1b).Dx is obtained from a realization of a second-
order random field with lognormal distribution (Y D ln.Dx/, mean�Y D �3:70 log(m/d), standard

Figure 1. Horizontal and vertical sections of the spatial distribution of the diffusion coefficientD and of the
discretizations of the domain used in the first test case (TC1) (panel (a)) and the fifth test case (TC5) (panel

(b)). The dark and light gray colors in TC1 (a) correspond to materials M1 and M2, respectively.
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deviation sdY D 2:44 log(m/d)) and exponential covariance function (correlation length �x D
�y D �´ D 5 m). Larger values are imposed in the central layers of the domain to obtain a realistic
preferential flow pattern. The diffusion in each grid element is horizontally isotropic (Dy D Dx)
and anisotropic along the vertical direction (D´ D Dx=50). The main properties of the five test
problems are summarized in Table II.

The numerical results are obtained using IC0 as support matrix for the construction of both the
ROM and SROM preconditioners. Moreover, we consider two sets of possible basis vectors, that
is, either the vectors arising from the principal component analysis (PCA) on the snapshots or
those obtained with Algorithm 3. Quite intuitively, the use of a different support matrix does not
qualitatively modify the results that will be presented in the sequel.

5.1. Reduced order model

The reduced-order model constructed performing the PCA on the set of snapshots can significantly
reduce the computational cost of the full system model, as it considers a problem with sizem << n.
However, the use of few basis functions may lead to large errors in the system resolution (e.g.,
Pasetto et al. [17]). Recent techniques have been advanced to assess how many basis vectors should

Table II. Properties of the 3-D grids used in TC1-TC5.

TC1 TC2 TC3 TC4 TC5

Nodes, n 1,880 13,149 97,937 755,073 755,073
Tetrahedra, r 8529 68,160 545,280 4,362,240 4,362,240
Non-zeros 13,149 97,937 755,073 5,928,065 5,928,065
Sparsity, 
 12.98 13.89 14.41 14.70 14.70
Diffusion D zones M1, M2 heterogeneous

TC1, first test case; TC2, second test case; TC3, third test case; TC4, fourth test case; TC5, fifth test case.

Figure 2. 2-Norm of the error between the Reduced Order Model and the Full System Model solutions at
every time step. Results for the first test case (TC1), second test case (TC2) and third test case (TC3).
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be considered in the reduced model by relating the norm of the residual to the associated error
[14, 16].

In our application of the reduction strategy in the preconditioner for the PCG, first we have to
assess how many basis vectors are needed to obtain a prescribed accuracy. Figure 2 shows the
Euclidean norm of the errors between the ROM and the FSM solutions at different times for m D
¹1; 2; 5; 10; 20; 30º. As expected, the error decreases when we increase the number of basis vectors.
Moreover, the ROM is particularly accurate when the system approaches the steady state, that is, for
large values of time, independently of the number of basis vectors. This means that the steady state
solution is well captured also with a small value of m. However, at the beginning of the transient
phase the ROM error does not decrease when more than 20 basis vectors are employed, suggesting
that further improvements of the ROM accuracy are difficult to obtain.

5.2. Condition number and PCG convergence

Let us investigate the effectiveness of the ROM preconditioner by analyzing the condition number
of the preconditioned matrix. Figure 3 compares the condition numbers ofK�1A, using the IC0 and
the SROM preconditioners withm D ¹1; 10; 30º. For the sake of simplicity and with no loss of gen-
erality, the results are presented only for the smallest test case TC1. Note that the ill-conditioning
is more severe for larger values of the time-step size, which in our simulations is increased geomet-
rically as time progresses. The SROM preconditioner reduces the condition number more than IC0
using both the PCA of snapshots and the updated basis vectors, and especially for large time values.
The condition number of SROM with m D 30 is more than two orders of magnitude smaller than
the condition number obtained with IC0. In Figure 3a the projection matrix P corresponds to the
principal components of the snapshots collected at each time step. As a consequence, the condition
number is only slightly dependent on the time step size when using a large number of basis vectors
(m D ¹10; 30º), meaning that the basis vectors display a global optimality. In Figure 3b the projec-
tion matrix P is updated at each time step as described in Algorithm 3. In this case, the reduction
on the condition number is less effective than in Figure 3a at the beginning of the simulation, that

