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Abstract

The Biosphere 2 Landscape Evolution Observatory (LEO) has been developed to investigate hydrological, chemical,1

biological, and geological processes in a large-scale, controlled infrastructure. The experimental hillslopes at LEO2

are instrumented with a large number of different sensors that allow detailed monitoring of local and global dynamics3

and changes in the hydrological state and structure of the landscapes. Sensor failure, i.e., a progressive reduction in4

the number of active or working sensors, in such an evolving system can have a dramatic impact on observability of5

flow dynamics and estimation of the model parameters that characterize the soil properties. In this study we assess the6

retrieval of the spatial distributions of soil water content and saturated hydraulic conductivity under different scenarios7

of heterogeneity (different values of correlation length of the random field describing the hydraulic conductivity)8

and a variable number of active sensors. To avoid the influence of model structural errors and measurement bias,9

the analysis is based on a synthetic representation of the first hydrological experiment at LEO simulated with the10

physically-based hydrological model CATHY. We assume that the true hydraulic conductivity is a particular random11

realization of a stochastic field with lognormal distribution and exponential correlation length. During the true run,12

we collect volumetric water content measurements at an hourly interval. Perturbed observations are then used to13

estimate the total water storage via linear interpolation and to retrieve the conductivity field via the ensemble Kalman14

filter technique. The results show that when less than 100 out of 496 total sensors are active, the reconstruction of15

volumetric water content may introduce large errors in the estimation of total water storage. In contrast, retrieval of16

the saturated hydraulic conductivity distribution allows the CATHY model to reproduce the integrated hydrological17

response of LEO for all sensor configurations investigated.18
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Hydraulic conductivity; Richards’ equation

1. Introduction19

Determination of the number and location of sensors needed to monitor a real-world hydrological process is a20

classical problem in experimental design, where the best compromise between maximum amount of information and21

minimum number of sensors is sought (e.g., [1, 2]). In this framework, an aspect that is rarely taken into consideration22

is that sensors may fail during long-term experiments, thereby putting at risk the observability of the system since it23

may not always be possible to replace broken sensors. The lifetime of sensors is thus a crucial unknown in experiments24

of long duration, and it becomes important to be able to predict how the information obtained from the active sensors25

changes over time as the sensor network deteriorates.26

This is the premise for the present study, which is based on the setup of the Landscape Evolution Observatory27

(LEO) of the Biosphere 2 facility near Tucson, Arizona. The three synthetic, controlled hillslopes at LEO were28

constructed with the aim of improving our predictive understanding of the coupled physical, chemical, biological,29

and geological processes at Earth’s surface in changing climates [3]. Each hillslope is 30 m long and 11.15 m wide30

and has an average slope of 10 degrees. The 1 m deep soil consists of basaltic tephra, ground to homogeneous31

loamy sand texture. For the first years of LEO operation, vegetation is not present and the research is focused on the32

characterization of the hydrological response of the hillslopes in terms of water transit times, generation of seepage33

and overland flow, internal dynamics of soil moisture, and evaporation. The second part of the experiment envisages34

the presence of plants growing on the hillslopes and aims to monitor the oxygen and carbon cycles inside LEO, as35

well as the impact of vegetation on the spatial distribution of soil water content and on changes in the soil hydraulic36

properties [4, 5].37

To monitor these processes, each hillslope is equipped with a dense network of soil sensors (496 locations) that38

measures volumetric water content (496 sensors), soil water potential, and soil temperature. These local observations39

of the internal state of the soil are combined with measurements of the global system response, such as the total40
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weight of the infrastructure (and thus the water storage), the rate of irrigation/evaporation, and the water outflow at41

the seepage face. Finally, geochemical analysis of irrigation water, soil water, and seepage outflow are available to42

monitor solute transport processes along the hillslopes.43

As sensors fail, the number of active sensors, m, will decrease in time. For example, assuming that the time of44

failure of a sensor, t f , follows a Gamma distribution with shape parameter α and rate parameter β, the probability that45

a sensor is working at time t is46

Pw(t) = P(t f > t) = 1 −
∫ t

0
g(τ;α, β) dτ (1)47

where g( · ;α, β) is the probability density function (pdf) of the Gamma distribution. With the further assumption that48

the times of failure of the sensors are independent and identically distributed random variables, the number of active49

sensors at time t has a binomial distribution with parameters p = Pw(t) and n = 496, and the expected value of active50

sensors at time t is E[m] = np. Figure 1 shows the probability of the lifetime of a sensor, Pw(t), for two possible51

combinations of parameters α and β (the expected value of the failure time in this example is E[t f ] = α/β = 10 years).52

In this study we assess the impact of the number of active sensors on the observability of the LEO hillslopes.53

The physically-based hydrological model CATHY [6] is employed to numerically simulate the water dynamics on54

the LEO landscapes. CATHY couples a finite element solver of the Richards equation for subsurface flow developed55

by Paniconi and Putti [7] with a surface routing scheme developed by Orlandini and Rosso [8]. Surface flow occurs56

along a conceptual channel network derived from the digital elevation model (DEM) of the landscape [9], and the57

coupling between the surface and subsurface modules is resolved via a boundary condition-based partitioning of the58

atmospheric inputs into soil infiltration and land surface ponding. To account for heterogeneities in the LEO soil [10],59

we represent the saturated hydraulic conductivity as a three-dimensional random field with a lognormal probability60

distribution and an anisotropic exponential covariance function.61

We use two different approaches to quantitatively assess the information associated with the network of active62

sensors of volumetric water content. In the first approach we are interested in knowing if LEO’s sensor network63

allows us to accurately retrieve the spatial and temporal distribution of the water content in the entire landscape. To64

assess the accuracy of the retrieval, we compare the integral of the computed water content over the entire domain with65

the measured variation of water storage in the landscape. In the second approach we assess the sensor network’s ability66
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Figure 1: The probability of a sensor being active at time t for two distributions of failure time. The two red circles along each horizontal line give,

for each distribution, the time at which the number of active sensors is expected to have dropped to the indicated value of E[m]. For instance, the

expected value of active sensors is 46 (E[m] = Pwn = 0.093 × 496) after 17 y for the blue distribution and after 23.8 y for the green distribution.

