
16773 

 1  
 

Cognitive Alignment through Artefacts in Distributed Innovation: 

The Role of Initial Code Release in Open Source Software1 

 

 

 

 

Abstract 

This paper casts light on the role of artifacts for cognitive alignment of creative workers in 

distributed product development projects. Drawing on the research on system integration, 

modularity and  artifacts as coordination devices, we develop two hypotheses stating that (1) 

the provision of an initial version of the artifact to be jointly developed fosters the cognitive 

alignment of distributed innovators, and that (2) such alignment increases the probability that 

a project effectively produces an outcome. We test both hypotheses studying a sample of 

5703 open source projects hosted on SourceForge during 2005 and 2006, and find that the 

provision of some initial code fosters cognitive alignment of programmers, and that this in 

turn increases the probability of observing the release of a new version of the program later 

on.  

 

 

 

                                                
1 Please, quote as: Becker M., Rullani F., Zirpoli F., “Cognitive Alignment through Artefacts in Distributed 
Innovation: The Role of Initial Code Release in Open Source Software”, Academy of Management (AOM) 2013 
Annual Meeting Conference, August 9-13, 2013 - Lake Buena Vista (Orlando), FL. 



16773 

 2  
 

1. Introduction 

 

The development of complex products, such as automobiles, aircraft or software, 

typically takes place in networks that draw on multiple actors such as suppliers, customers, or 

universities (von Hippel, 1988; Womack et al., 1990; Powell et al., 1996, Chesbrough, 2003; 

David and Foray, 2003). One of the key challenges in developing complex products is how to 

coordinate the involvement of many actors in the new product development process so as to 

achieve the desired outcome. This challenge can be massive in developing highly complex 

products such as cars (e.g., Zirpoli & Becker, 2011), aircraft (Brusoni et al., 2001) or 

software, especially open source software (e.g., Dahlander et al., 2008).  

Prior research on distributed innovation in different industries that face difficult 

coordination challenges has identified the important role of factors such as artefacts, informal 

relations, and trust (Star & Griesemer, 1989; Carlile, 2002; Ouchi, 1980). In this paper, we 

consider open source software (OSS) development, which requires coordinating many 

independent developers who work in a self-organized fashion. This setting is particularly 

interesting for our aim, as self-organization implies the need to coordinate without direct 

supervision and authority. Research in this industry has identified the crucial role of 

coordination mechanisms such as modularity (MacCormak et al., 2006; Giuri et al, 2010), 

leadership (e.g., Lerner and Tirole, 2002), legitimacy (O’Mahony and Ferraro, 2007), and 

virtual artefacts such as code and online conversations (Lanzara and Morner, 2005; Kuk, 

2006). One of the strong empirical regularities concerning the organization of software 

projects is that at the beginning of many successful OSS projects, there was an initial code 

release acting as an enabler for further development (e.g. Lerner and Tirole, 2002). While 

prior research on OSS has documented this fact providing different explanations (e.g. 

Haefliger et al., 2008), it is not entirely clear yet what exactly is the role of such initial code 



16773 

 3  
 

for coordination, if any. So far, this issue has remained implicit and no theory has been tested. 

Investigating this issue is of interest for understanding how to foster coordination of 

distributed product development efforts in general, and especially in cases of highly complex 

products developed in a self-organized fashion.  

In this paper we theorize on the role of initial code in OSS as a coordination device operating 

through cognitive alignment, i.e., guiding the participants in the distributed innovation 

process towards aligning their visions of the final product to that of the initial code provider. 

In this way, the initial code provider guides them to maintain the development trajectories of 

the modules they work on within a limited (even if still large) set of potential visions of the 

final product. Thanks to the provision of initial code, thus, it is possible to compensate the 

difficulties, due to self-organization, in explicitly setting a full-fledged architecture at the 

beginning of the project: the artifact itself will contribute to the needed alignment also 

without such architecture. As a consequence, we should observe more effective coordination 

than without provision of an initial code, and the product should be released on the market 

with a higher probability. 

We test the previous hypotheses on a dataset of 5703 open source software projects registered 

on SourceForge during a two-year period. We find that initial code release is indeed 

associated with increased cognitive alignment of developers, and a higher chance that 

software development projects will actually release further code subsequently. This result 

adds to previous literature on coordination in distributed innovation and project development 

by improving understanding of how artifacts contribute to cognitive alignment and effective 

coordination.  

 

2. Background and prior research 

 



16773 

 4  
 

2.1. Distributed innovation  

Many studies of distributed innovation processes consider the organizational 

challenges from the perspective of the business firm. This perspective explains why the 

expression “involvement of external sources of innovation” (e.g. Nishiguchi, 1994, Clark and 

Fujimoto, 1991) has emerged and is so dominant in an important part of the innovation 

management literature. A previously “autarchic” (Christensen, 2006) view of the business 

firm and a previously strong ‘inward-looking focus’ has rapidly shifted focus to distributed 

innovation processes even in traditional industries.  

The major motivation for involving external sources of innovation in product 

development is that doing so can increase the performance of new product development 

projects (Clark, 1989; Womack et al., 1990; Clark & Fujimoto, 1991; Wheelwright & Clark, 

1992). Prior literature has also identified some of the main causes of problems in achieving 

high project performance in distributed innovation. Among these, the most important one 

especially when products are complex, is the management of technical interdependencies 

(Sosa et al., 2004). It is not trivial to coordinate a system when the innovation process is 

broken down into smaller parts and such smaller development tasks are allocated to a number 

of different actors. The problem is that without effective coordination, technical 

interdependencies may result in inconsistencies between changes in one component or 

subsystem and innovation in other components or subsystems. As a consequence, lack of 

effective coordination leads to low project performance. Prior research has identified four 

issues firms have to address to achieve high project performance: (1) how to divide the 

development task, (2) how many (and which) sources of external innovation to allocate the 

sub-tasks to, (3) how to coordinate the actors that develop components and subsystems, and 

(4) once the components and subsystems have been improved and developed, how to 

integrate the components and subsystems into a whole that has high product performance 



16773 

 5  
 

(Baldwin & Clark, 2000; Takeishi, 2001, 2002; Brusoni et al., 2001; Laursen and Salter, 

2006). In this article, we focus on the third issue, how to coordinate the actors that develop 

components and subsystems. 

 

2.2. The coordination of distributed innovation processes 

The literature on innovation management – in particular for highly complex systems – 

identifies two ways of tackling the organizational challenges involved in distributed 

innovation. First, a focal firm acts as system integrator (Hobday, Davies and Prencipe, 2005). 

This approach consists in orchestrating the other partners involved in the product 

development process through a top-down hierarchical approach. The key challenge involved 

is to take into account all interdependences between actors in aligning their actions. The 

second possibility is to rely on modular product architecture, i.e., an architecture where 

interdependences are bundled within modules while modules are independent of each other, 

and that have standardized interfaces (Baldwin & Clark, 2000). Such a modular product 

architecture supposedly allows using a modular organization structure (both within the firm 

and in the value chain) (Sanchez & Mahoney, 1996). It provides a powerful possibility: 

external sources of innovation can accomplish their development tasks independently and do 

not require explicit coordination, as the standardized interfaces and independence between 

modules assure that modules will fit together even without coordination when integrated into 

the overall product (Baldwin & Clark, 2000). In both approaches, the coordination problem is 

moved to the level of the architecture and, ultimately, to the architect who designs it. In self-

organized social bodies it is however difficult for architects to master the process in the same 

way they could do in a firm. The main problem is that it is very difficult to develop a full-

fledged architecture at the beginning of a self-organized process of development, because 

self-organization implies a risk of the emergence of paths that were not visible at the 



16773 

 6  
 

beginning. As an example of self-organized distributed innovation and to see how 

coordination is achieved in such an environment, consider open source software (OSS, e.g., 

von Hippel and von Krogh, 2003). 