Figure 3. Comparison between the condition numbers associated to the preconditioned system matrix using
the Incomplete Cholesky (IC0) preconditioner and the Symmetric Reduced Order Model preconditioner.
The basis vectors arise from the principal component analysis (PCA) on the snapshots (Panel a) and from

Algorithm 3 (Panel b). Results for the first test case.
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Figure 4. Comparison between the complete set of eigenvalues of the preconditioned system matrix K�1A
using the identity matrix I , Incomplete Cholesky (IC0) and Symmetric Reduced Order Model with different
values of m as preconditioners. The basis vectors arise from the PCA on the snapshots (snap) or from

Algorithm 3 (upd). Results for the first test at the 30th time step.

is, when only few basis vectors are available. However, after few time steps, the updated basis vec-
tors seem to be much more suited for the construction of the SROM preconditioner because they
provide a significant reduction of the condition number. Notice that in this case, increasing m over
10 is still effective, while it is not with the PCA.

To explore the efficiency of the proposed algorithm in the PCG convergence, we stored the system
matrix and the preconditioner at the 30th time step of the simulation (time t � 1500 d), that is,
when 30 basis vectors have been collected for the construction of the SROM preconditioner with
m D 30. Figure 4 depicts the total set of the eigenvalues of matrices A and K�1A using IC0
and the SROM preconditioners. As expected, the application of the preconditioner has a significant
impact in the reduction of the largest eigenvalues of A, and thus in the reduction of the conditioning
number. The main difference between the IC0 and SROM preconditioners is the magnitude of the
smallest eigenvalues, that are larger for the SROM preconditioning matrix than for IC0, resulting in
an overall eigenvalue distribution closer to 1. This clustering effect, which is already present with
m D 1, is more pronounced when a larger number of basis vectors are employed in the construction
of the SROM preconditioner (e.g., m D 30), and when these vectors are updated with Algorithm 3
(upd). This property of the SROM preconditioner is fundamental for the fast convergence of the
PCG, as highlighted in Figures 5 and 6.

Figures 5 shows the PCG convergence results in terms of error and residual of a linear system
with an assigned right hand side (obtained from the IC0 simulation at the 30th time-step). The small
dimension of the model in TC1 allowed us to solve the system by a direct method at the machine
precision, thus computing the errors at each PCG iteration. In Figure 5, we can see that IC0 requires
several iterations before decreasing the residual norm and achieving asymptotic conditions. Both
panels (a) and (b) show that the PCG convergence with the SROM preconditioner is significantly
faster than IC0, especially in the initial iterations. For example, after about 15 iterations, the error
norm using the SROM preconditioner with m D 30 is about 10�9 while with IC0, it is several
orders of magnitude larger (� 10�3). This beneficial behavior is due to the increase of the smallest
eigenvalues of the preconditioned matrix with respect to IC0 (Figure 3). We can also notice that
asymptotically, the convergence rate is roughly similar for the IC0 and SROM preconditioners.
Similar conclusions are obtained analyzing Figure 6, which shows the PCG convergence profiles of
the residual norm at the 30th time step of TC1, TC2, and TC3.

It is well known that the PCG convergence rate is faster when the solution error is orthogonal to a
large number of eigenvectors of the preconditioned system matrix. To further investigate the reasons
of the SROM behavior, in the following, we consider the scalar products among the eigenvectors of

© 2016 The Authors. International Journal for Numerical
Methods in Engineering Published by John Wiley & Sons Ltd.

Int. J. Numer. Meth. Engng 2017; 109:1159–1179
DOI: 10.1002/nme



1172 D. PASETTO, M. FERRONATO AND M. PUTTI

Figure 5. Convergence profile of the system error (left) and residual (right) 2-norms at the 30th time step for
the first test case. Comparison between the Incomplete Cholesky (IC0) and the Symmetric Reduced Order
Model preconditioners. The basis vectors arise from the principal component analysis on the snapshots

(snap) or from Algorithm 3 (upd). PCG, preconditioned conjugate gradient.