4



to allow retrieval of the saturated hydraulic conductivity of the soil, a critical parameter for numerical modeling of67

the future hydrological experiments at LEO. To account for parameter and measurement uncertainties, the ensemble68

Kalman filter (EnKF) [11–14] is used to compute the posterior probability distribution of the saturated hydraulic69

conductivity. EnKF performs a Gaussian approximation of sequential Bayesian inversion, thereby extending the70

Kalman filter to nonlinear models. The evolution in time of the state pdf is simulated using a Monte Carlo (MC)71

technique. The ensemble of model solutions is associated with random realizations of the unknown parameters. These72

MC realizations are then used in the update step to compute the covariance matrices required in the Kalman filter. Due73

to its straightforward implementation and its computational efficiency [15], EnKF is largely employed in engineering74

applications for measurement assimilation in real time. Moreover, since EnKF seeks a probability distribution of the75

parameters, this approach reduces the issues associated with non-uniqueness of the solution that typically occurs in76

inverse problems (e.g, [16]).77

One of the major drawbacks of the EnKF technique is the so-called ensemble inbreeding (i.e., the strong reduction78

of the ensemble variance after few updates). For this reason, Drecourt et al. [17] and De Lannoy et al. [18] suggest79

that it is important to ensure that the ensemble spread is large enough at the assimilation time. Recent enhancements80

to the EnKF technique for estimation of two-dimensional stochastic parameters include introduction of a damping81

parameter [19] to reduce ensemble inbreeding, and covariance localization to clean the ensemble covariance matrices82

of spurious terms [20, 21]. Sun et al. [22, 23] combine EnKF with grid-based localization and Gaussian mixture83

model clustering techniques to estimate a multimodal parameter distribution. Panzeri et al. [24] couple EnKF with84

the ensemble moment equation of the transient groundwater flow equation to circumvent the MC simulation. Alzraiee85

et al. [25] compare centralized and decentralized fusion to invert the measurements generated with different pumping86

tests. Amongst applications of EnKF for estimating the spatial distribution of parameters in three-dimensional hydro-87

logical models, Chen and Zhang [26] showed that EnKF provides a satisfactory estimation of the three-dimensional88

hydraulic conductivity field assimilating measurements of pressure head in a synthetic example of saturated flow.89
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Figure 2: Digital elevation model of the surface of the hillslope domain Ω and the locations ~x1, . . . , ~xm of the m=496 sensors of water content,

installed at five different depths d.

2. Problem representation90

We represent the hillslope (the three LEO hillslopes are identical) as a three-dimensional domain Ω with the DEM91

depicted in Figure 2 and a 1 m deep soil. The bottom of the hillslope, the two side boundaries (the edges along the92

y axis in Figure 2), and the upslope boundary are impermeable, while the downslope boundary (at y=0 m, hereafter93

denoted by Γ) is the outflow face, and is modeled as a seepage face boundary condition. Let θ(t, ~x) be the soil water94

content [−] at a time t [T ] at a point ~x = (x, y, z) ∈ Ω. Given a spatial distribution of θ at a reference time t0=0 (initial95

condition), rainfall and evaporation boundary conditions are imposed at the surface, and θ responds according to this96

forcing term and to the soil hydraulic properties.97

The dense sensor network allows the system to be monitored every 15 minutes from the reference time t0 (times ti98

with ti − ti−1=15 min). To test the procedure with a known distribution of water content, in this study we consider the99

following synthetic measurements generated with the numerical model CATHY:100

1. The outgoing water volume VΓ at the seepage face Γ [L3],101

VΓ(ti) =

∫ ti

ti−1

∫
Γ

KS (~x) · ∇ψ(t, ~x) · ~nΓ(~x) d~x dt (2)102

where ψ is the pressure head, Ks is the saturated hydraulic conductivity tensor [L/T ], and ~nΓ is the outward103

normal vector at Γ.104
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2. The water storage VΩ [L3], computed as the time variation of the total weight PΩ of the LEO infrastructure105

measured by 10 load cells:106

VΩ(ti) =

∫
Ω

θ(ti, ~x) d~x = VΩ(t0) + γ(PΩ(ti) − PΩ(t0)) (3)107

where γ is the specific weight of water.108

3. The measurements of the soil water content yo
i =

{
θo(ti, ~xo

j )
}496

j=1
at 496 sensors (5TM Decagon probes). The109

sensor locations, ~xo
1, . . . , ~x

o
496, are distributed at 5 depths within the domain (0.05, 0.20, 0.35, 0.50, and 0.85 m)110

as shown in Figure 2.111

These measurements are subject to error. Measurement error on VΓ and VΩ is modeled as a multiplicative random112

noise ε with a lognormal distribution, ξ ∼ LogN, unitary expected value, E[ξ] = 1, and coefficients of variation cvVΓ
113

and cvVΩ
for VΓ and VΩ, respectively. For example:114

Vo
Ω(ti) = VΩ(ti)ξ(ti), (4)

where Vo
Ω

is the observed storage, VΩ is the real storage and115

log(ξ(ti)) ∼ N(−0.5log(1 + cv2
VΩ

), log(1 + cv2
VΩ

)). (5)

This approach, suggested by Camporese et al. [27], guarantees the positivity of the perturbed measurements.116

The volumetric water content measurement error is modeled as an additive Gaussian process with mean 0 and117

variance σ2
θ , according to the calibration of the sensors:118

θo(ti, ~xo
j ) = θ(ti, ~xo

j ) + ε j(ti), (6)

with119

ε j(ti) ∼ N(0, σ2
θ)). (7)