Open source software (OSS) is an emblematic example of self-organized distributed 

innovation that posed further empirical and conceptual challenges related to the issue of 

coordination to the managerial literature. Markus (2007) provides a comprehensive survey of 

the studies of coordination in OSS. His distinction of the different definitions of governance 

structures includes coordination as one of the central challenges they address: "In the 

operational  coordination literature, OSS governance is understood as a solution to [… the 

problem of] loss of operational control, and the solution is techniques for managing the 

process of OSS development work" (p. 156). A peculiar feature of the OSS innovation model 

is that individuals self-select the tasks they perform (Langlois and Garzarelli, 2008), leading 

to the emergence of self-organized systems (Kogut and Metiu, 2001; Lee and Cole, 2003; 

David and Rullani, 2008) where authoritative structures (Mateos-Garcia and Steinmueller, 

2008) and leaders (Lerner and Tirole, 2002) are continually created, renewed or destroyed. 

Social processes leading to this emergence, such as criticism of the status quo (Lee and Cole, 

2003) or creation of specific patterns of social ties facilitating the making of individuals into 

leaders (Dahlander and O’Mahony, 2011), became  the center of many recent studies in the 

field. By the same token, attention was devoted to the limits of such processes, investigating  

how conflicts are resolved (Elliott and Scacchi, 2003) and how authoritative structures are 

challenged and changed (O’Mahony and Ferraro, 2007). This stream of literature has 

identified two coordination mechanisms that are applied in the OSS setting (Markus, 2007; 

O’Mahony and Ferraro, 2007; Dahlander and O’Mahony, 2011): coordination by project 

leaders and by artifacts. The next two sections report on these two issues. 



16773 

 7  
 

2.2.1. Leadership 

The first coordination mechanism identified is leadership. Indeed, Giuri et al. (2008) show 

that in OSS leaders are endowed with wider skill sets, enabling them to combine the 

heterogeneous inputs coming from a differentiated set of contributors. Involving voluntary 

participation, OSS collaboration implies a very peculiar nature of control, which can be 

centralized into a leader (as happens for Linux, Raymond, 1998; Lerner and Tirole, 2002) but 

needs to be continually reproduced and legitimated by those constituting the “lower layers” 

of the pyramid. Raymond (1998) argues that legitimation as leader comes naturally as a 

consequence of project foundation: the founder considers it recognized by other participants 

that she has the right to take the final decision with respect to the development of the project. 

However, legitimation is not a static concept, and has to be recreated and renewed each time 

(O’Mahony and Ferraro, 2007). Muller (2006) shows through a simulation model how 

leadership emerges as the result of a dynamic legitimation process among peers clustering 

around ‘opinion leaders’. This effect, however, obtains a weaker support by O’Mahony and 

Ferraro (2007), who find that the antecedents of leadership acquisition are more related to 

face-to-face meetings and impact of members’ contributions than to online communication. 

Nevertheless, they admit this may be the result of the impossibility to account for the content 

of the online communication in their econometric analysis, as their ethnographic study 

reaches the opposite conclusion. The authors connect these results to the evolution of the 

OSS project they study (Debian) and identify the transformation the authoritative structure 

and the governance mechanisms go through when the project moves from one phase of 

development to a more complex one. Their description of the dynamic transformation of 

governance highlights the passages from an autocratic leadership towards a formalized 

authority structure that acquires legitimation through the construction of democratic 

regulatory processes. This echoes Lee and Cole’s (2003) identification of the community 



16773 

 8  
 

debate as the key mechanism through which the OSS community evolves. Following the 

same dynamic perspective, Mateos-Garcia and Steinmueller (2008) argue that “as the 

capabilities the integrator has for keeping up with a project’s development pace start 

diminishing, a structure with layers of trusted individuals emerge as a way of helping her or 

him cope with the increased complexity and size of the project. These layers will be 

composed of proficient individuals with experience in the project. The vision they have of the 

project will also concur with that of the leader in some essential points” (p. 22). Thus, a 

pyramidal structure gradually emerges, but again based on legitimation mechanisms 

involving the leader’s vision as well as the technical capabilities of the developers coming to 

populate the intermediate layers. 

Elliott and Scacchi (2003) apply a perspective that allows a more fine-grained 

definition of the legitimation process. Inspired by the studies that highlight the community-

related aspects of OSS projects (e.g. Amin and Cohendet, 2004) the authors describe how 

developers resolve conflicts over the legitimacy of undertaking certain disputed actions (such 

as using software tools that are not open source to produce material for an open source 

project). The reference to common values and shared norms are the main rhetoric instruments 

used to solve the conflicts arising when some one’s actions are disputed. What is interesting 

to highlight here is that the authors recognize not only the importance of the norms 

themselves, but also the fact that they are embodied in the online discussion stored in easily 

accessible web repositories. “This fast access to archived information perpetuates the cultural 

beliefs that have been articulated and assists in resolution of conflicts” (Elliott and Scacchi, 

2003; p. 9).  

2.2.2. Artefacts 

A recent stream of literature tries to merge the social side dominating the previous 

points of view with the “materiality” of the production process itself (Orlikowski, 1992, 



16773 

 9  
 

2000; D’Adderio, 2003; Cacciatori, 2008). Software developers, in fact, do not interact only 

exchanging opinions, but also act on artifacts – the lines of source code composing the 

software – that they exchange and jointly develop (Lanzara and Morner, 2005). The structure 

of the code, and in particular its modularity, has been identified as a crucial issue, because 

when interaction between individuals is mediated by artefacts, it is their very characteristic to 

allow the achievement of coordination. David and Ghosh (2008) have shown that the 

structure of the technical interdependencies between the different module composing Linux 

have a certain degree of correspondence to the pattern of social ties the authors of those 

modules have built through past collaboration. A similar perspective emerges from the 

analysis undertaken by Narduzzo and Rossi (2005) in their effort to define modularity in the 

OSS context. In OSS the architecture of the software is likely to be constantly changed over 

time, and so is the degree of modularization it embodies. Narduzzo and Rossi study how a 

community of developers copes with the emergence of interdependencies, and notice that 

every time a new dependency connects two modules challenging the current architecture, the 

main principle of modularity – information hiding – is reversed: developers exchange 

module-specific information with the aim of discussing a common understanding of the new 

logic underpinning the product. Again, the artifact’s structure and the social side are coupled 

in the process of product development. MacCormack et al. (2006) focus on a similar process 

but with an opposite perspective: they also study the transformation of a weakly-modular 

OSS product into a highly modularized software, but in the context of a transformation 

implemented top-down by a firm (Netscape) opening the source code of its software as a 

strategy to attract external developers. They observe that the project was initially stagnating 

because its weakly-modular structure increases the cost of external developers’ contribution, 

and that the subsequent increase in modularizing determined instead its success. The strict 

link between participation and modularity has been further developed by Baldwin and Clark 



16773 

 10  
 

(2006). Modularity is seen not only as the determinant of a lower cost of contributing. 