Figure 6. Convergence profile of the system residual at the 30th time step. Comparison between the Incom-
plete Cholesky (IC0) and the Symmetric Reduced Order Model preconditioners. The basis vectors of the
Symmetric Reduced Order Model preconditioner arise from Algorithm 3. Note that the x-scales are different

in the three test cases. TC1, first test case; TC2, second test case; TC3, third test case.
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Figure 7. Values of rk;j for the first 40 preconditioned conjugate gradient (PCG) iterations using the Incom-
plete Cholesky (IC0) (panels (a) and (c)) and Symmetric Reduced Order Model (SROM) preconditioner
(panels (b) and (d)) withm D 30. Panels (a) and (b) show the scalar products associated to the three smallest
eigenvalues ofK�1A. Panels (c) and (d) show the scalar products associated to the three largest eigenvalues

of K�1A.

the preconditioned matrix and the iteration error. We indicate with rk;j the scalar product between
the j -th eigenvector associated to the eigenvalue �j and the error at iteration k. Figure 7 shows
the values of rk;j for the first 40 iterations of the PCG using IC0 and SROM preconditioner with
m D 30. In these iterations, the PCG preconditioned with IC0 seeks a solution whose error is mainly
orthogonal to the eigenvectors associated with the largest eigenvalues (j D 1878; 1879; 1880).
Instead, the error produced by the use of the SROM preconditioner seems to rapidly get orthogonal
to the complete set of eigenvectors, with both large and small eigenvalues.

Figure 8 shows the number of eigenvectors that are approximately orthogonal to the error at each
iteration, in the sense that rk;j < 10�15. With IC0 the initial error is orthogonal only to a small
number of eigenvectors. This number increases significantly only after 90 iterations, that is, when
the PCG reaches the asymptotic convergence. Slightly larger numbers are recorded when the SROM
preconditioner with m D 1 is employed. When using a large number of basis vectors (m D 30) or
the updated basis vectors (Algorithm 3), the PCG errors result immediately orthogonal to a sizeable
number of eigenvectors of the preconditioned matrix.

5.3. Computational cost

To generalize previous results to the complete transient simulation, Figure 9 depicts the number of
PCG iterations necessary to achieve convergence at every time step in the TC2, TC3, and TC4 test
cases. The results are presented for an exit PCG tolerance � D 10�6 on the relative residual norm.
For the sake of brevity, in the following, only the results associated to the updated basis vectors are
presented, as this strategy appears to be more favorable and easier to be applied in practice because
it does not require an expensive offline stage.

Figure 9 shows that the convergence rate of the SROM preconditioner outperforms IC0 in all
test cases. Using few basis functions (m D ¹1; 2º), the number of iterations of SROM is up to
2/3 that of IC0, while with a large number of basis functions (m D ¹20; 30º) this ratio becomes
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Figure 8. Number of scalar products rk;j which are smaller that 10�15 at each preconditioned conjugate
gradient iteration. IC0, Incomplete Cholesky.

Figure 9. Number of iterations of the preconditioned conjugate gradient at every time step using the Incom-
plete Cholesky (IC0) and the Symmetric Reduced Order Model preconditioner. The basis vectors of the
Symmetric Reduced Order Model preconditioner are generated by Algorithm 3. TC2, second test case; TC3,

third test case; TC4, fourth test case.

1/3 in TC3 and 1/8 in TC4. This suggests that the SROM preconditioner reduces the number of
PCG iterations also employing a small number of basis vectors (m D ¹1; 2º), that is, at a relatively
marginal computational cost.

As discussed in Section 4.1, the computational cost of the application of the SROM preconditioner
increases with the number of basis vectors. We indicate with nSROM and nIC0 the total number of
scalar products per time step using the SROM and the IC0 preconditioners, respectively. Figure 10
shows the relative cost cr of SROM with respect to IC0, that is, cr D .nSROM � nIC0/=nIC0. A
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Figure 10. Relative cost cr of the Symmetric Reduced Order Model preconditioner with respect the Incom-
plete Cholesky (IC0) in terms of number of scalar products per time step. The basis vectors of the Symmetric
Reduced Order Model preconditioner arise from Algorithm 3. TC2, second test case; TC3, third test case;

TC4, fourth test case.

negative value for cr means that the PCG preconditioned with SROM is less expensive than with
IC0. The results obtained show that for the majority of time steps, the SROM preconditioners are
computationally advantageous with respect to IC0. The SROM performance is slightly different
in test cases TC2, TC3, and TC4 and depends upon the number of basis vectors employed in the
projection. In TC2 the SROM preconditioner appears to be more competitive with few basis vectors,
reducing the number of scalar products up to 30% for several time steps. In TC3, the use of the
SROM preconditioner reduces the computational cost up to 50% with m D 10 and 45% with m D
1. In TC4 the best preconditioners have m D 30 basis vectors with a maximum gain of 60% at time
t D 100 d. The proposed algorithm proved to be more expensive than the IC0 approach at few time
steps only, with the maximum loss of 20% computed with m D 30 in TC2. Finally, note that the
SROM preconditioner with m D 1 consistently outperformed IC0 in all the test cases.