Note that the perturbed measurements lower than the residual moisture content, θr [L3/L3], or higher than the saturated120

moisture content, θs [L3/L3], are corrected to the range limits.121

Considering only the measurements of volumetric water content, the internal observability of the system depends122

on the number of active sensors m and on their spatial distribution σm, where σm is a possible selection of m sensors123
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among the initial 496 sensors. The number of possible combinationsσm is the binomial coefficient of Newton


496

m

.124

This is a huge number (e.g.,


496

446

 ≈ 1069,


496

21

 ≈ 5 · 1036). To take into account the influence of the spatial125

distribution of the m sensors in light of the impossibility of considering all possible combinations, we conduct the126

sensor failure analysis over a fixed number r of random distributions σm,1, . . . , σm,r.127

We propose two methodologies to assess the critical number of active sensors, m∗, that might compromise the128

observability of the LEO system. In the first approach we employ the measurements of volumetric water content129

to evaluate the spatial distribution of θ over the entire domain, thus providing an estimate of the total storage of130

the system. In the second approach, the measurements are employed for the calibration of the saturated hydraulic131

conductivity in a numerical model of LEO.132

3. Estimation of volumetric water content133

Local measurements of water content allow us to infer the water content θ̃(ti, ~x) at any point ~x ∈ Ω by interpolation.134

To ensure monotonicity between the measured values, here we compute θ̃(ti, ~x) with linear interpolation135

θ̃(ti, ~x) =

m∑
j=1

θo(ti, ~xσm,r( j))φσm,r( j)(~x) (8)136

where φσm,r( j)(~x) are piecewise linear interpolation functions such that φσm,r( j)(~xl) = δσm,r( j),l. The functions φσm,r( j) are137

defined on the Delaunay triangularization associated with the location of the active sensors. The water content outside138

the convex hull delimited by the sensors is approximated with linear extrapolation and eventually corrected to the139

physical limits [θr, θs]. The subscript i in (8) refers to the measurement time, and σm,r( j) indicates the j-th sensor140

among the m active sensors in the combination σm,r.141

A simple control to check the reliability of the estimated water distribution at a time ti consists in comparing the142

estimated water volume, ṼΩ(ti) =
∫

Ω
θ̃(ti, ~x) d~x, with that measured by the load cells VΩ(ti). If the estimated water143

volume ṼΩ(ti) falls outside the 90% confidence interval of the measure, then the distribution of sensors σm,r is not144

trustworthy for the estimation of water content in Ω.145
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3.1. Numerical model146

The CATHY (CATchment HYdrology) model [6] has been developed for simulation of water dynamics in catch-147

ments and hillslopes. The model solves the three-dimensional Richards equation describing the dynamics of pressure148

head ψ in variably saturated porous media:149

S w(ψ)S s
∂ψ

∂t
+ θs

∂S w(ψ)
∂t

= ∇ ·
[
KsKr(S w(ψ)) (∇ψ + ηz)

]
+ q (9)150

where S s is the aquifer specific storage coefficient [L−1], S w = θ/θs is the saturation [L3/L3], Kr is the relative151

hydraulic conductivity [-], ∇ is the gradient [1/L], and ηz = (0, 0, 1)T , with z the vertical coordinate directed upward152

[L]. The term q represents source/sink fluxes [L3/L3T ] internal to the domain Ω or forcing terms that control the153

fluxes along the domain boundary ∂Ω .154

Retention curves establish a one-to-one relationship between the pressure head ψ and the water content θ (hystere-155

sis is not considered in this work). The characteristics of the porous media, such as the pore size distribution np [-]156

and the pore entry suction 1/α [L], determine the local shape of these curves. Here the van Genuchten curves [28] are157

employed to model the water content and the relative hydraulic conductivity Kr as a function of ψ:158

θ(ψ) =


θr +

θs − θr
(1 + (α|ψ|)np )mp if ψ < 0,

1 if ψ ≥ 0;
(10)159

160

Kr(ψ) =


√

1 + (α|ψ|)np (1 − (1 − θ(ψ) − θr
θs − θr

)mp )2 if ψ < 0,

1 if ψ ≥ 0;
(11)161

where mp = 1 − 1/np. If saturation or infiltration excess runoff occurs, CATHY couples the Richards equation solver162

with a one-dimensional diffusion wave approximation of the Saint-Venant equation for overland flow routing. The163

mass balance at the surface/subsurface interface is enforced by a boundary condition switching algorithm described164

in [6].165

CATHY can simulate the main outputs measured at LEO, such as the seepage face outflow VΓ, the water storage166

VΩ, and, in case of overland flow, the hydrograph at the outlet of the landscape.167
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3.2. State space model168

After discretizing the domain Ω with n nodes and e tetrahedral elements, the numerical solution of equation (9) is169

obtained by way of the finite element method (FEM) with piecewise linear basis functions [6]. The time-integration is170

performed with the backward Euler method combined with Picard or Newton iterations. To simplify the notation, in171

the following the CATHY state-space model is described considering only the subsurface processes. A more general172

notation should include in the state vector also the surface discharge and the ponding water volumes, as described173

by Pasetto et al. [29]. We indicate with174

xi = {ψk(ti)}nk=1 (12)175

the numerical solution, i.e., the vector of pressure heads ψk at the location of the grid nodes at time ti. The state176

vector of the model, xi, can be formally expressed as a nonlinear function, F , of the pressure head xi−1 at the previous177

observation time, of the forcing term qi−1, and of the vector γ representing the soil properties (in our case the saturated178

hydraulic conductivity KS ):179

xi = F (xi−1, qi−1,γ) . (13)180

The vector181

yi =
{
θ(ti, ~xo

σm( j))
}m

j=1
(14)182

collects the numerical observations of the water content. This vector is a nonlinear function H of the state vector xi,183

described through the van Genuchten relation (10):184

yi = H (xi,γ) . (15)185

Equations (13) and (15) define the state-space model for the numerical simulations with CATHY.186