Moreover, a high level of modularity assures a higher option value for external developers in 

terms of the possible future configurations of the product, and thus increases their willingness 

to participate. Modularity is again seen has having a social effect: decreasing free-riding. The 

other social effect the artifact structure has is more relate to our topic: coordination. As 

Lanzara and Morner (2005) explain, in OSS the code is “exposed”, everyone can read it and 

evaluate it, run it and contribute to it. The code thus sends signals that the individuals 

interacting with it receive. These signals are relative to the parts of the program that need 

further development, to the functions that do not perform properly, and the like. For example 

Dalle et al., (2011) show that the level of complexity and the level of modularity of different 

software packages are among the main determinants of the level of collaboration emerging 

around each specific package. But the code sends signals also about the different rewards one 

can expect to receive when contributing to a particular module instead of another. For 

example, modules with more collaborators or modules at the core of the program assure 

higher visibility, and thus can attract by developers moved by reputation concerns (Lerner 

and Tirole, 2002). To the contrary, developers with specific needs that the software fails to 

fulfill might want to contribute to an obscure module if it is crucial for the function they care 

of (Dalle and Jullien, 2003). In this way, different modules attract different developers. The 

allocation patterns of developers’ contribution emerging from this process will in turn change 

the structure of the code, and thus the rewards associated to each module in the next round. A 

new allocation of developers’ effort will emerge in response to this new pattern, and so on. 

The final code will be the result of this co-evolving process between the structure of the code 

and the motivations of the developers. 

 



16773 

 11  
 

3. Hypothesis development: the role of initial code release in open software 

development 

 

The literature review has highlighted the important role that emergent authority structures on 

the one hand, and code as artifact on the other, have played in the literature on open source 

software development. The existence and emergence of unexpected interdependencies, a 

problem self-organized structures need to cope with almost by definition, is not however 

clear, and neither are the associated costs. Leaders can act as system integrators and specify 

the architectural principles to be followed by the other participants (i.e., the interfaces) from 

the beginning. They do, however, face limits imposed by the self-organization of the 

innovation process. These limits result in the impossibility for boundedly rational agents to 

forecast all the possible interdependencies between modules that might emerge in an 

environment where developers choose their tasks and efforts and can question each decision, 

thereby challenging the authority and its technical procedures (including the architecture) at 

every moment. In OSS, the coordinative power of leadership is limited by the fact that any 

authoritative structure in which few developers hold the right to specify the initial 

architecture  need to engage in a process of continuous legitimation, through democracy and 

information disclosure, and ultimately re-negotiation of the tasks division between the 

contributors. Conflict resolution and legitimation procedures able to sustain the authoritative 

structure of the organization (David and Rullani, 2008; Lanzara and Morner, 2005) affect the 

development path of the project. The social and the technical side are so interwoven (David 

and Ghosh, 2008) that the former interfere with the latter, possibly altering the product’s 

structure of interdependencies. When redesign becomes a necessity, developers need to 

gather information on other modules and discuss the architectural changes to be made 

(Narduzzo and Rossi, 2005). Thus, on top of the limits typical of bounded rationality, OSS 



16773 

 12  
 

also faces the limits imposed by self-organization to the possibility of specifying a full-

fledged architecture since the beginning. In sum, even despite leadership, system integration 

and modularity, “[o]pen source software suffers from some lack of coordination” (Lerner and 

Tirole, 2005: 107). 

 

The second coordination mechanism that the literature argues is being used in open source 

software development, code as an artefact, has been also investigated quite extensively. Some 

studies have focused on the fact that, when a project is created, the founder often provides 

“some running code” (Lerner and Tirole, 2002). This provision of initial code has been 

interpreted as a (mostly unintentional) strategy to attract other developers. Because of the 

importance of intrinsic motivation (Lakhani and Wolf, 2005) such as fun in coding and in 

solving challenges among the main incentives driving developers’ participation (Ghosh et 

all., 2002; David et al., 2003) for deciding to join a particular project (David and Shapiro, 

2008), the fact that programmers can directly test the code, see what works and what does 

not, find interesting problems and “scratch a personal itch” of theirs (Raymond, 1998) has 

been indicated as a crucial mechanism in attracting developers to projects.  

Connected to this, Lerner and Tirole (2002) noticed that initial “runnable and testable” 

releases of the code attracted new developers that see interesting challenges. The authors also 

notice that initial code has a legitimation function: it shows to other potential developers that 

the code has some merit and that developing it further will not be a waste of time. This 

concept is further developed by Haefliger et al. (2008), who discuss the fact that a project can 

attract more developers if its initial code release effectively carries the “credible promise” of 

a stream of interesting challenges for future developers. The capability of code to attract 

interest and new developers has also been empirically documented by von Krogh et al. 

(2003), who notice that in the case of Freenet no code was provided at the beginning but 



16773 

 13  
 

rather, only 15 weeks later, it was only after this release that the project witnessed a steep 

increase in attention, number of contributors and of discussions.  

Haefliger et al. (2008) discuss the role of initial code relating it to code reuse (Sojer and 

Henkel, 2010). In OSS, code is very rarely created from scratch, as most developers tend to 

re-use code already available to save time and focus on the most interesting and still 

unresolved issues. The initial code, thus, does not need to be brand new, but can be – and 

often is (Haefliger et al., 2008) – existing code  adapted to new purposes. Moreover, the reuse 

of the initial code itself, combined with other existing code and with brand-new code, will be 

the basis of the future versions of the program, increasing the path dependence of the 

development process (David, 1985).  

 

Initial code is thus the starting point from which the program will be developed. In this 

perspective the initial code can be seen as a artefact whose elements will shape the possible 

future direction of development of the product, and which might instill path-dependence 

(David, 1985). From this perspective, the advantage of having some running code to work on 

is directly connected to the other developers’ need to improve, instead of create, the code that 

provides the basis of the project (Sojer and Henkel, 2010; Haefliger et al., 2008). The 

difference from creating from scratch is substantial: creating from scratch also means 

imagining the future structure of the program, and having at least a vague idea of the whole 

system’s functions. The initial code is, hence, an artifact that defines the technological space 

where the subsequent innovation will take place.  

Notice that this intuition is consistent with the role initial code holds in the previously 

surveyed literature: the attractiveness of the project quickly decays if the founder simply asks 

other developers to join a technological space defined only by a project description (even if 



16773 

 14  
 

well-detailed). Some code is needed to give a practical and not only theoretical definition of 

the expected “shape” of that space. 

 

To have a clear idea of this, consider that the initial code release provides in nuce an 

indication of the possible software architectures that could be developed. Consider for 

example a software program composed by n components. Combining these components in a 

Design Structure Matrix, it is easy to see that the number of elements composing the off-

diagonal upper-right triangle of the DSM is , and thus that the number of all possible 

relations between them is . This is an explosive function of n, leading to an 

enormous amount of possible future architectures even for quite small n. This number can be 

diminished if the initial release of the code contains m components and relates them in a 

specific manner, creating path-dependence (David, 1985). Even if m<<n, m is a small 

fraction of the n components, the chosen set of preferred logics of component coupling 

emerges clearly from the simple observation of the software release: the m components are 

related by a specific set of relations that make some of them more independent, while others 

are much more tightly linked. This eases any further development of code that embeds the 

same decomposition logic, and increases the costs for developments that presume a different 

architecture requiring the reconfiguration of the relationship between the m components. 

Thus, future developments crossing the lines of the decomposition logics embedded in the 

first code released are more costly in terms of the number and importance of the 

modifications than the developments these lines naturally imply. Vice versa, those 

improvements and enlargements that respect the way in which the interdependencies are 

managed according to the decomposition embedded in the initial software release, will be 

perceived as natural developments. 