Tables III, IV, and V summarize the results of the numerical simulation showing the total relative
cost C of the new preconditioners with respect to IC0 in the complete transient simulation, that is,

C D

P�
nR � nIC0

�
P
nIC0

: (29)

where nR is either nSROM or nROM . The value of C does not include the cost of updating the basis
vectors as it is negligible with respect to the cost of a PCG iteration (as described in Section 4.2.2).
Table III shows the total relative costs of the SROM preconditioners for test cases TC2, TC3 and
TC4 and for two values of the tolerance on the residual norm (� D 10�6 and � D 10�10). The results
do not show a clear trend with the increase of m and the size of the domain. This is probably due
to an amplification of the errors in maintaining the orthogonality relationships characteristic of the
PCG iteration, which typically slow down the convergence. We can see that the largest reductions
of the computational costs are achieved in TC4 (m D 20 and 30 and � D 10�6) with advantages
higher than 40%. The SROM preconditioners always outperforms IC0 with the tolerance � D 10�6,
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Table III. SROM preconditioner: total relative cost C (Equation (29))
during the complete simulation. The basis vectors arise from Algorithm 3.

� D 10�6 � D 10�10

TC2 TC3 TC4 TC2 TC3 TC4

m D 1 �0:22 �0:25 �0:24 �0:09 �0:10 �0:09
m D 2 �0:17 �0:19 �0:17 �0:03 �0:04 �0:02
m D 5 �0:14 �0:10 �0:10 0:06 0:04 0:08
m D 10 �0:17 �0:28 �0:08 0:13 �0:01 0:12
m D 20 �0:07 �0:29 �0:45 0:33 0:26 0:08
m D 30 �0:04 �0:23 �0:44 0:35 0:31 0:09

SROM, Symmetric Reduced Order Model; TC2, second test case; TC3, third
test case; TC4, fourth test case.

Table IV. ROM preconditioner: total relative cost C (Equation (29))
during the complete simulation. The basis vectors arise from Algorithm 3.

� D 10�6 � D 10�10

TC2 TC3 TC4 TC2 TC3 TC4

m D 1 �0:20 �0:24 �0:25 �0:10 �0:12 �0:10
m D 2 �0:16 �0:19 �0:20 �0:07 �0:08 �0:06
m D 5 �0:17 �0:16 �0:16 0:06 �0:03 0:01
m D 10 �0:24 �0:35 �0:18 0:09 �0:10 0:01
m D 20 �0:15 �0:36 �0:48 0:18 0:09 �0:1
m D 30 �0:09 �0:31 �0:48 0:21 0:14 �0:08

ROM, Reduced Order Model; TC2, second test case; TC3, third test case; TC4,
fourth test case.

Table V. Total relative costC (Equation (29)) in TC5. ’n.c.’ means
that the PCG solver could not achieve convergence (� D 10�6).
The basis vectors arise from Algorithm 3. Note that the rela-
tive cost of the Jacobi preconditioner (diag.A/�1) is about 10
times the cost of IC0 in this application, so the ROM-based

preconditioners are highly improving the Jacobi performance.

SROM ROM SROM ROM
S D IC0 S D IC0 S D diag.A/�1 S D diag.A/�1

m D 1 �0:14 �0:16 0:49 0:43
m D 2 �0:08 �0:11 0:69 0:58
m D 5 0:11 n.c. 1:25 n.c.

IC0, Incomplete Cholesky; PCG, preconditioned conjugate gradient;
TC5, fifth test case; ROM, Reduced Order Model; SROM, Symmetric
Reduced Order Model.

while this is not the case with tolerance � D 10�10, that is actually rarely required in practical
applications. This is a direct consequence of the particular convergence profiles associated to the
SROM preconditioners, as shown in Figure 6. However, note that the results obtained with m D 1
and 2 are always reducing the costs of IC0 in all the explored test cases.