4. Estimation of saturated hydraulic conductivity187

The numerical simulation of LEO using CATHY with adequate initial and boundary conditions results in the188

computation of θ on the entire domain Ω, and thus represents an alternative to the estimation of water content via189

interpolation of the measurements. A key issue in the use of distributed models such as CATHY is the identification190

of the model parameters that allow us to correctly describe the system and retrieve the measurements. In this context191
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the sensor network is fundamental for calibration of the numerical model and improving the forecast of the system192

state variables.193

4.1. Data assimilation for inverse problems194

The large number of sensors in LEO is useful in an inverse modeling framework, i.e., to infer the spatial distribu-195

tion of the soil hydraulic properties to be adopted in equations (9), (10), and (11). The inverse problem can be stated196

as follows: find the parameter vector, γp, that minimizes the objective function given by the squared error between197

the observed and the simulated measurements:198

γp = arg min
γ∈K

iF∑
i=1

‖yi − yo
i ‖

2 (16)199

where iF is the total number of measurement times in the inversion experiment and K is the search space where200

we look for the optimal solution. The numerical minimization of such an objective function is impractical for large201

state-space models and mainly depends on the dimension of the search space K .202

As an alternative, we consider sequential data assimilation methods (filtering) for parameter estimation [12, 30].203

Starting from a prior pdf of the parameters, p0(γ), the joint pdf of the state variables and the parameters is sequentially204

updated each time that an observation becomes available (assimilation time). Using the Bayes formula we obtain205

pa(xi,γi |
{
y j

}i

j=1
) = CL(yi | xi,γi)p f (xi,γi |

{
y j

}i−1

j=1
) (17)206

where pa and p f are the analysis and forecast pdfs,L is the likelihood function, and C is a normalization constant. The207

forecast pdf, p f (xi,γi |
{
y j

}i−1

j=1
), represents the evolution in time of the previous analysis, pa(xi−1,γi−1 |

{
y j

}i−1

j=1
), and208

is computed from the model equation (13) (see, e.g., [31]). The successive computation of the forecast and analysis209

pdfs represents the filtering problem. In the case of a linear state-space model with additive and Gaussian noise,210

the analysis and forecast pdfs are Gaussian and the Kalman filter [32] directly computes the expected values and the211

covariances of these distributions by minimising the variance of the analysis pdf.212

For a nonlinear state-space model with update of both state vector and parameters, such as the one defined in (13)213

and (15), the filtering solution requires the use of random realizations to discretize the pdfs of interest and approximate214

their evolution in time.215
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4.2. Ensemble Kalman filter216

In the EnKF method, the Kalman gain is still used to evaluate the analysis step and the relative expected values217

and covariance matrices. The optimality of the original Kalman filter (minimum variance) is lost and the Gaussian218

hypothesis describes the analysis pdf. The filter is initialized with an ensemble of N random samples of the prior219

distribution of the state, {xa, j
0 }

N
j=1 ∼ p(x0) and parameters {γa, j

0 }
N
j=1 ∼ p(γ0). The empirical distribution of the numerical220

solutions {x f , j
i }

N
j=1,221

x f , j
i = F

(
xa, j

i−1, qi−1,γ
a, j
i−1

)
, (18)222

approximates the forecast step, while the parameters are assumed constant in the time interval [ti−1, ti], i.e., γ f , j
i = γa, j

i−1.223

The variable qi−1 represents the forcing term during the forecast step. In the analysis step of EnKF, both the state vector224

and the parameters are updated with the augmented state technique:225 
xa, j

i

γa, j
i

 =


x f , j

i

γ f , j
i

 + K f
i

(
yo, j

i − y j
i

)
(19)226

where y j
i = H(x f , j

i ). The vector yo, j
i represents random perturbations of the observed measurements yo

i according227

to (7). The use of the perturbed observations yo, j
i theoretically guarantees that, in the Kalman filter hypothesis, the228

correct variance of the updated variables will be computed (see, e.g., [33]). K f
i is an ensemble approximation of the229

Kalman filter taking into account the cross correlations between the augmented state and the observations (for more230

details see, e.g., [27] and [29]). The empirical distribution of the parameters obtained at the last assimilation time,231 {
γ

a, j
iF

}
, represents the posterior distribution of the parameters, which depends on the number of active sensors m and232

their location in the domain Ω.233

The inverse methodology presented in this section employs the measurements at the active sensors to estimate234

the posterior distribution of the hydraulic conductivity field at LEO. Decreasing the number of active sensors might235

result in high uncertainty associated with the parameters or in unrealistic parameter estimates. In a synthetic scenario236

we can directly compare the true and the posterior distributions of the conductivity field. Since this approach is not237

possible in real applications, to understand if the number of active sensors is sufficient to obtain an accurate posterior238

distribution of the parameters, we re-run the simulation (without assimilation) employing the posterior distribution of239

the parameters. If the numerical outputs are inside the confidence interval of the measurements, then we can conclude240
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that the estimated parameters are admissible. In this case we can say that the number of active sensors is sufficient for241

the calibration of the model and for the observability of the system.242

5. Numerical experiments243

For the estimation of water content and the retrieval of the saturated conductivity we consider only synthetic244

measurements generated with the numerical model CATHY. This allows evaluation of the accuracy and robustness of245

the proposed identification approaches. We describe below the setup of the numerical experiment used to obtain the246

measurement set.247

The LEO hillslope domain Ω is discretized with 22×60=1320 square cells of dimension 0.5× 0.5 m at the surface248

and 20 vertical layers of thickness of 0.05 m. The obtained parallelepipeds are further subdivided into six tetrahedra249

for the FEM solution of Eq. (9) with piecewise linear basis functions. The numerical simulations reproduce the first250