 



16773 

 15  
 

 The artifact, thus, has the same function the technological paradigm has at the level of 

the whole industry (Dosi, 1982). The initial code, in this light, can be considered the 

technological paradigm that constrains the vision and the innovation effort of the  group of 

developers within a given set of problems and trade-offs, determining which technological 

trajectories can be developed and which cannot. See Figure 1 for a graphical representation 

on the technological space (Olsson and Frey, 2002) of how the artefact guides the future 

paths of the development of the distributed innovation project in the case in which we have 

three components with an artefact  (the initial code release) spanning two of them (i.e., n=3 

and m=2). 

 

Figure 1. Initial code inhibits some development trajectories and favors others. 

 

 

In this role, the initial code has an impact on actors’ cognitive alignment, i.e., it helps actors 

develop a common understanding about the likely development of the OSS project as a whole 

and the role of their own specific contribution, limiting the problems arising from self-



16773 

 16  
 

organization (i.e., the impossibility to provide a full-fledged specification of the whole 

architecture since the beginning).  

In turn, such alignment will increase the probability that the OSS project actually delivers a 

new release of the program.  

The previous theorizing leads us to formulate the following hypotheses: 

 

H1: The presence of an initial artifact (a code release) increases the probability of future 

cognitive alignment between OSS project members. 

 

H2: The higher the cognitive alignment between OSS project members, the higher the 

probability that the project produces a subsequent code release.  

 

Notice that we do not claim any role of the initial code in reaching a higher degree of 

innovation. The effect of the initial code is here evaluated only with reference to its capability 

to produce subsequent code release(s), irrespectively of the quality of the software released, 

e.g. whether it fosters innovation or produces radical vs. incremental innovation. 

 

In the next section, we turn to empirically testing our hypotheses on a sample of projects 

hosted on SourceForge during 2005 and 2006.  

 

 

4. Empirical investigation  

 



16773 

 17  
 

4.1. Evidence from SourceForge 

4.1.1. Data 

Our analysis of the OSS context draws on data relative to all the projects populating the 

SourceForge platform from November 1999 to October 2008 (Madey, 2009; Gao et al., 

2007). Out of this population we selected 5810 projects registered on the platform from 

January 15th, 2005, to April, 15th 2005. We tried to select the most recent projects we could, 

provided that we had enough data to analyze subsequent developments of the projects. 

Moreover, as the data consist of monthly snapshots of the situation observed on the platform, 

and as the way data were stored and managed changed over time, we needed to carefully 

select the period of analysis in order to preserve data consistency between the different 

snapshots. The final sample (5703 projects) has been obtained considering only the projects 

still registered as “Active” in September 2006 and with at least one member in July 2005 and 

March 2006. 

We divided the period in three parts: a first period, called t0, spans the first months of the 

projects’ life up to July 8th, 2005. A second period (t1) starts from this date and reaches March 

20th, 2006. A third time window (t2) is opened from that day to September 20th, 2006. We 

will use these time windows to make sure that in every equation we estimate, the independent 

variables are lagged by one period with respect to the dependant variable, thus reducing 

endogeneity. 

 

4.1.2. Measures 

Within this set of data we need to capture the connection between the provision of an initial 

piece of code, the process of alignment as captured by a reduction in the mismatch between 



16773 

 18  
 

the developmental trajectories followed by the participants in the project, and the subsequent 

capability of the project to produce a newer version of the code. 

We capture the first element of this sequence by Initial code t0. It is a dummy variable equal 

1 if in t0 the project team releases an initial version of the software to be developed. In order 

to set a minimum threshold for the definition of “initial code”, we restricted our analysis to 

the provision of “running code”, i.e. to the presence of files released by the project members 

as official releases, in agreement with Lerner and Tirole’s (2002) claim that a minimum 

amount of running code would be necessary to attract developers and let them play with it 

(Raymond, 1998). 

Capturing alignment is much more tricky. We need to identify an observable process that 

proxies the cognitive level, where alignment happens. We thus need to rely on the actions 

developers undertake as a consequence of alignment to actually detect the presence and 

intensity of such alignment. To do this we can exploit the fact that in SF.net projects are self-

categorized by their members in different categories. These are: intended audience of the 

project (end users/desktop, developers, …), the programming languages it employs (C++, 

Java, …), the operating systems it runs on (Windows, Linux, …), the topic the project tackles 

(communications, security, games/entertainment, …), the environment it populates (X11 

applications, web environment, …), and the language used by the developers to interact one 

another. Each one of these macro categories is then organized into lower level categories. So 

for example the category “topic” is divided into different subcategories among which 

“communications”, which in turns contains - among others - the subcategory “chat”, that 

leads to two possible final subcategories: “AOL Instant Messenger”, and “ICQ” (see Table 

A1 in the appendix for another example2). The tree of the categories offers a portrait of the 

                                                
2 A last category is represented by the development status of the project. As the project progresses, the team  
updates this category to inform the public that the project has passed, for example, from its beta version to its 
mature version. We do not include this category into the analysis, as it is directly capturing the productivity of 
the project rather than simply describing it.  



16773 

 19  
 

project along several dimensions and indicates what is the trajectory along which the 

development is moving. For example, if a project indicates that its programming language is 

C++, we know that developers are aligned in considering C++ the main language they should 

use to develop the program. In sum, in every period in time categories represent a synthesis 

of the different trajectories followed by the project participants. This synthesis is however not 

free of clashes and heterogeneity of visions and ideas. Categories in fact are “truces” between 

the different visions of the members, and hold only until the misalignment between these 

visions is below a certain threshold. When attrition raises above that threshold, there is a 

clash between the different visions of the product and of the development process, and 

categories may change consistently to reflect the new truce found in the team, precisely as it 

happens in organization when new routines are formed (Nelson and Winter, 1982). Thus we 

can count the number of changes occurred in the classification categories over a period of 

time to have a sense of the number of re-alignments occurred in the team, and thus of the 

number of episodes in which the divergence of the development trajectories followed by the 

project members has increased above a certain threshold. The higher the number of observed 

changes in the classification in categories in certain period, the higher the number of episodes 

of misalignment in that period, the lower the cognitive alignment the team experiences in that 

period. We thus build our measure considering the 8 months spanned by t1 and comparing the 

list of categories each project posts at the beginning of that period to the same list at the end 

of the period, counting a change in the list every time a new category is added or an old 

category is dropped.  

The last step of our analysis deals with capturing the probability that the project produces an 

outcome. We measure this considering whether the project has produced and released any file 

over the 6 months composing period t2. In OSS many projects are just dormant and produce 

no activity at all (Krishnamurthy, 2002). In this environment releasing some code, even if far 



16773 

 20  
 

from being a precise measure of productivity, is also a reasonable proxy discriminating 

between productive and non-productive projects.  

Eventually, we need to include a number of controls to take into account possible 

confounding factors and alternative stories. We report them in the Table 1 together with the 

main variables described above (see Table A2 and A3 in the appendix for the summary 

statistics and the correlations).  

 

In sum, the data described above are used to investigate if the provision of an initial code at 

the moment of a project’s foundation (t0) leads to a reduction of the number of category 

changes during the development of the project (from the beginning to the end of t1), and if 

this effect in turn increases the probability of observing a new release of the code in t2.  

 

Table 1 – Variables used in the regression analysis 
Variable Description 

INITIAL_CODEt0 
dummy variable equal to 1 if there was at least one file posted by the 
project in the first months of its activity on SF.net, i.e. between its 
foundation and July 8th, 2005. 