Table IV is the same as Table III but for the non-symmetric ROM preconditioner. At a first glance,
we can see that the savings obtained with the ROM preconditioner are slightly larger that those of
SROM. This is due to the fact that the per-iteration cost of PCG with the ROM preconditioner is m
scalar products lower than the analogous cost of PCG with SROM. Although the ROM precondi-
tioner is non-symmetric, in these applications it can be more convenient from a computational point
of view.
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Finally, Table V reports the results obtained in the fully heterogeneous scenario TC5 with tol-
erance � D 10�6. In this case, the new preconditioner is competitive with IC0 when using few
basis vectors. We can see that both the ROM and SROM preconditioners improve the computa-
tional costs by about 15% with m D 1 and 10% with m D 2. The ROM preconditioner seems to be
slightly more efficient than the SROM for m D 1 and m D 2. Note that convergence of the ROM-
preconditioned PCG is not achieved for larger values ofm. This is due to the fact that the PCG with
this non-symmetric preconditioner is more prone to errors related to numerical round-off, and the
global optimality is lost. Table V also shows the computational costs associated to the ROM and
SROM preconditioners when using the Jacobi preconditioner as support matrix (S D diag.A/�1).
We can see that this procedure is never competitive with respect to IC0, increasing the costs of 49%
with m D 1. Remembering that the application of the Jacobi preconditioner can be efficiently par-
allelized while IC0 cannot, the combination of the SROM with Jacobi preconditioner and parallel
computing represents a potentially promising alternative to IC0 to obtain a fast solution to large-size
SPD linear systems. Similarly, an almost perfectly parallel implementation is also expected when an
approximate inverse is used as support matrix, for example, as those proposed in [34–36] for SPD
linear systems.

6. CONCLUSIONS

The present work proposes a new class of preconditioners based on the POD technique for the effi-
cient PCG solution of SPD linear systems arising from the numerical discretization of parabolic
PDEs. Starting with a suitable support matrix (e.g., Jacobi preconditioner or IC0), the new precon-
ditioning strategy uses the forward and backward projection steps of POD in each PCG iteration,
with the goal of improving the spectral properties of the preconditioned system matrix. The new
preconditioner has a non symmetric (ROM preconditioner (14)) and a symmetric version (SROM
preconditioner (28)). Although under unrestrictive assumptions both versions guarantee conver-
gence of the underlying PCG method, iterations employing the ROM preconditioner are less
expensive than those employing SROM, but are more sensitive to the propagation of round-off
errors. The choice of the projection space for the POD reduction and its dimension (m) are of cru-
cial importance for the methodology. Two possible strategies are considered for the construction of
suitable spaces: the snapshot technique, which is largely used with POD and computes the principal
components of the complete collection of model solutions, and an updating algorithm (Algorithm 3),
which continuously updates the projection space with the model solutions computed in the last few
time steps. The performance of the new preconditioners are compared with respect to the perfor-
mance of the support matrix alone, IC0 in this case, in terms of reduction of condition number of the
preconditioned matrix, total number of PCG iterations to achieve convergence, and computational
cost. Five test cases with different grid sizes and parameter distributions are considered to verify the
performance and robustness of the developed technique at varying degree of ill-conditioning.

Numerical results prompt the following major conclusions.

� The condition number of the SROM preconditioned matrix is significantly reduced with respect
to the condition number of the IC0 preconditioned matrix, both for the optimal reduced space
preconditioner calculated using snapshots collected during the entire transient simulation or
when POD is based on the full-model solutions calculated at the m previous time steps. This
entails a faster orthogonalization of the PCG error with respect the eigenvectors associated to
the small eigenvalues of the preconditioned matrix, strongly improving the convergence of the
PCG during the initial iterations.
� Although the number of PCG iterations decreases using ROM and SROM preconditioners with

respect to IC0 in all the considered scenarios, the computational cost of the new precondi-
tioner increases with m and a trade-off is necessary. The application of the SROM and ROM
preconditioners is therefore suggested with small values of m. In our test cases, the perfor-
mance was optimized for m D1 or 2, where the system solver was always more efficient than
IC0-preconditioned conjugate gradient.
� The proposed preconditioner is particularly suited for parallel computing, because the for-

ward and backward projections only involve matrix-vector products. The application of the
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preconditioner becomes totally parallel when also the support matrix S can be applied directly,
for example, when S is the Jacobi preconditioner. This can be highly effective in reducing the
computational burden of transient PDEs. In fact, the cost of the numerical solution of the lin-
ear system on a serial computer for a spatially heterogeneous diffusion coefficient (TC5) using
the SROM preconditioner with m D 1 or 2 together with the Jacobi support matrix is compa-
rable with the analogous cost of the IC0-PCG. Important improvements can be expected in a
parallel environment.
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