LEO experiment, conducted on February 18, 2013. A rainfall rate of 12 mm/h is imposed for a duration of 22 h251

followed by an evaporative forcing of 1 mm/d until the end of the experiment. Gevaert et al. [34] presents a detailed252

description of the experimental results. This experiment is a suitable platform for testing the reliability of the sensor253

network since the hillslope undergoes a broad range of dynamics and system states from fully unsaturated conditions254

to significant surface and subsurface outflows. Niu et al. [10] were able to reproduce the overland flow, seepage face255

flow, and total water storage responses with the CATHY model and a heterogeneous configuration of soil parameters.256

Generation of the synthetic truth. We assume that the true saturated hydraulic conductivity field KS is a realization257

of a stationary three-dimensional random field with a lognormal distribution,258

Y = Log(KS ), Y ∼ N(µY ,CY ), (20)259

and exponential covariance function, CY , with vertical anisotropy:260

CY (lx, ly, lz) = σY exp

−
√(

lx

λx

)2

+

(
ly
λy

)2

+

(
lz
λz

)2
 (21)261

where lx, ly, and lz are the lag distances and λx, λy, and λz are the integral scales in direction x, y, and z, respectively.262

µY and σY are the expected value and variance of Y . The other parameters describing the soil hydraulic properties263
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Figure 3: Spatial distribution of the hydraulic conductivity KS in the domain Ω for the true runs of TC1 and TC2.

are considered homogeneous, and Table 1 summarizes their values. The parameters µY and σY are calculated using264

an expected value of KS equal to 1.0×10−4 m/s, in agreement with the calibration proposed in [10], and a coefficient265

of variation of KS equal to 100%, corresponding to variations of KS of two orders of magnitude. The resulting266

parameters of the Gaussian field Y are µY=-9.56 log(m/s) and σY=0.83 log(m/s). To assess the sensitivity of the267

results with respect to variations of the Y integral scale, which is unknown for the real LEO soil, we consider two268

scenarios: in test case 1 (TC1) we set λx = λy=8 m and λz=0.5 m whereas in test case 2 (TC2) the integral scales269

are halved, λx = λy=4 m and λz=0.25 m. A 3-dimensional adaptation of the random generator of stochastic fields270

HYDRO GEN [35, 36] is employed to sample the realizations of the log-conductivity Y .271

Figure 3 shows the true hydraulic conductivity fields that characterize test cases TC1 and TC2. The hydrological272

response associated with these two configurations of hydraulic conductivity is represented by the black straight lines273

shown in Figure 4 denoted as “true” state. Starting from unsaturated initial conditions (VΩ(t0) ≈35 m3), the rain water274

infiltrates in the soil and accumulates at the base of Ω, increasing the water storage. At around t = 10 h the formation275

of base flow generates an outgoing flux at the seepage face. Overland flow appears at the outlet after 20 h. From a276

qualitative point of view, these results are in accordance with the observations and simulations presented in [10]. The277

intensity and timing of the seepage face and overland flows are different in TC1 and TC2, due to the different soil278

hydraulic properties.279
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Figure 4: Hydrological response of the CATHY model for test cases TC1 and TC2. The grey lines represent the outputs obtained with 200 random

realizations of the prior pdf of the saturated hydraulic conductivity and the red line is their mean. The solid black line is the response associated

with the true run, and the dashed lines delimit the 90% confidence interval of the true measurments.
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Grid information
DEM cell dimensions 0.5 × 0.5 m
Number of cells in the surface grid 22 × 60 = 1320
Soil depth (uniform) 1 m
Vertical discretization (# of layers) 20
Soil layer thickness (uniform) 0.05 m
# of nodes in the 3D grid 23× 61×21=29463
# of tetrahedral elements in the 3D grid 158400
Parameters Heterogeneous
Saturated hydraulic conductivity lognormally distributed

E[KS ] = 1.0 × 10−4 m/s, CVKS = 100%
Y = log(KS ) has exponential covariance function
TC1: λx = λy = 8 m; λz=0.50 m
TC2: λx = λy = 4 m; λz=0.25 m

Parameters Homogeneous

Aquifer specific storage S s = 5 × 10−4 m−1

Porosity θs = 0.37

Van Genuchten curve fitting parameters α = 0.6 m−1, n = 2.26
Residual moisture content θr = 0.002
Simulation period 129600 s (36 h)
Initial conditions Linear interpolation of LEO water content sensors at 8:00 a.m.

02/18/2013

Atmospheric forcing Spatially distributed rainfall (12 mm h−1) and evapotranspiration
(0.04 mm h−1)

Measurements
Measures of volumetric water content θ normally distributed with σθ ≈ 0.012
Measures of storage VΩ lognormally distributed with cvVΩ

= 2%
Measures of seepage face volumes VΓ lognormally distributed with cvVΓ

= 2%
Ensemble size N 200

Table 1: Domain discretization and parameter values for the LEO sensor failure experiment. cv indicates the coefficient of variation.

Generation of the open loop. The open loop (OL) represents the sensitivity of the model response to variations of the280

parameters. We evaluate OL from a set of model solutions constructed from 200 independent Y realizations sampled281

from the prior pdf described above. The OL results are shown in Figure 4. Note that the response of the true realization282

may differ drastically from the response of the OL ensemble mean (red line), as occurring in TC1. In the TC2 case283

the opposite behaviour is observed, but this is just a random result. In both scenarios, the spread of the OL response284

reveals a large uncertainty in the model forecast, suggesting that the ensemble mean is not a statistically accurate285

estimator of the true response.286

Generation of synthetic observations. The water content measurements employed in the interpolation and inverse287

problems are selected from the results of the true runs in TC1 and TC2. To simulate the measurement error, the values288

of water content are perturbed according to equation (7).289
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Figure 5: Error between the measured water storage in Ω and the one estimated with θ̃ (equation (8)). The dashed lines represent the 90% confidence

intervals, while the box plots indicate the variability of the results with respect to the spatial distribution of the sensors.