CATEGORIES_CHANGESt1_t2 
number of categories the project has "changed", i.e. acquired or lost, 
between July 2005 and March 2006 

CATEGORIES_CHANGESt1_t2_p 
number of categories the project has "changed" between July 2005 and 
March 2006 as predicted by the first equation of the model 

CODE_RELEASEDt1 
dummy equal 1 if the project has posted at least one file between July 8th, 
2005 and March 20th, 2006 

CODE_RELEASEDt2 
dummy equal 1 if the project has posted at least one file in the 6 months 
from April 2006 to September 2006 included 

MEMBERS_TENUREt1 registered date of those who were project members at July 2005 (average) 

MEMBERS_TENUREt2 
registered date of those who were project members at March 2006 
(average) 

NUM_MEMBERSt2 number of project members at March 2006 (average) 
NUM_MEMBERSt1 number of project members at July 2005 (average) 

REGISTRATION_DATEt0 registration date of the project on the platform 

USE_CVS_TOOLt0 
dummy equal 1 if the project uses the CVS, concurrent versioning system, 
a tool to manage distributed software development (May 2005) 

USE_FORUMt0 dummy equal 1 if the project uses forums (May 2005) 

DUMMY_CATEGORIESt0 
dummies for language, programming language, license, operating system, 
development status, topic, retrieved July 2005, i.e. end of period t0 

*Notice: dates are measured in UNIX time, i.e. in number of seconds from midnight of January 1, 1970, a standard measure 
in computer science. 
 



16773 

 21  
 

The estimation we run is aimed at showing the relationship between the three main variables defined 

above. In order to do this we run a first estimation, using INITIAL_CODEt0 as independent variable 

and CATEGORIES_CHANGESt1_t2  as dependant variable. Then we predict the values of 

CATEGORIES_CHANGESt1_t2 (calling this new variable CATEGORIES_CHANGESt1_t2_p) and use 

them as the main regressor in a second equation, where the dependent variable is code release in t2 

(CODE_RELEASEDt2). In this way we capture the effect of number of changes in categories on code 

subsequent release(s) when those changes are exclusively due to the presence of initial code.  We do 

this to exclude any impact of CATEGORIES_CHANGESt1_t2 and CODE_RELEASEDt2 not due to 

INITIAL_CODEt0 (and the controls of the first stage).  

The first equation we need to estimate relates INITIAL_CODEt0 and 

CATEGORIES_CHANGESt1_t2. Measuring the independent variables at time t0 and the number of 

changes in the categorization as the delta between the beginning of t1 and its end (and also controlling 

for the specific categories projects listed at the end of t0) should diminish the possible endogeneity 

problem. As CATEGORIES_CHANGESt1_t2 is a count variable we could use a Poisson specification. 

However, the presence of overdispersion pushes us to prefer a Negative Binomial. By the same token, 

the presence of many zeros implies the use of an additional equation preceding the estimation stage 

and predicting the probability of being a project which has structurally 0 changes in the categories it 

lists. The results of this “zero-inflation” process are used in the main estimation equation. The final 

model for the first stage is then a Zero-Inflated Negative Binomial, ZINB (in the table the results 

relative to a Zero-Inflated Poisson, or ZIP, are also reported as a robustness check). Notice that the 

sample of projects is also reduced to 5709 due to the fact that we excluded about 100 project that were 

deleted from SourceForge before March 2006. 

Once the estimation of this first stage has been carried out, the predicted values of 

CATEGORIES_CHANGESt1_t2 are used as independent variable in the second equation, which 

includes CODE_RELEASEDt2 as dependant variable. CODE_RELEASEDt2 being a dummy 

variable, it seems appropriate to use a Logistic Regression Model.  

As said, some controls have been included in the two equations to make sure no confounding factors 

are at work. In particular, CODE_RELEASEDt1 and INITIAL_CODEt0 are also included in the 



16773 

 22  
 

second stage. CODE_RELEASEDt1 controls for the most recent performance of the project (in period 

t1) while introducing INITIAL_CODEt0 also in the second equation controls for the direct effect of 

INITIAL_CODEt0 on CODE_RELEASEDt2. This last passage reinforces the claim we made before: 

our coefficient captures the impact of CATEGORIES_CHANGESt1_t2 on CODE_RELEASEDt2 

when CATEGORIES_CHANGESt1_t2 is determined exclusively by INITIAL_CODEt0 (and other 

controls).  

Figure 2 provides an overview of the estimation procedure, while Tables 2a and 2b report the results 

of the estimates. 

Figure 2. The estimation strategy 



16773 

 23  
 

Table 2a – Results of the regression analysis – stage 1 

Stage 1 CATEGORIES_CHANGESt1_t2 
 ZINB ZIP 
 b/se b/se 
INITIAL_CODEt0 -0.312*** -0.251*** 
 [0.094] [0.083] 
REGISTRATION_DATEt0 0.000 0.000 
 [0.000] [0.000] 
NUM_MEMBERSt1 0.042* 0.044*** 
 [0.024] [0.016] 
MEMBERS_TENUREt1 0.000 0.000 
 [0.000] [0.000] 
USE_FORUMt0 -0.053 -0.047 
 [0.170] [0.146] 
USE_CVS_TOOLt0 -0.466** -0.443*** 
 [0.186] [0.167] 
DUMMY_CATEGORIESt1 YES YES 
Constant -16.584 -19.879 
 [22.675] [20.744] 
Inflation Model: logit   
INITIAL_CODEt0 -0.236** -0.180 
 [0.115] [0.113] 
REGISTRATION_DATEt0 0.000 0.000 
 [0.000] [0.000] 
NUM_MEMBERSt1 -0.077***  
 [0.026]  
MEMBERS_TENUREt1 0.000 0.000 
 [0.000] [0.000] 
USE_FORUMt0 0.232 0.286 
 [0.209] [0.208] 
USE_CVS_TOOLt0 0.280 0.282 
 [0.240] [0.240] 
DUMMY_CATEGORIESt1 YES YES 
Constant 34.407 30.367 
 [26.244] [24.773] 
lnalpha -.786***  
 [0.167]  
alpha 0.456  
 [0.076]  
   
N (nonzero) 5703 (461) 5703 (461) 
ll -2533.426 -2644.177 
chi2 (df) 145.95 (24)  
Pr > chi2 0.000  
Vuong 9.02   
Pr>z 0.000  

 



16773 

 24  
 

Table 2b – Results of the regression analysis – stage 2 
Stage 2 CODE_RELEASEDt2 
 LOGIT for ZINB LOGIT for ZIP 
 b/se b/se 
CATEGORIES_CHANGESt1_t2_P -0.775** -0.700* 
 [0.325] [0.413] 
NUM_MEMBERSt2 0.156*** 0.123*** 
 [0.027] [0.022] 
MEMBERS_TENUREt2 -0.000 -0.000 
 [0.000] [0.000] 
CODE_RELEASEDt1 2.495*** 2.502*** 
 [0.113] [0.113] 
INITIAL_CODEt0 0.831*** 0.841*** 
 [0.131] [0.131] 
DUMMIE_CATEGORIESt0 YES YES 
Constant -2.240* -2.312* 
 [1.312] [1.312] 
   
N 5703 5703 
Ll 1288.1201 -1290.0610 
Pseudo R-squared 0.291 0.290 
LR chi2 (df) 1059.50 (23) 1055.62 (23) 
Prob >  0.000 0.000 

 
 
In the first stage, the coefficient of INITIAL_CODEt0 is negative and highly significant. The 

provision of an initial piece of code thus leads to a decrease in the number of category changes during 

the course of the project. In the second stage, the coefficient of the predicated values of 

CATEGORIES_CHANGESt1_t2 is also highly significant, and also negative. This means that the 

smaller the number of changes in a project’s categories (as predicted by the first equation), the more 

likely a project will effectively produce and release some files in the latest period considered. 

Moreover, as we have used the predicted values of CATEGORIES_CHANGESt1_t2  in the second 

stage, and as we have controlled for INITIAL_CODEt0, for CODE_RELEASEDt1, and for the 

residuals of the prediction, we can also state that our regression captures exclusively how 

CATEGORIES_CHANGESt1_t2 -as determined by INITIAL_CODEt0 - affects 

CODE_RELEASEDt2. 

 



16773 

 25  
 

These results allow us to conclude that the presence of initial code at t0 reduces the number of 

category changes in the course of the project (between t1 and t2), and that this restriction is positively 

correlated with the release of code in the course of the project (t2).3 

 

5. Discussion and conclusion 

 

Our study shows that an initial code release in a new open source project aligns the cognitive 

structure of open source software developers, constraining the possible trajectories of development 

they could follow. We also argue that this, increases the chance of future code releases. The number 

of category changes in the course of the project measures the former effect, the existence of a 

subsequent line of code the latter. We interpret this finding as the consequence of the fact that the 

initial code helps contributors to restrict their search space, improve cognitive alignment and, as a 

consequence, coordination.  

The support we provide for our first hypothesis shows that by making the architecture of the 

software (including the key interdependences among the components/functions) visible, initial code 

helps developers direct their efforts in a similar direction from early stages of the project 

development. Lanzara and Morner (2005) and Narduzzo and Rossi (2005) propose this link between 

code exposure and capability to create effective coordination, while Baldwin and Clark (2006) 

                                                
3 Note that this econometric analysis could be expanded. We cannot apply directly Sobel-Goodman test for 
mediation because we have no OLS and because of the different time frames of the 2 stages that imply different 
set of controls. To give an idea of the possible result Sobel-Goodman test (which is however only indicative), 
we reproduced that technique comparing the previous equations with an equation testing the direct effect of 
INITIAL_CODEt0 on CODE_RELEASEDt2 (including 2 stage and 1 stage controls alternatively and 
contemporaneously, in order to take into account the phenomena relative to the whole time span). Considering 
only 2 stage controls the direct effect of INITIAL_CODEt0 is .8548467 with 95% Conf. Interval (.599205, 
1.110488) and z=6.55. A similar figure is obtained when both stage 1 and 2 controls are considered. Including 
only 1 stage controls, instead, enhances the effect of INITIAL_CODEt0 up to 1.568536 (Std. Err.=.1187749) and 
95% Conf. Interval (1.335742, 1.801331) with z=13.21. Ergo, including CATEGORIES_CHANGESt1_t2_p reduces 
the coefficient and the z values of INITIAL_CODEt0, but only when early stage phenomena are controlled for. 
When also later phenomena enter the picture, the remaining reduction -even if still present- is not enough to be 
significant.  
Ergo, when later phenomena enter the picture, the inclusion of CATEGORIES_CHANGESt1_t2_p reduces the 
coefficient and the z values of INITIAL_CODEt0, but not enough to be significant. When instead early stage 
phenomena are controlled for, the reduction of the coefficient and the z values of INITIAL_CODEt0 is clear and 
significant, confirming our analysis. 
 
 



16773 

 26  
 

suggest that the visible architecture of OSS allows to solve free riding problems, again fostering 

coordination. We move a step forward by making this link explicit, and showing that initial code 

fosters cognitive alignment between participants. This idea is then supported by a two stage analysis 

able to isolate and expose the underlying mechanism. 

Our second hypothesis links cognitive alignment to the chance that new code releases will be 

produced. This is a distinguishing factor in OSS development. As noted elsewhere (Krishnamurthy, 

2002) only a very limited percentage of projects advance, and coordination plays a key role in 

improving the chance that the project stays alive and makes progress. Our result adds a twofold 

contribution to this point. In the first place, we add and test the impact of a new mechanism for OSS 

coordination, i.e. the initial code release. While previous literature has shown that initial code has an 

important role in OSS projects, we specify and document the specific impact of initial code release 

cognitive alignment and the coordination (alignment of action) that is required for joint action to lead 

to results. Secondly, the mechanism by which such effective coordination is achieved seems to open 

up new opportunities for conceptual and empirical developments, also beyond OSS. We show that the 

mechanism by which effective coordination is achieved is that of making the structure of the software 

under development more transparent, i.e. exposing the interdependences among the components of the 

software. Although only preliminary, this result hints at a novel role played by the initial code release 

that goes beyond the role of “boundary object” or “modular interface”, i.e. of the two other concepts 

that make explicit reference to the link between artifacts and coordination. While previous literature 

has emphasized the role of boundary objects in “translating” messages from different epistemic 

communities and “connecting” such communities (Carlile, 2002), the initial code release, or better the 

potential future architectures which the current interdependences of this initial software facilitate, 

allow each participant in the joint production process to understand which trajectories will be feasible 

and which will be more complicated, making their visions of the overall final version of the product 

converge to a narrower set of possibilities. This is what we have called “cognitive alignment”, a 

process that has nothing do to with the concept of “translation” but rather deals with a sort of implicit 

coordination, where effective coordination is achieved limiting the scope of the search process of each 

actor. 



16773 

 27  
 

Concerning the difference between the role of the initial code release and modularity, our study 

contributes to a recent stream of literature that discusses the very role of modularity in the actual 

coordination of complex products in self-organizing environments. Modularity works thanks to the 

existence of interfaces that, in turn, help decoupling the development of each single component 

making up the system. Previous research has shown that in self-organized and distributed innovation 

processes (Narduzzo and Rossi, 2005) and in other complex settings (Brusoni, 2005, Zirpoli and 

Becker, 2011, Camuffo and Cabigiosu, 2012), it is difficult to realize the assumption behind 

modularity, i.e., that the ex ante definition of the interfaces is possible and implementable by a 

hierarchical structure solving all the problems of decomposition. The effect of the initial code release 

works on the basis of a totally different mechanism. Instead of assuming the possibility of decoupling 

the design activity of each single component ex ante, it acknowledges the existence of complex 

interdependences and makes their structure and logic transparent to everybody by means of the 

exposure of the code. Each single developer exposed to the initial artifacts is also exposed to the 

potential trajectories it embodies.  

This solves also another problem intrinsic to modularity. Architects are humans and thus 

rationally bounded. Any vision or set of rules explicitly designed by the architect thus contain only a 

limited amount of information: that known by the architect. As a consequence, all these tools will be 

also bounded. The initial code, and the initial artifacts in general, instead have a much wider reach. 

Irrespectively of what the initial artifact provider consciously places in the artifact, the object itself 

has a materiality that is not constrained by the bounded rationality of the provider. When participants 

other than the initial artifact provider are in doubt in judging whether a certain trajectory they could 

follow will raise a series of unforeseen interdependencies, while they cannot rely on the bounded 

rationality of the initial artifact provider to have an answer, they can instead just turn to the object and 

observe the structure of the artifact. Every trajectory whose implementation would imply an objective 

conflict with the artifact will be outside the possibility space, while those trajectories consistent with it 

can be easily implemented.  

This discussion shows that our results have clear implications for research on coordination. 