6. Results and discussion290

6.1. Reconstruction of volumetric water content291

In this section the perturbed measurements of volumetric water content are employed to estimate the total water292

volume in the entire domain Ω, as described in equation (8). The sensor failure analysis is performed considering293

a decreasing number of active sensors, m=[496, 446, 396, 346, 296, 246, 196, 146, 96, 46, 21], and r=10 random294

distributions of the active sensors in space.295

Figure 5 presents the time behaviour of the error between the measured volumes (shown as the solid black line in296

Figure 4, panels (e) and (f)) and the estimated volumes with m sensors, m= 496, 196, 96, and 46. The box plots for the297

m=496, 196, 96, and 46 represent the 2.5, 25, 50, 75, and 97.5 percentiles of the errors obtained with r=10 different298

spatial configurations of the active sensors. The estimation of water storage using the entire sensor network (m=496)299

produces errors bounded by the 90% confidence interval (dashed lines), showing the accuracy of this estimate. The300
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largest errors are recorded during the infiltration period, 2 h < t < 12 h, i.e., when the soil is still mostly unsaturated301

and the linear interpolation is not optimal in describing the nonlinear distribution of the infiltration front. A better302

estimation of VΩ is obtained for t >20 h, i.e., when the domain is almost completely saturated. In fact, in this scenario303

the distribution of water content is more homogeneous, especially at the base of LEO (where sensors are sparser)304

resulting in more accuracy of the linear interpolation/extrapolation. Similar water volumes are estimated interpolating305

the measurements from less than the half of the sensors, m=196. The location of the active sensors slightly influences306

the estimation of water storage, especially during the infiltration period, i.e., when a large number of measurements is307

required to capture the water distribution in Ω. In such a period, some spatial configurations of the sensors generate308

an error that exceeds the limits of the 90% confidence interval, although all the placements are able to reproduce the309

correct volumes with sufficient accuracy during the rest of the simulation. When the number of sensors drops below310

100 (m=96, m=46), the estimation of water storage becomes less reliable and highly dependent on the distribution311

of the active sensors. The results of the smaller sensor sets show unreliable estimates during most of the simulation.312

These results are not sensitive to the integral scale of the hydraulic conductivity.313

Since the measurements are generated from a numerical simulation, we can compute the spatial behaviour of the314

error between the estimated and the true distribution of volumetric water content in Ω. Panel (a) in Figure 6 shows the315

spatial distribution of volumetric water content at time t=12 h for TC2. As expected, at this time the uppermost layers316

of the landscape are partially saturated, while base flow starts forming at the bottom of the domain. Panels (b) and (c)317

show the errors for the m=496 and m=46 cases of test TC2, respectively. It is evident that the error is smaller where318

the density of observations is higher.319

To summarize the results for all the numerical simulations, we compute the time average of the L2-norm of the320

error between the estimated and the true water content,321

eθ =
1
iF

iF∑
i=1

[∫
Ω

(
θ̃(ti) − θ(ti)

)2
dΩ

] 1
2

(22)322

Figure 7 shows the values of eθ for all the combinations and number of active sensors considered. As expected, the323

water content estimation with m=496 sensors has the minimum error. The error increases and is more sensitive to the324

location of the sensors as the number of active sensors decreases. In particular the interpolation errors obtained with325

m <100 active sensors are consistently higher than the errors obtained with m >300, meaning that there is a strong326
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Figure 6: True volumetric water content for test TC2 after 12 h at seven depths (a) and the errors associated with the estimated volumetric water

content interpolating the measurements from m=496 (b) and m=46 (c) active sensors. The black dots show the locations of the active sensors.
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deterioration in the observability of the system.327

6.2. Reconstruction of hydraulic conductivity328

In Figure 4 we show that the response of the hydrological model CATHY is highly sensitive to the different329

samples of the hydraulic conductivity field. It is evident that the prior distribution of KS entails high uncertainty in330

the model results, implying that the model, with an incorrect parameterization, is not suitable for the prediction of the331

water dynamics in the landscape. Here we assimilate the measurements of volumetric water content using EnKF to332

obtain a posterior distribution of the hydraulic conductivity field that is closer to the realization adopted in the true333

runs. The sensor failure analysis is performed considering a decreasing number of active sensors, m=[496, 196, 146,334

96, 46, 21], and one random distribution of the active sensors in space (r=1) .335

At every assimilation time EnKF updates the model state variables (i.e., pressure head and, if present, surface dis-336

charge) and the hydraulic conductivity field associated with each MC realization. Thus, we expect that the discrepancy337

between the estimated log-conductivity field, Ỹ , and the true field, Y , decreases during the filtering process. We con-338

sider the root mean squared error between the ensemble of log-conductivity realizations and the true log-conductivity,339

eY (t) = E
[

1
Ω

∫
Ω

(
Ỹ(t) − Y

)
dΩ

]
(23)340
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Figure 8: Root mean squared error (equation (23)) between the true and estimated distributions of KS (panels (a) and (b)) and mean ensemble

spread (equation (24)) of the pressure heads (panels (c) and (d)) at each assimilation of EnKF for different numbers of active sensors. The first

update is at t=3 h.

where Ỹ(t) is the log-conductivity random field described by the MC realizations at time t.341

The values of eY (t) at the assimilation times are shown in panels (a) and (b) of Figure 8 for TC1 and TC2, re-342

spectively. We can see that even for a low number of active sensors the assimilation process computes a posterior343

distribution of Ỹ that has a lower error than the prior. The first assimilation step produces the most significant cor-344

rection on the ensemble of Ỹ and, at this assimilation time, there is a clear correspondence between the simulations345

with the smallest error eY and the simulations with the largest number of active sensors m. However, the errors do not346

show a monotone decrease in time. This undesired result, that would be expected when using a low number of sensors347