Classic organization theory distinguishes coordination by plan and by feedback (Cyert & March, 



16773 

 28  
 

1963). While the mechanisms of providing coordination ex ante by plans are reasonably well 

understood, our understanding of how coordination is achieved without such mechanisms is less 

strong. The topic is of great interest due to limits to ex ante coordination and planning especially in 

uncertain and dynamic circumstances such as those typical of self-organizing social bodies 

(Anderson, 1999). An active stream of research in the organization literature focuses on emergent and 

implicit coordination (e.g., Gittell, 2000; Rico et al., 2008; Okhuysen & Bechky, 2009). Our findings 

add to this stream of research and to the understanding of what contribution artefacts can make to the 

mechanisms underlying emergent coordination. By laying out key interdependences in the complex 

product, initial artifacts help cognitive alignment to emerge. This contrasts with other possible 

detailed mechanisms underlying emergent coordination such as affordances that objects can make, or 

creating shared representations of each others’ actions (Knoblich et al., 2012). By linking up recent 

research on the mechanisms underlying emergent coordination with identifying the impact of 

artefacts, our paper points to a line of research that can cast light on the role of artefacts for emerging 

coordination, for joint product development and for innovation management in distributed 

environments.  

 

 
 
 



16773 

 29  
 

References 

Amin, A., Cohendet, P, 2004. Architectures of Knowledge: Firms, Capabilities and Communities. 

Oxford University Press: Oxford, UK  

Anderson, P., 1999. Complexity theory and organization science. Organization Science, 10: 216-232 

Baldwin, C. Y. and Clark, K. B., 2000. Design Rules: Volume 1. The Power of Modularity. 

Cambridge, MA: MIT Press. 

Baldwin, C.Y., Clark, K.B., 2006. The Architecture of Participation: Does Code Architecture Mitigate 

Free Riding in the Open Source Development Model? Management Science, 52: 1116-1127. 

Brusoni, S., 2005. ‘The Limits to Specialization: Problem-solving and Coordination in Modular 

Networks’, Organization Studies, 26/12: 1885–1907. 

Brusoni, S., Prencipe, A. and Pavitt, K., 2001. Knowledge specialization, organization coupling, and 

the boundaries of the firm: Why do firms know more than they make? Administrative Science 

Quarterly, Vol. 46, No. 4, 597-625 

Cabigiosu A., Camuffo A., 2012. Beyond the “Mirroring” Hypothesis: Product Modularity and 

Interorganizational Relations in the Air Conditioning Industry. Organization Science, 23(3): 686-703 

Cacciatori E., 2008. Memory objects in project environments: Storing, retrieving and adapting 

learning in project-based firms, Research Policy, Vol. 37, No. 9., pp. 1591-1601. 

Carlile, P. R., 2002. A Pragmatic View of Knowledge and Boundaries: Boundary Objects in  New 

Product Development. Organization Science, Vol. 13, No. 4: 442-455. 

Chesbrough, H., 2003. Open Innovation. Free Press, New York 

Christensen, J. F., 2006. Wither Core Competency for the Large Corporation in an Open Innovation 

World?, in Chesbrough, H., Vanhaverbeke, W. and West, J. (eds.), Open Innovation: Researching a 

New Paradigm. Oxford: Oxford University Press, 35-61. 

Clark, K. B., 1989. Project scope and project performance: the effect on parts strategy and supplier 

involvement in product development, Management Science, 35: 1247-1263. 



16773 

 30  
 

Clark, K. B. and Fujimoto, T., 1991. Product Development Performance. Boston, MA: Harvard 

Business School Press. 

Cyert, R.M. and March J.G., 1963/1992. A Behavioral Theory of the Firm. 2nd ed. Blackwell, Oxford. 

D'Adderio, L., 2003. Configuring software, reconfiguring memories: the influence of integrated 

systems on the reproduction of knowledge and routines, Industrial and Corporate Change, vol. 12(2): 

321-350. 

Dahlander L, Frederiksen L, Rullani F., 2008. Online communities and open innovation: governance 

and symbolic value creation. Industry and Innovation ,15(2): 115-123. 

Dahlander L., O'Mahony S., 2011. Progressing to the Center: Coordinating Project Work, 

Organization Science, 22(4): 961-979. 

Dalle, J.-M., and Jullien, N., 2003. ‘Libre’ software: Turning fads into institutions?, Research Policy, 

32, January, pp 1-11. 

Dalle, J.-M., Paul A. David, P.A., Rullani F., 2011. Linking coordination, motivations and code 

structure in successful open source projects: A ‘stigmergic’ approach, presented at the Academy of 

Management Annual Meeting, August 2011, San Antonio, TX, US. 

David P., Foray D., 2003. Economic fundaments of the knowledge society, Policy Futures in 

Education 1(1), January.  

David P.A. and Ghosh R.A., 2008. Relating social structure to technical structure: A study of the 

Linux kernel, presented at the DIME - DRUID Fundamental on Open and Proprietary Innovation 

Regimes: "Opportunities and limitations of the open source models of innovation and the role of 

intellectual property rights", Copenhagen Business School, Copenhagen, Denmark, June 17, 2008  

David P.A., Waterman A., Arora S., 2003. The free/libre/open source software survey for 2003, 

preliminary draft, September 2003, quoted with authors’ permission, at 

http://www.stanford.edu/group/floss-us/report/FLOSS-US-Report.pdf. 



16773 

 31  
 

David, P.A, Rullani F., 2008. Dynamics of Innovation in an “Open Source” Collaboration 

Environment: Lurking, Laboring and Launching FLOSS Projects on SourceForge, Industrial and 

Corporate Change, 17(4), p. 647-710. 

David, P.A. 1985. Clio and the Economics of QWERTY. American Economic Review: 75(2): 332-337 

David, P.A., J.S. Shapiro. 2008. Community-based production of open source software: what do we 

know about the developers who participate? Information Economics and Policy 20 (4) 364–398. 

Dosi, G., 1982. Technological paradigms and technological trajectories. Research Policy, 11, 

147−162. 

Elliott M. and Scacchi W., 2003. Free Software Developers as an Occupational Community: 

Resolving Conflicts and Fostering Collaboration, Proc. ACM Intern. Conf. Supporting Group Work 

(Group'03), Sanibel Island, FL, November 2003: p. 21-30 

Gao Y., Van Antwerp M., Christley S. and Madey S., 2007. A Research Collaboratory for Open 

Source Software Research, In the Proceedings of the 29th International Conference on Software 

Enginering + Workshops (ICSE-ICSE Workshops 2007), International Workshop on Emerging 

Trends in FLOSS Research and Development (FLOSS 2007), Minneapolis, MN, May 2007. 

Ghosh R.A., Krieger B., Glott R., Robles G., 2002. Free/Libre and Open Source Software. Part IV: 

Survey of Developers, International Institute of Infonomics, Berlecom Research GmbH, at 

http://www.infonomics.nl/FLOSS/report/Final4.pdf  

Gittell, Jody Hoffer, 2000. Organizing work to support relational co-ordination. International Journal 

of Human Resource Management, Vol. 11, No. 3, 517-539 

Giuri P., Ploner M., Rullani F., and Torrisi S., 2010. Skills, Division of Labor and Performance in 

Collective Inventions: Evidence From Open Source Software, International Journal of Industrial 

Organization, 28(1), 54-68. 

Giuri P., Rullani F. & Torrisi S. 2008. Explaining Leadership in Open Source Software Projects, 

Information Economics and Policy, 20(4): 305-315.  



16773 

 32  
 

Haefliger, S., G. von Krogh, S. Spaeth. 2008. Code reuse in open source software. Management 

Science, 54 180–193. 