21



(e.g., m=21), is particularly affecting the simulations with a large number of measurements (e.g., m=196, m=496),348

resulting in a final distribution of the errors that is not consistent with the number of active sensors. We associate349

this behaviour to two main drawbacks of EnKF. On the one hand, EnKF performs a global update of the parameters350

at each assimilation time. The ensemble approximation of the cross covariances between the state variables and the351

parameters may result in spurious correlations and a (wrong) update of parameters that are not directly involved in the352

measured process. On the other hand, EnKF tends to underestimate the variance of the updated state variables, thus353

reducing the efficiency of the Kalman gain in correcting the erroneous updates. This results in the reduction of the354

ensemble spread, especially for the scenarios with a large number of sensors. To show this phenomenon, we evaluate355

the mean variance associated with the nodal pressure head, which is the main state variable of the CATHY model and356

is directly related to the volumetric water content, as a measure of the ensemble spread:357

σ̄2
ψ(t) =

1
Ω

∫
Ω

E
[
(ψ(t) − E[ψ(t)])2

]
dΩ (24)358

where E indicates the mean over the ensemble. Panels (c) and (d) of Figure 8 show the temporal value of σ̄2
ψ(t) for359

TC1 and TC2, respectively. We can see that, in all the scenarios explored, the variance decreases with respect to the360

OL run, indicative of a lower uncertainty on the model response. It is evident that the simulations with a high number361

of sensors have a faster decrease in the ensemble spread.362

In our experiment, the infiltration process at the first assimilation time (t = 3 h) involves only the superficial363

layers of the domain. Thus the first assimilation steps are able to correct the Y field at the surface but have less364

accuracy at the bottom layers of the domain. As a consequence, the following update steps are necessary to improve365

the parameter estimation for these layers. Common techniques adopted to improve the EnKF update are covariance366

localization [21], to remove spurious correlations, and covariance inflation [19], to increase some components of367

the covariance and improve the ensemble spread. Here we adopt a different approach. The idea is to increase the368

forecast time between assimilations, in such a way as to have a better correlation between the state realizations and369

the associated parameters. Firstly, we focus on the time of the first assimilation, which entails the maximum decrease370

in the error and in the ensemble spread. It is important to perform the first update when the infiltrating water has also371

reached the sensors at the deepest layer, so that the process dynamics influences the response of the sensors throughout372

the entire domain. In our simulations, this occurs at t=12 h. As shown in panels (c) and (d) of Figure 8, this time373
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Figure 9: Root mean squared error (equation (23)) between the true and estimated distributions of KS (panels (a) and (b)) and mean ensemble

spread (equation (24)) of the pressure heads (panels (c) and (d)) at each assimilation of EnKF for different numbers of active sensors. The first

update is at t=12 h and the assimilation frequency is six hours.

corresponds to the maximum variance on the OL pressure heads, and thus to the maximum differentiation between374

the ensemble realizations obtained with the prior parameter distribution. Secondly, as Shi et al. [37] have pointed out,375

the accuracy of an EnKF analysis may degrade when using short assimilation intervals, thus we increased the update376

time from hourly to every 6 h.377

Figure 9 shows the convergence profiles of the errors eY obtained with the first assimilation timed at t=12 h and378

an assimilation frequency of six hours. It can be seen that the errors at the first update are lower than in the previous379

scenario (Figure 8) for all sensor failure configurations explored. Moreover, the error now increases only at a small380
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number of assimilation times, very slightly, and without compromising the final correlation between the errors and381

the number of active sensors. The greatly reduced number of updates owing to the postponed first update and larger382

assimilation interval may explain the higher final errors obtained with fewer active sensors. However, the higher values383

of the ensemble spread should allow improved performance for longer simulations, thus restoring (or improving) the384

previously computed errors on the parameters.385

Figure 9 shows that, for both TC1 and TC2, the error at the end of the simulation increases consistently as the386

number of active sensors drops. This suggests that the hydrological dynamics of LEO is well captured by the sensor387

network even when a large fraction of sensors has failed.388

Figures 10 and 11 compare the true conductivity field and the a posteriori ensemble mean of the conductivity field389

estimated with m=496 and m=21 active sensors at six different depths d for TC1 and TC2, respectively. For both test390

cases, the estimated conductivity with m=496 captures most of the features of the true field, with small differences at391

the bottom layer where there are no sensors. The final KS estimated with m=21, although having larger errors (see392

Figure 9), manages to capture several zones of high and low conductivity of the true field, especially for the scenario393

with long correlation length (TC1). This means that, also with only 21 active sensors, EnKF is able to improve the394

distribution representing the true soil hydraulic conductivity with respect to the a priori pdf.395

This is even more evident in Figure 12, where the final ensemble means of the conductivities are employed in a396

forward run of CATHY to compare the hydrological response of the system for the different distributions of KS . The397

true KS and the KS estimated with m=496, 46, and 21 active sensors produce very similar integrated responses of the398

system in terms of overland flow (panels (a) and (b)), seepage face flow (panels (c) and (d)), and total water storage399

(panels (e) and (f)) for both TC1 and TC2. The differences in the soil conductivity fields have a noticeable impact only400

when we examine the water content measured by the sensor network. Panels (g) and (h) report the root mean squared401

error on the measured volumetric water content, and we see that, for both TC1 and TC2, the results with m=496 active402

sensors are more accurate than those using m=21 or m=46 sensors.403

24



Pa
ne

l(
a)

−5 −2 0 2 5

5

10

15

20

25

d=0.00−0.05m

x (m)

y 
(m

)

−5 −2 0 2 5

5

10

15

20

25

d=0.15−0.20m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.30−0.35m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.50−0.55m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.80−0.85m

x (m)
−5 −2 0 2 5

5

10

15

20

25

 
d=0.95−1.00m

x (m)