Helper, S.R., MacDuffie, J.P. and Sabel, C., 2000. Pragmatic Collaborations: Advancing Knowledge 

While Controlling Opportunism, Industrial and Corporate Change, 9, 443-488. 

Hobday, M., Davies, A. and Prencipe, A., 2005. Systems integration: a core capability of the modern 

corporation. Industrial and Corporate Change, 14/6: 1109-1143 

Knoblich, Günther, Stephen Butterfill and Natalie Sebanz, 2011. Psychological Research on Joint 

Action: Theory and Data. In Ross, Brian (eds) The Psychology of Learning and Motivation, Vol. 54, 

Burlington: Academic Press, 59-101 

Kogut, B. and A. Metiu. 2001. Open-Source Software Development and Distributed Innovation, 

Oxford Review of Economic Policy, 17(2): 248-64. 

Krishnamurthy, S., 2002. Cave or community? An empirical examination of 100 mature open source 

projects. First Monday 7(6). 

Kuk G., 2006. Strategic Interaction and Knowledge Sharing in the KDE Developer Mailing List, 

Management Science, Vol. 52, No. 7, July 2006, p. 1031–1042. 

Lakhani, K.R., R. G. Wolf. 2005. Why hackers do what they do: understanding motivations and effort 

in free/open source software projects. J. Feller, B. Fitzgerald, S. Hissam, K.R. Lakhani, eds. 

Perspectives on Free and Open Source Software. MIT Press, Cambridge MA. 

Langlois, Richard N. and Garzarelli, Giampaolo, 2008. Of Hackers and Hairdressers: Modularity and 

the Organizational Economics of Open-source Collaboration, Industry & Innovation, 15(2), 125-143 

Lanzara G.F., Morner M., 2005. Artifacts rule! How organizing happens in opens source software 

projects, in: Czarniawska B. and Hernes T., Actor-Network Theory and Organizing, Copenhagen, 

Copenhagen Business School Press, p. 67 - 90.   



16773 

 33  
 

Laursen, K. and Salter A., 2006. Open for Innovation: The role of openness in explaining innovative 

performance among UK manufacturing firms, Strategic Management Journal, Vol. 27(2), pp 131-

150. 

Lee G.K., & Cole R.E., 2003. From a Firm-Based to a Community-Based Model of Knowledge 

Creation: The Case of the Linux Kernel Development, Organization Science, 14(6): 633-649. 

Lerner J., Tirole J., 2002. Some simple economics of Open Source, The Journal of Industrial 

Economics, vol. L number 2, p. 197-234.  

Lerner J., Tirole J., 2005. The Scope of Open Source Licensing, Journal of Law, Economics, and 

Organization, 21, 20-56. 

MacCormack, A., Rusnak, J., Baldwin, C. Y., 2006. Exploring the structure of complex software 

designs: an empirical study of open source and proprietary code. Management Science, 52(7)  

Madey G., ed., 2009. The SourceForge Research Data Archive (SRDA). University of Notre Dame 

(February 2009) http://zerlot.cse.nd.edu/ 

Markus M.L., 2007. The governance of free/open source software projects: monolithic, 

multidimensional, or configurational? Journal of Management Governance, 11:151–163 

Mateos-Garcia, J., Steinmueller W.E., 2008. The institutions of open source software: examining the 

Debian community. Information Economics and Policy 20 333–344. 

Muller P., 2006. Reputation, trust and the dynamics of leadership in communities of practice, Journal 

of Management and Governance 10, p. 381–400  

Narduzzo A., Rossi A., 2005. The Role of Modularity in Free/Open Source Software Development, in 

S. Koch (ed), Free/Open Software Development, Idea Group. 

Nelson, R. and Winter S., 1982. An Evolutionary Theory of Economic Change. Belknap Press of 

Harvard University Press, Cambridge/MA 

Nishiguchi, T., 1994. Strategic Industrial Sourcing. New York: Oxford University Press. 



16773 

 34  
 

O’Mahony S. & Ferraro F., 2007. The emergence of governance in an open source community, 

Academy of Management Journal, 50(5): 1079–1106  

Okhuysen, G.A. and Bechky B.A., 2009. Coordination in Organizations: An Integrative Perspective. 

The Academy of Management Annals, Vol. 3, No. 1, 463–502  

Olsson, O., and Frey B.S., 2002. Entrepreneurship as Recombinant Growth, Small Business 

Economics,19: 69–80 

Orlikowski, W.J., 1992. The duality of technology: Rethinking the concept of technology in 

organizations. Organization Science 3(3): 398-427. 

Orlikowski, W.J., 2000. Using Technology and Constituting Structures; A Practice Lens for Studying 

Technology in Organizations. Organization Science 11(4): 404-428.  

Ouchi, William G., 1980. Markets, Bureaucracies, and Clans. Administrative Science Quarterly, Vol. 

25, No. 1, 129-141 

Powell, W.W, Koput, K.W., Smith-Doerr, L., 1996. Interorganizational collaboration and the locus of 

innovation: networks of learning in biotechnology, Administrative Science Quarterly, 41, 116-145. 

Raymond, Eric S., 1998. The Cathedral & the Bazaar: Musings on Linux and Open Source by an 

Accidental Revolutionary. Sebastopol, CA: O’Reilly Associates.  

Rico, R., Sanchez-Manzanares M., Gil F. and Gibson C., 2008. Team Implicit Coordination 

Processes: A Team Knowledge-Based Approach. Academy of Management Review, Vol. 33, No. 1, 

163–184.  

Sanchez, R. and Mahoney, J.T., 1996. Modularity, Flexibility, and Knowledge Management in 

Product and Organization Design, Strategic Management Journal, 17, 63-76. 

Sojer, M. and Henkel, J. 2010. Code Reuse in Open Source Software Development: Quantitative 

Evidence, Drivers, and Impediments, Journal of the Association for Information Systems, 11(12), 

Article 2 



16773 

 35  
 

Sosa, M. E., S. D. Eppinger, C. M. Rowles, 2004. The Misalignment of Product Architecture and 

Organizational Structure in Complex Product Development.  Management Science, 50(12), 1674–

1689 

Star, Susan Leigh and Griesemer, James R., 1989. Institutional Ecology, 'Translations' and Boundary 

Objects: Amateurs and Professionals in Berkeley's Museum of Vertebrate Zoology, 1907-39. Social 

Studies of Science Vol. 19, No. 3: 387-420 

Takeishi, A., 2001. ‘Bridging inter- and intra-firm boundaries: management of supplier involvement 

in automobile product development’, Strategic Management Journal, 22, 403-433. 

Takeishi, A., 2002. Knowledge Partitioning in the Inter-Firm Division of Labor: The Case of 

Automotive Product Development. Organization Science, 13: 321-338. 

Von Hippel, E. and von Krogh, G., 2003. Open source software development and the private-

collective innovation model: Issues for organization science, Organization Science, Vol. 14, No. 2, , 

pp. 208-223 

von Hippel, Eric, 1988. The Sources of Innovation. Oxford University Press, Oxford.  

Wheelwright, S. and Clark, K., 1992. Revolutionizing Product Development. New York: Free Press. 

Womack, J.P., D.T. Jones and D. Ross, 1990. The Machine that Changed the World, Rawson Ass.: 

New York. 

Zirpoli, Francesco and Markus C. Becker, 2011. The limits of design and engineering outsourcing: 

performance integration and the unfulfilled promises of modularity. R&D Management. Vol. 41, No. 

1, 21-43 