 10−5

10−4

10−3

K S
	
  (m

/s
)	
  

	
  T
ru
e	
  
TC

1	
  

Pa
ne

l(
b)

−5 −2 0 2 5

5

10

15

20

25

d=0.00−0.05m

x (m)

y 
(m

)

−5 −2 0 2 5

5

10

15

20

25

d=0.15−0.20m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.30−0.35m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.50−0.55m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.80−0.85m

x (m)
−5 −2 0 2 5

5

10

15

20

25

 
d=0.95−1.00m

x (m)

 10−5

10−4

10−3

K S
	
  (m

/s
)	
  

m
=	
  
49
6	
  
	
  

Pa
ne

l(
c)

−5 −2 0 2 5

5

10

15

20

25

d=0.00−0.05m

x (m)

y 
(m

)

−5 −2 0 2 5

5

10

15

20

25

d=0.15−0.20m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.30−0.35m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.50−0.55m

x (m)
−5 −2 0 2 5

5

10

15

20

25

d=0.80−0.85m

x (m)
−5 −2 0 2 5

5

10

15

20

25

 
d=0.95−1.00m

x (m)

 10−5

10−4

10−3
K S
	
  (m

/s
)	
  

m
=	
  
21
	
  	
  

Figure 10: Test case TC1. Comparison between the true distribution of KS (a) and the ensemble mean of KS estimated with the EnKF procedure

using m=496 (b) and m=21 (c) active sensors.
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Figure 11: Test case TC2. Comparison between the true distribution of KS (a) and the ensemble mean of KS estimated with the EnKF procedure

using m=496 (b) and m=21 (c) active sensors.
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7. Conclusions404

We have presented a failure analysis of the sensor network deployed in the experimental hillslopes of the Land-405

scape Evolution Observatory at Biosphere 2. The main objective of this study was the determination of the minimum406

number of active sensors that are necessary for a reliable observation of the water dynamics in the system. To reach407

this goal we elected to work with two general quantities of interest in hydrological modeling. The first quantity is408

the total water volume inside the hillslope at a given time. The second quantity is the total discharge at the outlet, as409

formed by the sum of the seepage and overland fluxes. Synthetic test cases were developed for 11 different sensors410

sets having numbers of active sensors varying between 496 and 21. The soil was modeled as a three-dimensional411

second order stationary random field with exponential covariance function. A simulation with a given Ks distribution412

was used to obtain a “true” hillslope behavior, as simulated by the CATHY model, from which appropriate synthetic413

measurements were taken. For the first quantity, the assessment of the sensor failure was carried out by comparing414

the temporal variation of the total water storage as measured by virtual load cells and the total water volume obtained415

by linear interpolation of the observed values at the spatially distributed water content sensors. In the case of outlet416

discharge, the sensor network reliability was tested by using the measured water content inside the domain to identify417

via EnKF the spatially heterogeneous saturated hydraulic conductivity. The accuracy of the identification was verified418

by simulating the event with the hydrological model CATHY and comparing simulated and observed seepage and419

overland flow.420

The results showed that the reconstruction of volumetric water content via linear interpolation of the sensor net-421

work values is an accurate procedure when the level of failure is low. When only few sensors are active (i.e., m <100)422

this methodology may introduce sizeable errors in the estimation of total water storage, especially during water in-423

filtration periods. This corresponds to the fact that when the sensor network is only partially active there are large424

portions of the hillslope where information is lost and interpolation identifies incorrect water content values, especially425

near the soil surface.426

Retrieval of the saturated hydraulic conductivity distribution, on the other hand, seems to be more robust. In fact,427

calibration of CATHY via EnKF is able to improve the estimation of the true conductivity fields yielding accurate428

predictions of the global hydrological response of the LEO hillslope also at the lowest tested numbers of active429
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sensors (m=46 and m=21). This result is achieved thanks to the role played by the hydrological model in correlating430

in space and time the water content measurements with the hillslope response, and by the assumption of no model431

bias that is inherent in our synthetic experiment. To thoroughly verify this result, we conducted two test cases where432

the “true” saturated conductivity distribution was characterized by different correlation lengths. For both test cases we433

were able to assert a high reliability of the sensor network. The CATHY simulations were able to accurately simulate434

the behavior of the system also for the lowest number of active sensors. We remark that this was true for the overall435

global response of the system, i.e., by looking only at total seepage and overland flow at the outlet. The recovery of the436

distribution of the internal states was much more inaccurate especially when few sensors are active. In this case, the437

simulations suffer from the problem that the EnKF identification of Ks yields a field that is statistically equivalent (up438

to small errors) to the true realization. Hence, local details of the system dynamics, in terms of spatially distributed439

water content, are lost, leading to inaccurate simulated water content values at the sensor positions, with errors that440

decrease drastically when the entire sensor network is considered active. The outlet discharge, on the other hand, does441

not suffer from this problem, a sign that the statistical properties (mean and variance) of the Ks field were correctly442

identified.443

The results from the two test cases showed that the identification process is more accurate for the larger correlation444

length, corresponding intuitively to a lower number of parameters to be identified. Moreover, to improve the parameter445

identification and limit the effects of erratic covariance estimations in the Kalman gain in areas of the domain where the446

measurements contribute negligible information, we showed that decreasing the assimilation frequency and delaying447

the first update helps incorporate responses to the infiltration signal from all the sensors. Consequently the sample448

spread increases, yielding reduced inconsistencies between filter behavior and number of active sensors. In this case,449

however, achieving small estimation errors requires larger simulation times, corresponding to a larger number of450

update steps. The test case results also showed differences in reconstruction according to the degree of sensor failure.451

Nonetheless we are able to reproduce the integrated hydrological response of LEO also with the lowest numbers of452

active sensors.453
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